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Summary

Tuberculosis (TB) is a communicable disease of major global importance and causes metabolic 

disorder of the patients. In a previous study, we found that the plasma metabolite profile of TB 

patients differs from that of healthy control subjects based on nuclear magnetic resonance (NMR) 

spectroscopy. In order to evaluate the TB specificity of the metabolite profile, a total of 110 

patients, including 40 with diabetes, 40 with malignancy, and 30 with community-acquired 

pneumonia (CAP), assessed by NMR spectroscopy, and compared to those of patients with TB. 

Based on the orthogonal partial least-squares discriminant analysis (OPLS-DA), the metabolic 

profiles of these diseases were significant different, as compared to the healthy controls and TB 

patients, respectively. The score plots of the OPLS-DA model demonstrated that TB was easily 

distinguishable from diabetes, CAP and malignancy. Plasma levels of ketone bodies, lactate, and 

pyruvate were increased in TB patient compared to healthy control, but lower than CAP and 
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malignancy. We conclude that the metabolic profiles were TB-specific and reflected MTB 

infection. Our results strongly support the NMR spectroscopy-based metabolomics could 

contribute to an improved understanding of disease mechanisms and may offer clues to new TB 

clinic diagnosis and therapies.
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Introduction

Tuberculosis (TB) remains a major global health problem. In 2012, an estimated 8.6 million 

people developed TB and 1.3 million died from the disease. Mycobacterium tuberculosis 

(MTB) predominantly affects the lungs, but can also affect other parts of the body, including 

the pleura, lymphatic system, central nervous system, eye, genitourinary system, 

gastrointestinal tract, bones, and skin.

The metabolome is the ultimate downstream result of genome transcription, and may be 

described as a compilation of all the low-molecular weight compounds present in a specific 

cell or organism, participating in metabolic reactions during normal cell function, growth 

and maintenance. The last several decades have witnessed the accelerated development of 

robust, high throughput analytical techniques, such as 1H nuclear magnetic resonance 

(NMR) spectroscopy and mass spectroscopy (MS), which allow the simultaneous 

measurement of large numbers of metabolites from a single biological sample.

Using NMR spectroscopy, we previously found an altered metabolite profile in the plasma 

of TB patients, indicating that MTB infection has a profound impact on the host metabolome 

[1]. In order to evaluate the TB specificity of this metabolite profile, plasma samples were 

prospectively obtained from a total of 110 patients, including 40 with diabetes, 40 with 

malignancy, and 30 with community-acquired pneumonia, assessed by NMR spectroscopy, 

and compared to those of patients with TB.

Materials and Methods

Participants

In this study, a total 110 patients were enrolled, including 40 patients with diabetes mellitus 

(Type 2), 40 patients with malignancy, and 30 patients with CAP. All participants were 

recruited from Shanghai Renji Hospital, Shanghai Ruijin Hospital between May 2012 and 

August 2013, and the diagnosis was established by the treating physicians at each 

participating hospital. The diagnosis of type 2 diabetes was established by fasting plasma 

glucose. Among 40 patients with malignancy, 10 had lung cancer, 9 colon cancer, 9 

colorectal cancer, 5 esophageal cancer, 4 stomach cancer, 2 pancreatic cancer, and 1 spleen 

cancer. The plasma samples were obtained from malignancy patients prior to initiation of 

treatment. CAP was diagnosed based on history and chest X-ray. Active tuberculosis was 

diagnosed based on a positive mycobacterial culture in the context of relevant clinical 

symptoms (chronic cough and/or fevers, chills, and night sweats). Detailed information 
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regarding all test subjects is presented in Table 1 and Table S1. None of the non-TB patients 

was found to have latent TB infection, as determined by negative tuberculin skin test (TST) 

and interferon-gamma release assay (IGRA). All study participants gave informed consent 

for the investigation, which was approved by the Ethical Committee of the Shanghai Jiao 

Tong University School of Medicine.

