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Abstract

Rationale and Objectives—Accuracy and speed are essential for the intraprocedural nonrigid 

MR-to-CT image registration in the assessment of tumor margins during CT-guided liver tumor 

ablations. While both accuracy and speed can be improved by limiting the registration to a region 

of interest (ROI), manual contouring of the ROI prolongs the registration process substantially. To 

achieve accurate and fast registration without the use of an ROI, we combined a nonrigid 

registration technique based on volume subdivision with hardware acceleration using a graphical 

processing unit (GPU). We compared the registration accuracy and processing time of GPU-

accelerated volume subdivision-based nonrigid registration technique to the conventional nonrigid 

B-spline registration technique.

Materials and Methods—Fourteen image data sets of preprocedural MR and intraprocedural 

CT images for percutaneous CT-guided liver tumor ablations were obtained. Each set of images 

was registered using the GPU-accelerated volume subdivision technique and the B-spline 

technique. Manual contouring of ROI was used only for the B-spline technique. Registration 

accuracies (Dice Similarity Coefficient (DSC) and 95% Hausdorff Distance (HD)), and total 

processing time including contouring of ROIs and computation were compared using a paired 

Student’s t-test.
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Results—Accuracy of the GPU-accelerated registrations and B-spline registrations, respectively 

were 88.3 ± 3.7% vs 89.3 ± 4.9% (p = 0.41) for DSC and 13.1 ± 5.2 mm vs 11.4 ± 6.3 mm (p = 

0.15) for HD. Total processing time of the GPU-accelerated registration and B-spline registration 

techniques was 88 ± 14 s vs 557 ± 116 s (p < 0.000000002), respectively; there was no significant 

difference in computation time despite the difference in the complexity of the algorithms (p = 

0.71).

Conclusion—The GPU-accelerated volume subdivision technique was as accurate as the B-

spline technique and required significantly less processing time. The GPU-accelerated volume 

subdivision technique may enable the implementation of nonrigid registration into routine clinical 

practice.
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Introduction

Computed tomography (CT) is used commonly to guide percutaneous tumor ablations of 

liver tumors (1–3). CT can provide high-quality three-dimensional (3D) images of the liver 

intraprocedurally, which help radiologists understand spatial relationship of the tumor with 

respect to the surrounding structures (4). However, typically only sectional unenhanced CT 

images are used and hence tumor margins may not be delineated well (5); this limitation 

may contribute to inadequate ablation (6–10). A recent study showed that the rate of local 

recurrence following percutaneous radiofrequency ablation of hepatocellular carcinoma 

decreased significantly from 23% to 0% when the ablation margin, the shortest distance 

between the outer margin of the tumor and the outer margin of the ablation, was increased 

from less than 1 mm to larger than 3 mm (11). Therefore, visualizing tumor margins 

intraprocedurally is important. One way to delineate tumor margins intraprocedurally is to 

register preprocedural MR images to the intraprocedural CT images; tumor margins depicted 

by MRI can be directly compared to ablation effects depicted with intraprocedural CT (12). 

In addition, the same data can be used to depict tumor and ablation volumes (12).

Nonrigid image registration techniques can be used to correct accurately the misalignment 

between structures in two images caused by physiologic variations (13). For example, the 

liver may be misaligned due to diaphragmatic motion. B-spline registration (14,15) is a 

commonly used nonrigid registration technique that parameterizes a deformation of an 

image as displacements of control points on a regular grid, and calculates the displacements 

of the voxels between the control points using basis spline (B-spline) interpolation (16). 

However, nonrigid registration techniques are not widely used clinically for intraprocedural 

registration, because the registration takes too long to perform and often needs a dedicated 

software operator. While computation time for B-spline registration can be shortened by 

reducing the control points, fewer control points may impact the registration accuracy 

negatively. In particular, the B-spline cannot model local deformations well with limited 

control points. A previous analysis of 4D CT by Schreibmann et al used 15 control points 

per direction to model the deformations of liver images accurately (17). This number of 

control points is much larger than those used in previous studies on intraoperative 

Tokuda et al. Page 2

Acad Radiol. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



registration, typically 3–5 control points per direction, which still takes up to 2 minutes 

(12,16). To attain sufficient registration accuracy, a region of interest (ROI) is often 

employed (12,16,18,19). A ROI can restrict the region to be registered on the liver only, and 

can reduce the effect of local displacement in the surrounding structures. A ROI also helps 

reduce computation time by reducing the number of voxels to be processed. However, a ROI 

must be defined by contouring the target organ. Robust automatic contouring of the target 

organ is a challenging problem and would invariably introduce additional computation time. 

