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Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model to study multiple

sclerosis (MS). Considering the tolerogenic effects of active vitamin D, we evaluated the

therapeutic effect of myelin oligodendrocyte glycoprotein (MOG) associated with active vita-

min D in EAE development. EAE was induced in female C57BL/6 mice by immunization

with MOG emulsified with Complete Freund’s Adjuvant plusMycobacterium tuberculosis.
Animals also received two intraperitoneal doses of Bordetella pertussis toxin. One day after

immunization, mice were treated with 0,1μg of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3)

every other day during 15 days (on days 1, 3, 5, 7, 9, 11, 13 and 15). MOG (150μg) was co-

administered on days 3 and 11. The administration of 1,25(OH) 2D3 or MOG determined sig-

nificant reduction in EAE incidence and in clinical scores. When MOG was associated with

1,25(OH) 2D3 the animals did not develop EAE. Spleen and central nervous system (CNS)

cell cultures from this group produced less IL-6 and IL-17 upon stimulation with MOG in

comparison to the EAE control group. In addition, this treatment inhibited dendritic cells mat-

uration in the spleen and reduced inflammatory infiltration in the CNS. The association of

MOG with 1,25(OH) 2D3 was able to control EAE development.

Introduction
Multiple sclerosis (MS) is a demyelinating disease mediated by an immune response against
self-antigens from the central nervous system (CNS). This immune response triggers an initial
inflammation in brain and spinal cord that is then followed by demyelination, axonal damage
and scar formation [1]. Experimental autoimmune encephalomyelitis (EAE) is an induced in-
flammatory demyelinating disease of the CNS that is largely employed as a model to study MS
[2,3]. The pathogenic immune response observed in MS and EAE CNS is mainly mediated by
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Th1 and Th17 cells whose main signature cytokines are IFN-γ and IL-17, respectively [4–6].
Current MS treatment consists in general suppression of the immune response which can in-
crease susceptibility to infections. Therefore, an antigen-specific tolerogenic strategy is highly
desirable to treat this disease. Administration of antigens derived from myelin by intravenous,
transdermal and oral routes protected animals from EAE development [7–9]. The transdermal
application of myelin peptides in MS patients was also effective, being able to reduce magnetic
resonance imaging and clinical parameters of disease activity [10]. Many of these strategies in-
duced tolerogenic dendritic cells (DCs) whose tolerogenic properties can also be achieved by
the use of pharmacological agents as corticosteroids, rapamycin, mycophenolate mofetil, pros-
taglandin E2 and vitamin D [11,12].

The active form of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), is mainly ob-
tained after sunlight exposure. 1,25(OH)2D3 has an important role in bone metabolism, in cal-
cium and phosphorus homeostasis and also plays a regulatory role in the immune system [13].
Its activity is mediated by the vitamin D receptor which is expressed in many cell types includ-
ing immune cells such as monocytes, macrophages, DCs and activated B and T lymphocytes
[14]. In the innate immunity, it enhances the antimicrobial properties of monocytes and mac-
rophages [13]. The regulatory role of 1,25(OH)2D3 in the adaptive immunity has been mainly
attributed to its effects on DCs. In vitro exposure to 1,25(OH)2D3 inhibits DC maturation by
reducing expression of markers such as CD1a, MHC II, CD40, CD80 and CD86 [15]. In addi-
tion, 1,25(OH)2D3 modulates cytokine production by DCs, inhibiting, for example, the pro-
duction of IL-12 and IL-23 that induce Th1 and Th17 differentiation, respectively. Classically,
it has been described that 1,25(OH)2D3 also increases the secretion of IL-10, a cytokine with
very well established anti-inflammatory properties [16]. The effects of 1,25(OH)2D3 on T cells
include inhibition of their proliferation, of IL-2 and IFN-γ production [17] and also of Th17
cells differentiation [18]. Besides, in vitro and in vivo studies show that 1,25(OH)2D3 usually in-
duces Foxp3+ regulatory T cells [19]. The beneficial role of 1,25(OH)2D3 in experimental mod-
els of autoimmune diseases, as experimental autoimmune uveitis, EAE and diabetes have been
clearly demonstrated [20–24]. A great deal of attention has been dedicated to reveal the de-
tailed mechanism of 1,25(OH)2D3 over the immune system. Chang et al., 2010 [22], for exam-
ple, showed that the beneficial effect of this substance in EAE is mediated throughout
inhibition of differentiation and also migration of Th17 cells to the CNS. The contribution of
tolerogenic DCs induced by 1,25(OH)2D3 to control autoimmunity was clearly showed by Far-
ias et al., 2013 [23]. These authors demonstrated that both, in vivo administration of 1,25
(OH)2D3 and transfer of 1,25(OH)2D3-induced IDO(+) immature DCs, significantly reduced
EAE severity.