NMR acquisition and Metabolomics Data Analysis—The method of plasma samples 

preparation and metabolomics data analysis were described previously [1]. Plasma 

resonance assignments were performed according to references from existing literature and 

public and in-house NMR databases [1-3]. After the overview of the NMR data using 

Principle Component Analysis (PCA), the data were subjected to a supervised multivariate 

approach, named orthogonal partial least-squares discriminant analysis (OPLS-DA), which 

was used to build a model to identify marker metabolites accounting for the differentiation 

of all groups [4]. A 20-fold cross-validation was employed to obtain Q2 and R2 values, 

which represent the predictive ability of the model and the explained variance, respectively 

[5]. To rule out the non-randomness of separation between groups, 300 iterations were 

performed [6]. The sensitivity, specificity, and classification rate (percentage of samples 

classified correctly) of OPLS-DA models were then depicted [7]. The coefficient loading 

plots of the OPLS-DA model were used to identify the spectral variables responsible for 

sample differentiation on the scores plot [8]. Based on the number of samples used to 

construct the OPLS-DA models, a correlation coefficient of |r| >0.325 was adopted as a cut -

off value for statistical significance based on a discrimination significance at the level of 

p=0.05.

Results

Metabolomics analysis of plasma samples

The 1H Carr-Purcell-Meiboom-Gill (CPMG) superimposed spectra of plasma samples from 

subjects with type 2 diabetes, malignancy, and CAP are shown in Fig. 1. The spectrum 

resonances assigned to the key metabolites are noted. A total of 34 different metabolites 

were identified according to extant literature, based on their chemical shifts and signal 

multiplicity. The main differences in peaks between the two groups are concentrated in the 

areas of 0.5-5.6 ppm and 5.6-9.5 ppm (Fig. 1).

OPLS-DA analyses were carried out to explore the metabolic differences between non-TB 

disease subjects and healthy controls, and non-TB disease subjects and TB patients, 

respectively. The score plots of the OPLS-DA models showed that subjects with diabetes, 

malignancy, and CAP were distinguishable from healthy controls and the plasma metabolite 

profile in these patients was different from that of TB patients (Fig. 2). Furthermore, a 300 

Y-permutation test was employed to validate these OPLS-DA models. The goodness-of-fit 

(R2 and Q2) of the models were visualized in validation plots (Fig. 3), which clearly 

demonstrated that the models were efficient, as the Q2 and R2 values on the left were lower 

than the original Q2 and R2 Y points on the right. The OPLS-DA coefficients and key 

metabolites derived from the NMR data obtained from different pair-wise groups are 

presented in Table 1.
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Multivariate statistics

Analysis of the OPLS-DA loading coefficient plots resulted in identification of differential 

metabolites with a correlation coefficient of |r| > 0.325. The OPLS-DA coefficients and key 

metabolites derived from the NMR data obtained from different pair-wise groups are 

presented in Table 2. Compared to healthy controls, 30 metabolites differed significantly in 

concentration in patients with diabetes (8 increased and 22 reduced); 26 in patients with 

CAP (12 increased and 14 reduced); and 28 in patients with malignancy (12 increased and 

16 reduced). Compared with active TB patients, 26 metabolites differed significantly in 

concentration in patients with diabetes (8 increased and 18 reduced); 27 in patients with 

CAP (14 increased and 13 reduced); and 24 in patients with malignancy (14 increased and 

10 reduced). Metabolites found not to be significantly altered between different pair-wise 

comparison groups are also included in Table 2.

Using NMR spectroscopy, we previously found evidence of significant dysregulation of 

metabolic pathways during pulmonary TB [1]. However, it was not possible to conclude 

whether these differences in metabolic profiles were TB-specific or merely reflected lung 

inflammation or the general wasting nature of the disease.

1H NMR spectroscopy is a stable and reproducible approach, which has been demonstrated 

in many studies. In the current study, we recruited subjects of representative metabolism-

related diseases (diabetes mellitus), wasting diseases (malignancy), and lung inflammatory 

diseases (CAP) to characterize the specificity of our previous TB metabolic profile. A total 

of 110 plasma samples obtained from patients with diabetes (n=40), malignancy (n=40), and 

CAP (n=30) were investigated. Based on multivariate pattern recognition (PR) analysis, the 

metabolic profiles of these diseases were significantly different, as compared to healthy 

controls and TB patients (Table 2). The score plots of the OPLS-DA model demonstrated 

that TB, a chronic wasting inflammatory disease, was easily distinguishable from diabetes 

(R2X=33.9%, R2Y=0.956, Q2=0.926), and CAP (R2X=25.7%, R2Y=0.945, Q2=0.867), and 

was distinguishable from malignancy, with mild overlap (R2X=55.6%, R2Y=0.729, 

Q2=0.649). These data strongly support the specificity of the plasma metabolic biomarkers 

were TB-specific and reflected MTB infection.