Manual contouring has been used in past studies (12,16), but would require an additional 

human resource for routine clinical use. The long computation time and the need for manual 

contouring hinder widespread use of nonrigid image registration.

The volume subdivision approach (20) could avoid having to conduct a time-consuming 

manual contouring, while achieving acceptable registration accuracy. The volume 

subdivision approach models a deformation by multiple local 6 degrees-of-freedom (DOF) 

full rigid-body transformations (21). Because the volume subdivision approach corrects for 

misalignment of individual subvolumes independently, it can often model local 

displacements better than the B-spline technique, particularly when the number of control 

points for the B-spline technique is limited. Although the computation time for the volume 

subdivision approach is also long due to its hierarchical process of refining local matching 

between two images, and the lack of a ROI that limits the number of processed voxels, it can 

be significantly reduced by accelerating the algorithm using the stream processing capability 

of general-purpose graphic processing units (GPGPUs). GPGPUs, which are now widely 

available in consumer-grade graphics processing unit (GPU) products, are specifically 

designed for stream processing. The stream processing is a computing model, where a series 

of arithmetic operations (kernels) are applied to streams of data; because the data streams 

can be loaded and supplied to the kernels sequentially without waiting for the result of 

operations, the operations are not constrained by the latency of the memory access unlike the 

conventional computing model. In addition, if the operations are independent from each 

other, which is the case in many graphics processing operations, multiple streams can be 

processed simultaneously. This stream processing model allows the GPUs to use their 

processing units effectively and to achieve higher computational throughput than 

conventional CPUs for preprocessing (21), resampling (22), and similarity metrics (23) on 

personal computers. The use of the volume subdivision approach combined with GPU 

acceleration might eliminate the need for time-consuming manual contouring without 

increasing the computation time or a loss of registration accuracy, and thus render nonrigid 

registration feasible for clinical use. We tested the clinical feasibility of the GPU-accelerated 

volume subdivision technique by comparing the registration accuracy and processing time to 

those of the conventional nonrigid B-spline registration technique, which has been validated 

in the previous clinical studies (12, 16,19).

Materials and Methods

Subjects

Following IRB approval, a HIPAA-compliant, retrospective study was carried out. The 

inclusion criteria were subjects 1) who underwent CT-guided liver ablations performed by 
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one radiologist (S.T.) between January 2013 and October 2013, and 2) had preprocedural 

MRI studies. Using these criteria, 14 subjects (ages 45–84 years; 6 males and 7 females; one 

male underwent two ablations during two separate procedures) were included in the study. 

Tumor ablations were conducted using microwave ablation (n=8) (AMICA, HS Medical Inc. 

Boca Raton, FL), cryoablation (n=6) (Galil Medical Ltd., Yokneam, Israel), or 

radiofrequency (RF) ablation (n= 1) (Covidien, Mansfield, MA). In one patient, both 

cryoablation and microwave ablation were used to treat separate tumors in a single session.

Imaging Protocol

MR images were acquired within 30 days prior to the procedure using a 1.5 Tesla MRI 

scanner (MAGNETOM Espree or Aera, Siemens AG, Erlangen, Germany, or Signa 

EXCITE or HDxt 1.5T, GE Healthcare, Waukesha, WI, USA,) or 3 Tesla MRI scanner 

(MAGNETOM Trio, Verio, or Skyra, Siemens AG, Erlangen, Germany). We obtained 

contrast-enhanced MRI (CE MRI) during this preprocedural imaging session using T1-

weighted 3D fat-suppressed volume interpolated spoiled gradient echo sequence (TR/TE: 

3.3–5.5/1.2–2.7 ms; flip angle: 9–12°; matrix size: 220×320–512×512; pixel spacing: 

0.7031–1.7185 mm; slice thickness: 3–5 mm; slice gap: 0 mm) acquired before and 30, 60, 

and 90 seconds after intravenous administration of 0.1 mmol/kg of gadolinium-based 

contrast material (Magnevist, Berlex Laboratories, Wayne, NJ, USA). Only the contrast-

enhanced images were used as preprocedural MR images in this study for the consistency. 