The aim of this study was to evaluate the efficacy of a precocious treatment with MOG/1,25
(OH)2D3 association on EAE development.

Materials and Methods

Ethics statement
All animal studies and procedures were approved by local Ethics Committee for animal experi-
mentation (CEEA), Universidade Estadual Paulista (protocol number 314). The animals were
anesthetized by intraperitoneal injection of a solution containing ketamine and xylasin.

Animals
Female C57BL/6 mice with 6–9 weeks old were purchased from University of São Paulo (USP,
Ribeirão Preto, SP, Brazil). The animals received sterilized food and water ad libitum.
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EAE induction
MOG35–55 peptide (MEVGWYRSPFSRVVHLYRNGK) was synthesized by Genemed Synthesis
Inc. (San Antonio, Texas, USA). Mice were immunized subcutaneously with 150 μg of
MOG35-55 peptide emulsified in Complete Freund’s Adjuvant containing 4mg/mL ofMyco-
bacterium tuberculosis. Mice also received two intraperitoneal doses, 0 and 48 h after immuni-
zation, of 250 ng of Bordetella pertussis toxin (Sigma Aldrich, St. Louis, MO, USA). Clinical
assessment of EAE was daily performed according to the following criteria: 0—no disease, 1—
limp tail, 2—weak hind legs, 3—partially paralyzed hind legs, 4—complete hind leg paralysis,
and 5—complete paralysis/death.

Treatment with 1,25(OH)2D3, MOG or 1,25(OH)2D3 associated with
MOG
One day after EAE induction, mice were treated, by intraperitoneal route, with 0,1 μg of
1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) from Sigma Aldrich, every other day during 15
days (on days 1, 3, 5, 7, 9, 11, 13 and 15); MOG (150μg) was co-administered, also by this
route, on days 3 and 11.

CNS-mononuclear cells isolation
Ten and eighteen days after EAE induction, mice were anesthetized with ketamine/xylazine
and perfused with 10 mL of saline solution. Mononuclear cells from CNS were isolated as pre-
viously described [25]. Briefly, brain and spinal cord were entirely collected, macerated and di-
gested with collagenase D (2.5mg/mL, Roche Diagnostics, Indianapolis, IN, USA) in 4mL of
RPMI (Sigma Aldrich, St. Louis, MO, USA) at 37°C for 45 min. Suspensions were then washed
in RPMI and centrifuged at 450 ×g for 15min at 4°C. Cells were resuspended in percoll (GE
Healthcare, Uppsala, Sweden) 37% and laid over percoll 70%. The material was centrifuged at
950 ×g for 20 min with centrifuge breaks turned off and the mononuclear cell ring was collect-
ed, washed in RPMI, and centrifuged at 450 ×g for 10 min. Cells were then resuspended in
complete RPMI medium, counted, and analyzed. To get enough cells to perform the experi-
ments we used pools from 3 animals.

Cell culture conditions and cytokine quantification
Eighteen days after EAE induction, spleen and CNS-isolated cells, whose viability was over 95%,
were adjusted to 5 x 106 cells/mL and 2 x 105 cells/mL, respectively and cultured in RPMI medi-
um containing 10% of fetal calf serum and 2 mM of glutamine. Spleen and CNS cultures were
stimulated with 20 μg/mL and 50 μg/mL of MOG, respectively. Cytokine levels were evaluated
48h later by enzyme-linked immunosorbent assay (ELISA) using IFN-γ and IL-10 BD OptEIA
Sets (BD Biosciences, San Jose, CA, USA) and IL-6 and IL-17 Duosets (R&D Systems, Minneap-
olis, MN, USA). The assays were performed according to the manufacturer’s instructions.