Plasma metabolic profiling of malignancy patients

Plasma samples obtained from 40 patients with different malignancies were studied, and 

these metabolite profiles were compared to those of patients with TB. The OPLS-DA model 

can segregated TB from malignancy (R2X=55.6%, Q2=0.65). Although cancer has 

historically been viewed as a disorder of cellular proliferation, recent evidence has suggested 

that it should be characterized as a metabolic disease. Metabolomics approaches have been 

used extensively to study malignancies [9-12]. In normal tissues, most pyruvate enters the 

tricarboxylic acid (TCA) cycle and is oxidized in the mitochondria via oxidative 

phosphorylation. However, in malignant tissues, pyruvate is largely converted to lactate and 

energy is produced anaerobically through the Warburg effect, even when there is sufficient 

oxygen to support mitochondrial function. The metabolic profile observed in cancer cells 

often includes increased consumption of glucose and glutamine, increased glycolysis, and 

increased secretion of lactate. Most of the previous literature focuses on the metabolic 
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profiles of cancer cells or tissues. In the present study, plasma samples were used to study 

the global metabolomic profile of patients with malignancy. Consistent with previous 

studies, we observed increased levels of lactate, pyruvate, lipid and ketone bodies (3-

hydroxybutyrate, acetoacetate and acetone), and decreased levels of glucose, glutamate, 

glutamine, branched-chain amino acids (leucine, isoleucine, and valine), 

glycerophosphocholine, and very low-density lipoprotein. These results suggest that the 

plasma metabolic profile may to some extent reflect the metabolism of tumor cells or 

tissues.

We observed some overlap between the plasma profiles of patients with malignancy and 

those with TB in that the levels of lactate, pyruvate, and ketone bodies were elevated relative 

to healthy controls, although the mechanism may be very different. In TB, anaerobic 

glycolysis is increased and more pyruvate is converted into lactate rather than entering into 

the TCA cycle pathway, likely as a result of lung injury, tissue hypoxia, and insufficient 

oxygen supply. Glycolysis is advantageous because it provides ATP more rapidly than 

oxidative phosphorylation [13]. It was reported that activated T cells use glycolysis and rely 

on the efficient secretion of lactic acid, as its intracellular accumulation disturbs their 

metabolism, and the shift to glycolysis in lymphocytes supports cytokine secretion [14]. 

When activated T cells are provided with co-stimulatory molecules and growth factors but 

are blocked from engaging glycolysis, their ability to produce IFN-γ is markedly 

compromised. It is now well established that active T cells are required for immunity to 

MTB and tumor cells [15]. Since TB and cancer are immunosuppressive conditions, 

strengthening the function of activated T cells could be helpful for TB and cancer therapy. 

Dichloroacetate, a pyruvate mimetic that inhibits pyruvate dehydrogenase kinase, has been 

shown to increase pyruvate dehydrogenase activity and the oxidation of glucose, reduce the 

proliferation of breast cancer cell lines, inhibit proliferation, and slow xenograft tumor 

growth [16]. Due to the metabolite profile of TB, approaches to reducing glycolytic flux and 

high-carbohydrate diets are being considered as potential TB therapies.

Plasma metabolic profiling of patients with CAP

CAP refers to an infection of the lower respiratory tract, which can be caused by any of a 

number of different pathogens including bacteria, viruses, fungi, and parasites. Infectious 

diseases usually alter host metabolism, by altering carbohydrate and energy consumption 

and utilization [17-19]. Furthermore, the same infectious diseases caused by different 

pathogens induce different patterns of metabolite changes [20]. A previous study found that 

patterns of cerebrospinal fluid (CSF) metabolites were altered following bacterial and viral 

meningitis, and gram-stain negative samples of meningococcal meningitis were clearly 

differentiated from all other cases of bacterial meningitis by the application of NMR 

spectroscopy -based metabolic profiling [20].