Contrast-enhanced MRI (CE-MRI) is widely accepted as an imaging modality for the 

detection of tumors (24–27), and therefore, it fits our goal of delineating the ablation margin 

on the intraprocedural CT by fusing them. A board-certified radiologist (S.T.) reviewed the 

MR images for each case and selected the phase that delineated the tumor best for the 

following evaluation. Intraprocedural CT scans were obtained with a 40-channel multi-

detector row CT scanner (Sensation Open, Siemens Medical Solutions, Forchheim, 

Germany), with a matrix size of 512 × 512, 0.6 mm collimation, 0.5 sec/rotation, 120kV and 

168 to 398 mA, and reconstructed as 3-mm axial sections.

Image Registration Algorithms

GPU-accelerated Nonrigid Registration using Volume Subdivision Approach
—All MR and CT images were loaded onto open-source image-processing and visualization 

software, 3D Slicer (28,29) running on a computer workstation (processor: Intel Core i7 

quad-core 4.1GHz; random access memory: 8 GB; Ubuntu 12.04 operating system). For 

each procedure, we registered the preoperative MR image to the intraoperative CT image 

using the GPU-accelerated volume subdivision technique implemented as in-house software. 

The software was integrated into 3D Slicer as a plug-in module for comparison with the B-

spline registration available in 3D Slicer using the same data and workflow.

The GPU-accelerated volume subdivision technique was based on a volume subdivision 

algorithm (23). The multilevel algorithm begins by performing a rigid registration between 

the two volumes (i.e., volumetric images). In every subsequent level, every volume is 

divided into eight smaller volumes by dividing along each of the axes and an independent 

rigid registration takes places between the corresponding subvolumes. By repeating the 

division and registration process, local displacements due to deformations are determined 
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and nonrigid registration is achieved (Figure 1). A normalized mutual information (NMI) 

(30) is used to calculate the similarity between the corresponding subvolumes, where the 

solutions from previous levels contribute to NMI at local volumes to improve local stability 

while retaining speed. NMI was selected as it has been shown to be a robust metric of MR 

and CT images including when fields of view between the two images are disparate (30). 

We implemented the registration algorithm to utilize GPU’s parallel computing capability. 

In particular, the calculation of NMI between the original fixed image and the transformed 

floating image, which was the most computationally intensive step in the algorithm, was 

accelerated in a GPU kernel. We applied two levels of parallelism in the kernel to take 

advantage of the GPU’s multi-core, multi-processor architecture. At the first level, the image 

is divided into subvolumes, which are assigned to individual processors and processed in 

parallel. At the second level, each subvolume is further divided into voxels, which are 

assigned to individual cores in each processor and processed in parallel. As a result, the 

calculation of NMI is parallelized at both subvolume and voxel levels (Figure 2). Each 

subvolume is optimized independently of the others. While voxels within a subvolume share 

memory resources within a multiprocessor to optimize the computing resources for the 

algorithm, voxels in different subvolumes do not, enabling subvolumes to be mapped to 

different multiprocessors. Once an optimized set of 6-degrees-of-freedom (6-DOF) rigid 

transformations for all the subvolumes are found, a resampling GPU kernel takes these final 

transforms, interpolates them to derive a smooth transformation field, and applies it to the 

floating image to produce a final registered image. The 6-DOF rigid transformation of each 

voxel is estimated by interpolating the transformations of the subvolume centers surrounding 

the voxel (21). In our implementation, the independent components of the transformation are 

interpolated separately; three translations along the coordinate axes are determined by 

tricubic interpolation, whereas the 3D rotational pose is determined by spherical cubic 

quaternion interpolation (31). The application of the transform, interpolation, and final 

resampling are independent at the voxel level, permitting the mapping of each voxel to a 

single thread. In both of these kernels, the use of thread groups and threads for the 

implemented algorithm ensures high utilization of the GPU for these time-consuming 

kernels.