Flow cytometry
Spleen and lymph nodes (popliteal + inguinal) cells were collected and the red blood cells were
lysed with buffer containing NH4Cl. For regulatory T cells analysis, spleen, lymph nodes and
CNS-isolated cells were incubated with 0.5 μg of FITC labeled anti-mouse CD4 (clone GK1.5)
and 0.25 μg of APC labeled anti-mouse CD25 (clone PC61.5) for 20 min at room temperature.
Intracellular Foxp3 transcription factor was detected using Foxp3 PE Staining Set (eBios-
ciences, San Diego, CA, USA) according to manufacturer's instructions. For DCs analysis, sple-
nocytes were incubated with 0.25 μg of FITC labeled anti-mouse CD11c (clone N418), 0.03 μg
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of APC labeled anti-mouse MHCII (clone M5/114.15.2) and 0.125 μg of PE labeled anti-mouse
CD86 (clone GL1) for 30 min at 4°C. The cells were then washed, resuspended in flow cytome-
try buffer and fixed in paraformaldehyde 1%. The cells were analyzed by flow cytometry using
the FACSCanto II (BD Biosciences, San Jose, CA, USA). Regulatory T cells and DCs analyses
were performed by FlowJo software (TreeStar, Ashland, OR, EUA) and Infinicyt software
(Cytognos, Salamanca, Spain), respectively. These experiments were performed 18 days after
EAE induction except Foxp3+ regulatory T cells (Treg) evaluation in the spleen and lymph
nodes that was also assessed at the preclinical phase.

Evaluation of inflammatory infiltrates in the CNS
The histological analysis was performed during EAE acute phase, that is, 18 days after disease
induction. After euthanasia, lumbar spinal cord samples were removed and fixed in 10% form-
aldehyde. Paraffin slides with 5 μmwere stained with hematoxylin and eosin (H&E) and ana-
lyzed with a Nikon microscope.

Calcium and phosphorus levels
Calcium and phosphorus serum levels were analyzed using Cálcio Arsenazo III commercial kit
(Bioclin, Minas Gerais, Brazil) and Quimifos-Fósforo commercial kit (Ebram, São Paulo, Bra-
zil). The assays were performed according to the manufacturer’s instruction.

Statistical analysis
Results were expressed as mean ± standard deviation or with median and interquartile (25–
75%) ranges. Comparisons between groups were made by t-test or one way ANOVA followed
by Tukey’s test for parametric variables and by Kruskal-Wallis followed by Dunn’s test for
non-parametric variables. Chi-square was performed for EAE incidence. Statistical analysis
was accomplished with SigmaPlot software version 12.0 (Systat Software Inc., San Jose, CA,
USA) and p<0.05 was considered significant. See S1 File for full dataset.

Results

MOG/1,25(OH)2D3 association inhibits EAE development
A 100% disease incidence was observed in the positive control group. These animals also pre-
sented very typical signs of disease characterized by elevated clinical score and accentuated
body weight loss. On the other hand, groups treated with MOG, 1,25(OH)2D3 or 1,25
(OH)2D3+MOG showed a decreased incidence and also a much less severe clinical disease. Dis-
tinctly fromMOG and 1,25(OH)2D3 treated groups that showed a residual disease, the group
treated with 1,25(OH)2D3+MOG was completely protected and did not show any sign of paral-
ysis. The kinetics of clinical scores and the maximum clinical score in all experimental groups
is illustrated in Fig 1A and 1C, respectively. Maximum clinical score determination confirmed
that MOG and 1,25(OH)2D3 alone similarly reduced disease severity whereas their association
completely avoided any clinical disease manifestation. EAE incidence is depicted in Table 1
and clearly indicates that treatment with 1,25(OH)2D3 or MOG were also able to reduce disease
incidence. However, their combination reduced disease incidence to zero. As expected, mice
from the positive control group lost body weight during the acute disease phase. Mice treated
with MOG did not lost weight whereas the ones that received 1,25(OH)2D3 alone or combined
with MOG, lost weight even before paralysis manifestations (Fig 1B).
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Quantification of DCs in the spleen
As depicted in Fig 2A, there was a significant increase in the absolute number of mature DCs
in the EAE group compared with normal control. Contrarily, there was a significant decrease

Fig 1. Effect of treatment with 1,25(OH)2D3+MOG association on EAE development. Kinetics of clinical
scores (A), maximum clinical score (B) and weight variation (C). Comparisons between groups were made by
one way ANOVA followed by Tukey’s test for parametric variables (A andC) and by Kruskal-Wallis followed
by Dunn’s test for non-parametric variables (B). Results were expressed as mean or medians (25–75%
ranges) of 12 animals per group. * p<0.05 compared with EAE+MOG, EAE+vitD and EAE/vitD+MOG
groups. Data are representative of two independent experiments.

doi:10.1371/journal.pone.0125836.g001
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in the number of mature DCs in the groups treated with 1,25(OH)2D3 or 1,25(OH)2D3+MOG
compared with EAE and EAE/MOG groups. The same profile was observed in the percentage
of these cells among the groups (Fig 2B).