Lung infection by different microorganisms induces unique metabolite patterns in the urine 

of mice and humans [21, 22], suggesting that systemic metabolism shifts can aid in the 

diagnosis of lung pathogens. In the present study, 30 subjects with CAP caused by non-

MTB microbes were recruited to compare their plasma metabolite with that of TB patients 

based on 1H NMR spectroscopy and multivariate pattern recognition (PR) analytical 
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techniques. Compared with healthy controls, we observed increased plasma concentrations 

of ketone bodies and lactate and reduced levels of 1-methylhistidine in patients with CAP. 

This result is consistent with a previous metabolomics study examining the urine of patients 

with pneumonia. Increased concentrations of pyruvate and ketone bodies in the plasma of 

patients with CAP are consistent with increased energy consumption and lipid degradation 

in this patient population. Given the low plasma concentrations of glucose and high 

concentrations of lactate observed, we surmise that anaerobic glycolysis is increased in CAP 

due to lung inflammation and low ventilatory capacity. Increased plasma levels of nicotinate 

and decreased levels of 1-methylhistidine in patients with CAP suggest impairment of the 

nicotinamide metabolism pathway, indicating alterations in mitochondrial function in these 

patients. Compared to patients with TB, plasma levels of lipids, ketone bodies, lactate, and 

pyruvate were increased and those of 1-methylhistidine, branched-chain amino acids, 

glucose, nicotinate, and glycerophosphocholine were decreased in the CAP group. Based on 

the 1H NMR spectroscopy and multivariate PR analytical techniques, we found that patients 

with CAP produced a distinct plasma metabolite pattern compared with healthy controls, 

and furthermore, a good separation between TB and CAP was observed in OPLS-DA plots 

(R2X=25.7%, Q2=0.890).

Plasma metabolic profiling of patients with diabetes

Diabetes represents a group of metabolic diseases characterized by elevated plasma glucose, 

either due to insulin deficiency or resistance [23, 24]. In this study, we evaluated the plasma 

metabolite profile of 40 patients with type 2 diabetes patients. Compared to healthy controls, 

23 of 34 metabolites detected were present at significantly different concentrations 

(p<0.001, |r| > 0. 5), including 5 increased and 18 decreased in subjects with diabetes 

relative to healthy controls. Our results are partially consistent with a previous study by 

Suhre et al [25], who used three different techniques (NMR, LC-MS, and GC-MS) to study 

the metabolic footprint of diabetes. As compared with the TB group, a total of 20 

metabolites were significantly (p<0.001, |r| > 0.5) changed in the diabetes group, including 4 

present at higher concentrations and 16 present at lower concentrations. In this study, we 

observed evidence of lipid degradation and gluconeogenesis in the diabetes group likely due 

to insufficient insulin function.

In conclusion, our results indicate these unbiased metabolomic profiles are able to 

distinguish TB from diabetes, malignancy, and CAP. The metabolic profile of plasma from 

TB patients was TB-specific and reflected MTB infection. Overall, lactate, lipids, and 

glucose were the primary metabolites responsible for group separation (Fig. 4). Our results 

strongly support the NMR-based metabolomics could contribute to an improved 

understanding of disease mechanisms and may offer clues to new TB clinic therapies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Funding

Zhou et al. Page 6

Tuberculosis (Edinb). Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This work was supported by grants from the National Natural Science Foundation of China (No. 81361120383, No.
31200109, No.81201340, No.31070114), Shanghai Rising-Star Program, Science and Technology Commission of 
Shanghai Municipality (No.12QH1401300), the Program for Professor of Special Appointment (Eastern Scholar) at 
Shanghai Institutions of Higher Learning, and AI106613 and HL106786 (NIH).