To optimize registration accuracy, we tuned the following parameters of the registration 

algorithm using four data sets as training data: window level, flexibility, and subdivision 

rate. This was intended to be done once per registration scenario; once trained, the same 

parameters are used throughout the study. For window leveling, a preprocessing step is 

applied to rescale the 16-bit intensity values of the MR and CT images to 8-bit intensity 

values. Based on the number of bits allocated to the input image voxel intensities, the 

dynamic range is high, but voxel intensity histograms often have long tails. For visualization 

and analysis, image contrast is derived from window level that highlights structures of 

interest. To focus the registration algorithm we searched the space of possible window levels 

by tracking a registration quality metric DSC. We evaluated candidates for window level in 

the design space defined by a high and a low voxel intensity threshold. This was a semi-

automated training process, where a set of window levels were manually chosen from 

previously used window levels for other image data sets, and a program ran all of them over 

the training data set and summarized the result. Images were rescaled according to these 
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intensity thresholds for each input image. We recorded the candidate by an iterative search 

through the training data thereby focusing the similarity metric on a meaningful dynamic 

range of intensity values.

The second parameter we tuned was the default subdivision rate in the superior-inferior (SI) 

axis relative to the right-left (RL) and anterior-posterior (AP) axes. Image dimensions along 

the SI axis are often smaller than the dimensions along the RL and API axes. By changing 

when SI divides relative to RL and AP, the subdivision technique can achieve more cube-

like volumes as it proceeds through the registration.

The third parameter we tuned was flexibility, which defines the amount of flexibility given 

to every subvolume to move from its current position as it begins a new level. While the 

algorithm always enforces some level of restriction on movement to ensure physically 

possible deformations, additional flexibility restrictions can help better guide the 

optimization engine by capturing how large the space is for candidate transformations. 

While these three parameters (window level, flexibility and subdivision rate) may influence 

one another, we have found independent evaluation of each on pilot cases being often 

sufficient. Once determined, the tuned parameters were kept fixed for the rest of the study.

After the nonrigid transformation that registered preprocedural MR image and 

intraprocedural CT image was determined, the preprocedural MR image was resampled 

using the determined transformation. The resampled (or registered) preprocedural MR image 

was saved as an electronic file for further analysis described in the following section. The 

computation times for the rigid registration, nonrigid registration, and resampling were 

measured using the internal clock of the computer. The total processing time for the 

registration was calculated by summing those computation times.

Nonrigid B-Spline Registration—All MR images were loaded into the open-source 

image-processing and visualization software, 3D Slicer (28,29) running on a computer 

workstation (Processor: Intel Dual Hexa-Core Xeon 3.06GHz; random access memory: 6 

GB; Fedora 14 operation system). For each set of preoperative MR image and intraoperative 

CT image, first, a region of interest (ROI) including only the liver was defined manually on 

both MRI and CT by contouring the liver using 3D Slicer’s drawing function and was saved 

as a ROI image. The livers were contoured initially by a research scientist (J.T.) and then 

visually confirmed and corrected by a board-certified radiologist (S.T.). This manual 

contouring minimized registration error due to motion of the anatomy outside the liver and 

corrected the bias of the pixel intensities within the ROI on the MR image due to the 

inhomogeneities in the B0 and B1 fields. For the correction of intensity bias, the improved 

nonparametric non-uniform intensity normalization approach (32) available as the N4ITK 

Bias Correction Module in 3D Slicer was used. The N4ITK is a variant of N3 bias 

correction, which is a de facto standard method for the bias correction of intensity 

inhomogeneity on various images (32–35), but incorporates more robust bias approximation 

algorithm. It has been used in other studies using the same B-spline registration methods 

(12,16). We set the grid resolution for the N4ITK Bias Correction at 4×4×4.
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Image registration was performed using the BRAINSFit module in 3D Slicer (36). Four 

steps of registrations were sequentially applied to the image set: alignment of the centers of 