Cytokine evaluation in the spleen and CNS
The recall response was evaluated with cell cultures from the spleen and the CNS stimulated
with MOG. Similar amounts of IFN-γ were produced by all experimental groups (Fig 3A). IL-
17 production was statistically down-modulated in the EAE/1,25(OH)2D3+MOG compared
with the EAE group (Fig 3B). IL-6 was down-modulated in this and also in the EAE/1,25
(OH)2D3 group (Fig 3C). The levels of IL-10 were similar in EAE, EAE/1,25(OH)2D3 and
EAE/1,25(OH)2D3+MOG groups. However, mice treated only with MOG produced higher lev-
els of IL-10 compared with the three other experimental groups (Fig 3D).

Lower levels of IFN-γ, IL-17, IL-6 and IL-10 were produced by cells eluted from the CNS of
treated mice (Fig 3E, 3F, 3G and 3H). However, treatment with 1,25(OH)2D3+MOG deter-
mined the most striking modulation, significantly reducing the production of IFN-γ, IL-17 and
IL-6 as shown in Fig 3E, 3F and 3G, respectively.

Table 1. EAE incidence in mice treated with 1,25(OH)2D3+MOG.

Groups Incidence p

EAE 12/12 (100%) �0.001*

EAE + MOG 5/12 (42%)

EAE + vit D 3/12 (25%)

EAE/ vit D + MOG 0/12 (0%)

*Chi-square was performed for EAE incidence. p�0.001 compared EAE with EAE+MOG, EAE+vitD and

EAE/vitD+MOG groups. Data are representative of two independent experiments.

doi:10.1371/journal.pone.0125836.t001

Fig 2. Quantification of splenic dendritic cells in C57BL/6 mice treated with 1,25(OH)2D3+MOG. Absolute number (A) and percentage (B) of CD11c
+MHCII+CD86+ cells in 500,000 acquired events. Comparisons between groups were made by one way ANOVA followed by Tukey’s test. Results are
expressed as mean ± SD of 5 animals per group. * p<0.05 compared with EAE and EAE+MOG group. Data are representative of two
independent experiments.

doi:10.1371/journal.pone.0125836.g002
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Fig 3. Cytokine production by spleen and CNS cell cultures. IFN-γ (A and E), IL-17 (B and F), IL-6 (C and
G) and IL-10 (D andH) levels were measured in spleen and CNS cell cultures stimulated with MOG.
Comparisons between groups were made by one way ANOVA followed by Tukey’s test for parametric
variables (D, F andG) and by Kruskal-Wallis followed by Dunn’s test for non-parametric variables (A, B, C, E
andH). Data were presented by mean ± SE or medians (25–75% ranges) of 9 animals per group in spleen
cultures or 4 pools (each pool contains cells from brain and spinal cord of 3 mice) per group in CNS cultures.
* p<0.05. Data are representative of two independent experiments.

doi:10.1371/journal.pone.0125836.g003
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Quantification of regulatory T cells in peripheral lymphoid organs
The frequency of Foxp3+ Treg cells was evaluated at the pre-clinical and clinical phases, that is,
10 and 18 days after EAE induction respectively. No differences were observed in the spleen
(Fig 4A). However, the frequency of CD4+CD25+Foxp3+ T cells was significantly reduced in
the lymph nodes of mice treated with 1,25(OH)2D3+MOG compared with the EAE untreated
group (Fig 4B).