References

1. Zhou A, et al. Application of (1)H NMR spectroscopy-based metabolomics to sera of tuberculosis 
patients. J Proteome Res. 2013; 12(10):4642–9. [PubMed: 23980697] 

2. Beckwith-Hall BM, et al. Nuclear magnetic resonance spectroscopic and principal components 
analysis investigations into biochemical effects of three model hepatotoxins. Chem Res Toxicol. 
1998; 11(4):260–72. [PubMed: 9548796] 

3. Shin JH, et al. (1)H NMR-based metabolomic profiling in mice infected with Mycobacterium 
tuberculosis. J Proteome Res. 2011; 10(5):2238–47. [PubMed: 21452902] 

4. Trygg J, Holmes E, Lundstedt T. Chemometrics in metabonomics. J Proteome Res. 2007; 6(2):469–
79. [PubMed: 17269704] 

5. Mahadevan S, et al. Analysis of metabolomic data using support vector machines. Anal Chem. 
2008; 80(19):7562–70. [PubMed: 18767870] 

6. Jung Y, et al. Discrimination of the geographical origin of beef by (1)H NMR-based metabolomics. 
J Agric Food Chem. 2010; 58(19):10458–66. [PubMed: 20831251] 

7. Ni Y, et al. Metabolic profiling reveals disorder of amino acid metabolism in four brain regions 
from a rat model of chronic unpredictable mild stress. FEBS Lett. 2008; 582(17):2627–36. 
[PubMed: 18586036] 

8. Cloarec O, et al. Evaluation of the orthogonal projection on latent structure model limitations caused 
by chemical shift variability and improved visualization of biomarker changes in 1H NMR 
spectroscopic metabonomic studies. Anal Chem. 2005; 77(2):517–26. [PubMed: 15649048] 

9. Son J, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic 
pathway. Nature. 2013; 496(7443):101–5. [PubMed: 23535601] 

10. Wang H, et al. 1H NMR-based metabolic profiling of human rectal cancer tissue. Mol Cancer. 
2013; 12(1):121. [PubMed: 24138801] 

11. Tan C, Chen H, Xia C. Early prediction of lung cancer based on the combination of trace element 
analysis in urine and an Adaboost algorithm. J Pharm Biomed Anal. 2009; 49(3):746–52. 
[PubMed: 19150588] 

12. Gao H, et al. Application of 1H NMR-based metabonomics in the study of metabolic profiling of 
human hepatocellular carcinoma and liver cirrhosis. Cancer Sci. 2009; 100(4):782–5. [PubMed: 
19469021] 

13. Guppy M, et al. Contribution by different fuels and metabolic pathways to the total ATP turnover 
of proliferating MCF-7 breast cancer cells. Biochem J. 2002; 364(Pt 1):309–15. [PubMed: 
11988105] 

14. Chang CH, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 
2013; 153(6):1239–51. [PubMed: 23746840] 

15. Lande R, et al. IFN-alpha beta released by Mycobacterium tuberculosis-infected human dendritic 
cells induces the expression of CXCL10: selective recruitment of NK and activated T cells. J 
Immunol. 2003; 170(3):1174–82. [PubMed: 12538673] 

16. Sun RC, et al. Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast 
cancer cell growth in vitro and in vivo. Breast Cancer Res Treat. 2010; 120(1):253–60. [PubMed: 
19543830] 

17. Long CL. Energy balance and carbohydrate metabolism in infection and sepsis. Am J Clin Nutr. 
1977; 30(8):1301–10. [PubMed: 888781] 

18. Rose H, et al. The effect of HIV infection on atherosclerosis and lipoprotein metabolism: a one 
year prospective study. Atherosclerosis. 2013; 229(1):206–11. [PubMed: 23642913] 

19. Kroeker AL, et al. Influenza A infection of primary human airway epithelial cells up-regulates 
proteins related to purine metabolism and ubiquitin-related signaling. J Proteome Res. 2013; 12(7):
3139–51. [PubMed: 23750822] 

Zhou et al. Page 7

Tuberculosis (Edinb). Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



20. Coen, M.; Holmes, E. BMC Proceedings. BioMed Central Ltd.; 2010. Translation of metabolite 
profiling to infectious diseases. 