ROIs; a rigid registration to correct for global misalignment of the liver, an affine 

registration to correct for global deformation, and a nonrigid B-spline registration to correct 

for local deformation of the liver. In the step of aligning the centers of ROIs, the center of 

mass of the ROIs on the MR and CT images were aligned in order to correct for the offset of 

the coordinate systems. In the following three steps, the preoperative MR image was 

transformed so that Mattes’ mutual information (MMI) (37) of the two images as a 

similarity measure was maximized using Limited memory Broyden Fletcher Goldfarb 

Shannon optimization with simple bounds (L-BFGS-B) (38). Mutual information has been 

shown to be the most effective currently available metric for multimodality image 

registration (12,16,37). Specifically, Mattes’ implementation of mutual information (37) is 

used in BRAINSFit module in 3D Slicer (16,36). The L-BFGS-B, a limited-memory, quasi-

Newton minimization method, is used for the optimization of registration parameters. The 

limited-memory method is useful because it is suitable for optimization with a large number 

of variables and allows bound constraints on the independent variables (37). We used the 

ROI to limit the area to be registered. In the final stage of the nonrigid B-spline registration 

step, deformation of the preoperative MR image was regulated by a uniform B-spline grid. 

The number of control points of the B-spline grid was 5 per direction (5×5×5) as in our 

previous study (12).

Once the nonrigid transformation that registered preprocedural MR image and 

intraprocedural CT image was determined, the preprocedural MR image was resampled 

using the determined transformation. The resampled (or registered) preprocedural MR image 

was saved as an electronic file. Time required for manual contouring of the liver on both the 

preprocedural MR image and intraprocedural CT image, and computation times for the rigid 

registration, nonrigid registration, and resampling were measured using the internal clock of 

the computer. The total processing time for the registration was calculated by summing the 

time needed for contouring and the computation times of the rigid and nonrigid registrations.

Comparison of Registration Accuracy and Processing Time

For each image registration technique, registration accuracy or the degree of volumetric 

misalignment of the liver between the intraprocedural CT image and the registered 

preprocedural MR image was evaluated using two metrics: 95% Hausdorff Distance (HD) 

and the Dice Similarity Coefficient (DSC) (39,40). The 95% HD provides the mismatch 

distance between two contours from the registered livers. Perfect alignment would yield a 

95% HD equal to 0 mm. The DSC is defined as DSC = (2 ×|A∩B|)/(A|+|B|), where |A|, |B| 

and |A ∩ B| are the volumes of the liver in the two images and the overall between them, 

respectively. Perfect alignment of the two data sets would provide a DSC value of 1. The 

HD and DSC are both derived from the same contours, but have distinctive interpretations; 

the DSC can be translated as what percent of the area in the registered image represents the 

true area, while the HD can be translated as a misalignment of the region between the two 

images.
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The processing times including the times required for computation (both the GPU-

accelerated volume subdivision technique and the B-spline technique) and manual ROI 

contouring (the B-spline technique only) were measured as described in the previous 

section. In addition to the processing times, the voxel throughputs for the two registration 

techniques were calculated. The voxel throughput was defined as the number of processed 

voxels divided by the total computation time. Because the B-spline registration technique 

registered only the voxels within the ROI while the GPU-accelerated registration registered 

the entire image, the numbers of processed voxels for the two techniques were different. 

Therefore, voxel throughput was considered an appropriate performance measure because it 

compensated for the different quantity of data processed during the registration.

The mean values of DSC, 95% HD, computation times, total processing times, and voxel 

throughput were compared between B-spline and GPU-accelerated volume subdivision 

technique by a paired Student’s t-test. Type 1 error (α) was pre-set at 0.05 and only 2-sided 

p-values were reported. All analysis was done in Stata version 11 (StataCorp LP, TX, USA).

Results

Table 1 shows the summary of the comparison of registration accuracy and processing time. 