Inflammatory process in the CNS
As expected, the EAE control group showed typical inflammatory foci, with a clear predomi-
nance of mononuclear cells in the lumbar spinal cord (Fig 5B). A similar picture was observed
in sections from the EAE+MOG group (Fig 5C). Otherwise, samples from EAE+1,25(OH)2D3

(Fig 5D) and EAE/1,25(OH)2D3+MOG (Fig 5E) groups showed no inflammation. The absence
of inflammation in normal mice is illustrated in Fig 5A. Similar results were observed in brain
analysis (not shown). Inflammation was also assessed by CD4+ and CD4+CD25+Foxp3+ T
cells quantification in cells eluted from the CNS. The total amount of CD4+ T cells was similar
in EAE and EAE/MOG groups. However, a striking reduction was detected in the EAE/1,25
(OH)2D3 and EAE/1,25(OH)2D3+MOG groups. A similar profile was found when CD4+CD25
+Foxp3+ T cells were quantified. In both evaluations, a statistical comparison between EAE/
1,25(OH)2D3 and EAE/1,25(OH)2D3+MOG did not indicate statistical significance even
though down-modulation by the associated treatment was apparently more efficient (Fig 5F).

Serum levels of calcium and phosphorus
1,25(OH)2D3 treated groups presented significantly higher serum levels of calcium (Fig 6A)
but not of phosphorus (Fig 6B) in the moment of euthanasia.

Discussion
Considering the immunomodulatory properties of active vitamin D and the epidemiological
observations that low serum levels of this vitamin are probably associated with increased MS
risk [26], we hypothesized that the association of 1,25(OH)2D3 with MOG could have a protec-
tive effect on EAE. The success of MOG+1,25(OH)2D3 treatment was clearly demonstrated by
clinical parameters, that is, disease incidence and maximum clinical score were zero in these
animals. However, MOG and 1,25(OH)2D3 by themselves were also partially effective, being
1,25(OH)2D3 more efficient than MOG. The observed efficacy of 1,25(OH)2D3 administration
(75% reduction in incidence and a significant decrease in the maximum clinical score) was ex-
pected and supported by recent work with similar experimental models [23]. A variety of strat-
egies employing MOG has also been devised, tested and proved promising. MOG can be used
alone by nasal administration [27] and is also effective by delivery as a DNA vaccine [28] or as
part of fusion proteins [29]. The strong immunomodulatory activity of this association was
clearly revealed by the analysis of cytokine production by spleen cells and also by the quantifi-
cation of DCs in this organ. A significant reduction was detected in IL-6 and IL-17 levels even
though IFN-γ and IL-10 levels were not affected. Reduced IL-17 production is particularly rele-
vant because it is considered a highly encephalitogenic cytokine in EAE and MS patients
[30,31]. In the group that received this combined treatment there was a clear reduction in the
amount of mature DCs in the spleen. This effect was attributed solely to 1,25(OH)2D3 because
MOG alone increased, even though not substantially, the amount of these cells. Much of the
knowledge in this area relates to the in vitro effect of 1,25(OH)2D3 on DCs. In the presence of
1,25(OH)2D3 these cells differentiate into a phenotype that resembles semi-mature DCs that
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Fig 4. Quantification of regulatory T cells in peripheral lymphoid organs from C57BL/6 mice treated
with 1,25(OH)2D3+MOG. Percentage of CD4+CD25+Foxp3+ T cells in total CD4+ T cell. Spleen (A) and
lymph nodes (B) were collected 10 and 18 days after EAE induction. Analyses were performed in 100,000
acquired events. Comparisons between groups were made by t-test followed by Tukey’s test for parametric
variables. Results were expressed as mean of 6–9 animals per group. Data are representative of two
independent experiments.

doi:10.1371/journal.pone.0125836.g004
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are poor IL-12 producers and express low amounts of co-stimulatory and MHCII molecules.
These 1,25(OH)2D3-modulated DCs usually induce tolerance characterized by a blockage in
Th1 and Th17 differentiation together with recruiting and differentiating regulatory T cells
[32,33]. The adoptive transfer of 1,25(OH)2D3 modified DCs has been considered the most
promising immunotherapeutic approach for autoimmune diseases. Our results strongly sug-
gest that a similar immunomodulatory effect can be achieved in vivo by the combined treat-
ment with 1,25(OH)2D3 and the specific antigen.