21. Slupsky CM, et al. Streptococcus pneumoniae and Staphylococcus aureus pneumonia induce 
distinct metabolic responses. J Proteome Res. 2009; 8(6):3029–36. [PubMed: 19368345] 

22. Slupsky CM, et al. Pneumococcal pneumonia: potential for diagnosis through a urinary metabolic 
profile. Journal of proteome research. 2009; 8(12):5550–5558. [PubMed: 19817432] 

23. Golay A, et al. Metabolic basis of obesity and noninsulin-dependent diabetes mellitus. Diabetes 
Metab Rev. 1988; 4(8):727–47. [PubMed: 3069401] 

24. Fujimoto WY. The importance of insulin resistance in the pathogenesis of type 2 diabetes mellitus. 
Am J Med. 2000; 108(Suppl 6a):9S–14S. [PubMed: 10764845] 

25. Suhre K, et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an 
epidemiological setting. PLoS One. 2010; 5(11):e13953. [PubMed: 21085649] 

Zhou et al. Page 8

Tuberculosis (Edinb). Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. Representation of 600 MHz 1H NMR CPMG spectrum (δ0.5-5.6 and δ5.6-9.5) of plasma 
obtained from subjects with malignancy (M), community-acquired pneumonia (P), diabetes 
mellitus (D), TB (A), and healthy controls (C)
The region of δ5.6-9.5 (in the box) was magnified 16 times compared with the 

corresponding region of δ0.5-5.6 for the purpose of clarity. Keys: 1-MH: 1-Methylhistidene; 

AA: Acetoacetate; Ace: Acetate; Act: Acetone; Ala: Alanine; Cr: Creatine; Eth: Ethanol; 

For: Formate; Gln: Glutamine; Glu: Glutamate; Gly: Glycine; GPC: 

Glycerolphosphocholine; Ileu: Isoleucine; L1: LDL, CH3- (CH2)n-; L2: VLDL, CH3- 

(CH2)n-; L3: LDL, CH3- (CH2)n-; L4: VLDL, CH3- (CH2)n-; L5: VLDL, -CH2-CH2-

C=O; L6: Lipid, -CH2-CH=CH-; L7: Lipid, -CH2-C=O; L8: Lipid, =CH-CH2-CH=; L9: 

Lipid, -CH=CH-; Lac: Lactate; Leu: Leucine; Lys: Lysine; MA: Methylamine; NAG: N-

acetyl glycoprotein signals; PC: Phosphocholine: Phe: Phenylalanine; Py: Pyruvate; Tyr: 

Tyrosine; Val: Valine; α-Glc: α-Glucose; β-Glc:β-Glucose.
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Fig. 2. OPLS-DA scores plots derived from 1H NMR spectra of plasma and corresponding 
coefficient loading plots obtained from subjects with malignancy (M), community-acquired 
pneumonia (P), diabetes mellitus (D), TB (A), and healthy controls (C)
OPLS-DA scores plots (left panel) derived from 1H NMR spectra of plasma and 

corresponding coefficient loading plots (right panel) obtained from pair-wise comparisons. 

The color map shows the significance of variations in metabolite concentrations between the 

two classes. Peaks in the positive direction indicate metabolites that are more abundant in 

the groups in the positive direction of first principal component. Consequently, metabolites 

that are more abundant in the groups in the negative direction of first primary component are 

presented as peaks in the negative direction. Keys of the assignments are shown in Fig. 1.
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Fig. 3. Plots of permutation tests (n=300) of PLS-DA for plasma profiles of control (black box ▪) 
and disease (red dot ●) groups
Permutation test showing the original R2 and Q2 values (top right) as significantly higher 

than corresponding permuted values (bottom left), demonstrating the robustness of the 

OPLS-DA model. Clear metabolic differences are observed between the two groups.

Zhou et al. Page 14

Tuberculosis (Edinb). Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Summary of the significant dysregulation of metabolic pathways in TB patients
TB disease was associated with amino acid and lipid catabolism and enhanced glycolysis.
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Community-acquired pneumonia Diabetes mellitus (Type 2) Malignancy

Total individuals (n) 30 40 40

Age (years)* 75.33±18.38 63.35±9.07 64.35±12.83

Age range (years) 32-99 43-81 28-82

Gender (F/M) 11/19 14/26 18/22

*
Data are presented as mean ± SD.
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