There was no significant difference in registration accuracy (p = 0.41 for DSC and p = 0.15 

for 95% HD) between the two techniques (Table 1 and Figure 3, 4). The total processing 

time including manual ROI contouring (B-spline technique only) for registration using the 

GPU-accelerated volume subdivision technique was significantly shorter than the B-spline 

technique (p = 0. 000000002). However, there was no significant difference in computation 

time between the two methods (p = 0.71). When the computation times were divided into the 

3 computational steps, the GPU-accelerated registration took significantly less time than the 

B-spline registration to perform the rigid registration (p < 0.002) and the resampling steps (p 

< 0. 0000000001), while the GPU-accelerated volume subdivision technique took 

significantly longer than the B-spline technique to perform the nonrigid registration step (p < 

0. 00002). The voxel throughput for the GPU-accelerated volume subdivision technique was 

significantly higher than that of the B-spline technique (p < 0.0004). Table 2 shows the field 

strengths of the MR scanners (i.e. 1.5 T or 3.0T), phases of CE MRI, and registration 

performances for individual procedures. There was no significant difference in DSC and 

95% HD between the groups with 1.5 T and 3.0 T scanners for both GPU-accelerated 

volume subdivision technique and B-spline technique (GPU-accelerated volume 

subdivision: p=0.56 (DSC) and p=0.36 (95% HD); B-spline: p=0.57 (DSC) and p=0.50 

(95% HD) using an unpaired two-sided Student’s t-test). We could not compare the 

processing times between the two groups, because the volumes of the livers were 

significantly different (p<0.05).

Discussion

We evaluated the performance of the GPU-accelerated nonrigid registration in the context of 

intraprocedural assessment of ablation margins based on preprocedural MR during CT-

guided percutaneous ablations. Alternatively, intraprocedural MRI can be used to guide 

percutaneous ablations (41–43). Intraprocedural MRI has several advantages over 
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intraprocedural CT; it provides better delineation of the tumor and better monitoring of the 

thermal effect (41); it does not expose the patient and clinical staff to ionizing radiation. The 

intraprocedural use of MRI is, however, somewhat cumbersome due to a limited access to 

the patient in a gantry and imaging time longer than that of CT. Furthermore, facilities that 

can perform intraprocedural MRI are not commonly available. Registration of preprocedural 

MRI can potentially provide the same or equivalent information to intraprocedural MRI 

even in conventional CT-guided procedures in many cases.

The B-spline technique for performing nonrigid registrations has been validated clinically 

(12,13,44), but is not used widely because the time needed to perform the registrations, 

including the time for manual contouring of an ROI, is too long. Our study showed that the 

novel, GPU-accelerated volume subdivision technique can be used to perform nonrigid 

registrations that are just as accurate as the B-spline technique and in less time. The GPU-

accelerated volume subdivision approach significantly shortened the total processing time 

and improved the feasibility of nonrigid image registration in the intraoperative use by 

removing the manual segmentation step. With this new approach, nonrigid image 

registration can be deployed in routine clinical practice without having a skilled software 

operator on site. However, the total processing time of 88 s may slow the procedure in some 

cases, especially when nonrigid registration is used to quickly confirm the needle placement 

with respect to the target. In such instances, the speed could be improved by combining rigid 

registration technique; once preprocedural MR image is registered to an intraprocedural CT 

image using the nonrigid registration, the registered MR image could be registered to 

subsequent CT images by rigid image registration unless there is significant deformation. 

One could also shorten the processing time further by optimizing the software for GPU 

architecture. Since mutual information is a memory intensive, scatter-gather type algorithm, 

the bottleneck is data transfer through the bus that connects the main memory and the cores 

in the GPU. Our current utilization of the bandwidth on the bus is about 10% indicating that 

there is room for further optimization. The challenge is to organize the memory operations 

in the calculation of mutual information so that data can be accessed contiguously to achieve 

high memory bandwidth.

When the three steps of the computation (rigid registration, nonrigid image registration, and 

resampling) were timed individually, the rigid registration and resampling steps using the 

GPU-accelerated technique were significantly faster than the B-spline technique. The speed 

advantage of the resampling step is particularly helpful when the same transform is applied 

to multiple images. For example, when multiple MR images from the same examination 