Unexpectedly, no increase was found in the amount of CD4+CD25+Foxp3+ T cells in
spleen and lymph nodes. We even found, at the preclinical stage, a significant decrease in their
percentage in the draining lymph nodes. Our interpretation is that protection in this case is in-
dependent of Treg induction relying mostly on the concomitant presence of immature DCs
and the self-antigen. In this scenario, MOG specific T cells could be deleted by the contact with

Fig 5. Infiltrating cells in the CNS after treatment of 1,25(OH)2D3+MOG. Inflammatory process in lumbar spinal cord sections stained with H&E in control
(A), EAE (B), EAE+MOG (C), EAE+vitD (D) and EAE/vitD+MOG (E) groups and absolute number of CD4+ T cells and CD4+CD25+Foxp3+ T cells in CNS-
mononuclear cells (F). Regulatory T cells were evaluated in the total CD4+ T cell population and analyses were performed in 20,000 acquired events.
Comparisons between groups were made by one way ANOVA followed by Tukey’s test. Data were presented by mean ± SE of 4 pools (each pool contains
cells from brain and spinal cord of 3 mice) per group in CNS cultures cells. * p<0.05 in compared with EAE and EAE+MOG group. Scale bar = 100μm.
Micrographs are representative of 5 animals per group. Data are representative of two independent experiments.

doi:10.1371/journal.pone.0125836.g005
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immature DCs as has been demonstrated in various experimental scenarios [15,34,35]. Even
though Treg induction is being predominantly linked to 1,25(OH)2D3 immunoregulatory ef-
fects [36, 37] a few reports also show that active vitamin D is able to directly inhibit the expres-
sion of Foxp3 [22].

IL-10 has been considered essential to mediate the protection triggered by active vitamin D
in EAE [38]. However, our results did not show increased production of this cytokine. A possi-
ble explanation for these apparently contradictory findings could be the 1,25(OH)2D3 adminis-
tration route and/or its association with the neuroantigen. Spach et al (2006) [38], used only
1,25(OH)2D3 by oral route whereas we employed an association of active vitamin D + MOG by
intraperitoneal route.

The higher efficacy of 1,25(OH)2D3+MOG treatment and, to a lesser extension, of 1,25
(OH)2D3 alone, was confirmed when sections from the CNS, local cytokine production, and
the characteristics of the CD4+ T cells eluted from this tissue were analyzed. Distinctly from
EAE and EAE/MOG groups that presented clear cell infiltrates in the CNS, no inflammation
was found in the CNS of 1,25(OH)2D3+MOG treated animals. However, it was possible to
elute cells from the CNS of all experimental groups. One of the major differences was the
amount of cells; EAE and EAE/MOG groups had a significantly higher number of CD4+ T
cells than EAE/1,25(OH)2D3 and EAE/1,25(OH)2D3+MOG groups. In addition, the total num-
ber of CD4+CD25+Foxp3+ T cells was significantly lower in the two groups that received 1,25
(OH)2D3.

Altogether, these results strongly suggest that 1,25(OH)2D3 is working as a tolerogenic adju-
vant. The potential usefulness of other immunosuppressants as tolerogenic adjuvants was ini-
tially suggested by Kang et al. 2008 [39]. These authors demonstrated that BALB/c mice, with a
pre-established delayed type hypersensitivity reaction to OVA, could be desensitized by treat-
ment with an OVA-peptide associated with dexamethasone. The tolerogenic mechanism in-
cluded a blockage in DCs maturation and also an expansion of CD4+CD25+Foxp3
+ regulatory T cells. This drug was also tolerogenic and prophylactic when associated with an
insulin peptide in the NOD diabetes model. The efficacy of this concept was also tested in EAE.
Kang et al. 2009 [40], used FK506 as a tolerogenic adjuvant combined with a DNA vaccine en-
coding MOG to prevent EAE development.

Fig 6. Effect of 1,25(OH)2D3 (alone or combined with MOG) treatment in calcium and phosphorus levels. Serum calcium (A) and phosphorus (B)
levels were quantified 18 days after EAE induction. Comparisons between groups were made by one way ANOVA followed by Tukey’s test. Data were
presented by mean ± SE of 4–6 animals per group. * p<0.05 compared with Control, EAE, and EAE+MOG group. Data are representative of two
independent experiments.

doi:10.1371/journal.pone.0125836.g006
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Based on the above results we postulate that the combined therapy with specific antigens as-
sociated with 1,25(OH)2D3 is potentially effective to block the development of autoimmune
diseases. Our data, that is a new contribution to this field, warrant additional studies to support
the potential indication of 1,25(OH)2D3 + MOG in the clinical setting.
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S1 File. Data used in the analyses of “Treatment with vitamin D/MOG association sup-
presses experimental autoimmune encephalomyelitis”.
(XLSX)
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