(e.g. T1-, T2-, and diffusion-weighted) are registered to an intraprocedural CT image, image 

registration is needed only once; the rest of the images can be just resampled using the same 

transformation, as long as there is no misalignment among the MR images. Even if there is 

misalignment due to patient motion during the preprocedural study, it could be corrected 

beforehand by using rigid or nonrigid registration depending on the degree and nature of 

misalignment. The GPU-accelerated volume subdivision technique took longer to perform 

the nonrigid registration step because of the complexity of the algorithm and the higher 

number of voxels processed, but the overall time was still less.
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The comparison of the voxel throughputs showed that the GPU-accelerated technique could 

process significantly more voxels per unit time than the B-spline technique. GPUs provide 

acceleration through many light-weight cores. While single-threaded execution is typically 

slower on a GPU than a CPU, an application with many light-weight threads is often faster 

on a GPU than a CPU, even if the CPU has multiple cores. The key to the GPU’s ability to 

accelerate the application is by having hundreds to thousands of cores simultaneously 

running these threads. A CPU will be able to run threads simultaneously also, but there are 

dozens of cores available at most. This order-of-magnitude difference between the number 

of cores more than makes up for the single-threaded performance gap between a GPU core 

and a CPU core (45). The GPU’s organization of cores, memory, and interconnection 

between them are designed to keep program data streaming efficiently to the cores. Cores 

are grouped together into a multiprocessor, sharing local memory and interconnection 

resources and multiprocessors are replicated across the GPU, sharing only global memory.

Our qualitative assessment did reveal some differences between the two registration 

techniques (Figure 3). First, the B-spline technique was affected less by the discontinuous 

displacement (or sliding) (46) at the boundaries between the liver and the surrounding 

structures, likely because the use of an ROI masked the region outside it; the GPU-

accelerated volume subdivision technique did not take account of the discontinuity and 

tended to be affected by the displacement of the surrounding structures. Second, the GPU-

accelerated volume subdivision technique, on the other hand, performed better in regions of 

the liver where there was a relatively large local deformation such as segments 2 and 6. The 

B-spline technique could have corrected the local deformation better if the number of 

control points was increased. However, a large number of grids would have increased the 

computation time, and introduced unrealistic deformation to the image registration. Third, 

the GPU-accelerated volume subdivision technique’s ability to correct global motion had a 

positive impact on the registration accuracy when the patient’s position during the 

preprocedural MRI was significantly different from the position during the procedure. 

Fourth, a limited field-of-view, commonly used during CT-guided interventions to focus the 

interventionist on the relevant anatomy, reduced registration accuracy for the B-spline 

technique. If the field of view of the intraprocedural CT image does not include the whole 

liver when the preprocedural MRI does, the centers of the ROIs on the two images will not 

dictate the same anatomical point. Therefore, a significant misalignment of the liver can 

remain even after aligning the centers of the ROIs as the first step of the registration. In fact, 

a limited field of view affected the accuracy of B-spline technique more than the GPU-

accelerated volume subdivision technique in two cases.

There are several limitations in this study. First, the comparison of two algorithms (volume 

subdivision vs B-spline) optimized for different types of hardware (GPU vs CPU) may not 

tease apart the different contributions to speed gains. However, intermediary comparison 

with either GPU-accelerated B-spline registration or CPU-based volume subdivision-based 

registration were not straightforward, because of the number of combinations of factors that 

impact the registration performance (23). Those factors include: types of transforms (e.g. B-

spline or volume subdivision), similarity measures (e.g. normalized cross correlation, 

gradient correlation, MMI, NMI, sum of squared differences, sum of absolute differences), 

optimizers (e.g. Powell, Simplex, gradient descent, Quasi-Newton, etc), preprocessing (e.g. 

Tokuda et al. Page 10

Acad Radiol. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



filtering, rectification, bias correction, gradient computation, pyramid construction, feature 

detection, etc.), features of computing hardware (e.g. masking, clock speed, number of 

cores, size and bandwidth of on-board random access memory for GPU). Since the two 

registration programs used in this study were developed independently in the prior studies, 

those factors were not necessarily the same between them. Therefore, we only focused on 

the clinical feasibility of the new GPU-accelerated registration by comparing with the well-

validated B-spline registration software as a baseline rather than detailed assessment of the 

speed gains by the use of different algorithms and hardware. To reveal the performance gain 

by the GPU acceleration, we calculated the voxel throughput. Second, the types of metrics 

used to evaluate registration accuracy are limited to DSC and HD. The Target Registration 

Error (TRE) is also used to evaluate registration accuracy. The TRE provides direct 

interpretation of how accurate the targeting would be if the needle were guided by the 

registered image. However, we did not evaluate the TRE in this study to avoid any bias 

originating from landmark selection, because our goal was to compare the two registration 

approaches.

A specific challenge in image registration of the liver is the modeling of its deformation and 

discontinuous displacement at the boundaries between the liver and the surrounding 

structures. Like any transformation model that parameterizes a smooth, continuously 

differentiable deformation field (e.g. B-splines, thin plate splines), the volume subdivision 

algorithm cannot exactly model shearing (e.g., the liver sliding across the rib cage) or 

tearing (e.g., resection). Fortunately for percutaneous liver ablation, the misalignment in the 

internal organs tends to be well handled by our registration, because the tearing or shearing 

effects are minimal. In our experimental setup, the volume subdivision approach handled 

such types of registration problem better than the B-spline approach. By virtue of being 

based on mutual information and having no segmentation nor landmark identification steps, 

the registration engine for the GPU-accelerated volume subdivision approach can be applied 

to other imaging modalities, and other abdominal organs. There are parameters to tune to 

improve the engine’s robustness and accuracy: window levels, flexibility, and levels of 

refinement. But beyond these explicitly stated parameters nothing else was done to tune the 

engine to liver ablations.

In this study, four images were used for the parameter tuning in the GPU-accelerated 

volume subdivision approach. While more training data might improve the robustness of the 

system for widespread deployment, our results have shown that the parameters optimized for 

the training data sets worked well throughout the study, hence the registration approach is 

feasible as a fully automated solution to map preprocedural MR onto intraprocedural CT for 

guiding percutaneous liver ablations.

In conclusion, the GPU-accelerated volume subdivision technique is just as accurate as the 

B-spline technique for performing nonrigid registrations but faster. These results are 

particularly relevant to performing registrations intraprocedurally when it is important to 

view images as quickly as possible. The GPU-accelerated volume subdivision technique 

may enable routine use of nonrigid registration in the clinical practice.
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Figure 1. 
Pictorial representation of volume subdivision registration algorithm used with GPU 

acceleration. The algorithm begins with a rigid registration between the two volumes. In 

every subsequent level, every volume is divided into eight subvolumes and an independent 

rigid registration takes places between corresponding subvolumes. By repeating the division 

and registration process, local displacements due to deformations can be determined.
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Figure 2. 
The nonrigid image registration with image subdivision approach was accelerated in a GPU 

kernel at both voxel and subvolume levels. A subvolume is assigned to one group of threads, 

which is executed by a GPU multiprocessor, and a voxel within a subvolume is assigned to a 

thread, which executes on a single core in a multiprocessor. Once an optimized set of 

subvolume transformations is found, a resampling GPU kernel takes the transforms of the 

subvolumes, derives a smooth transformation field, and applies it to the floating image to 

produce a final registered image. The computation for each pixel is independent, permitting 

the mapping of each voxel to a single thread.
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Figure 3. 
The original preprocedural MRI, intraprocedural CT, and resampled MR images registered 

using the B-spline registration technique and the GPU-accelerated registration technique for 

representative cases are shown. Each row shows different procedures. The case numbers 

correspond to Table 2.
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Figure 4. 
Registered preprocedural MRI and intraprocedural CT are compared using a checkerboard 

for each case. While both the B-spline registration technique and the GPU-accelerated 

registration provide accurate alignment in the liver area, the checkerboards demonstrate that 

the GPU-accelerated registration often aligned the surrounding structures more accurately.
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Table 1

Summary of Results of Nonrigid Registration between Preprocedural MRI and Intraprocedural CT Images 

using B-Spline and GPU-accelerated Registration Techniques

Mean ± SD Range p-value

DSC (%)
GPU 88.30 ± 3.74 80.49 – 93.11

0.41
B-Spline 89.32 ± 4.90 79.70 – 94.46

95% HD (mm)
GPU 13.14 ± 5.19 6.43 – 24.54

0.15
B-Spline 11.44 ± 6.32 5.43 – 23.04

Time - Rigid Reg. (s)
GPU 8.58 ± 6.31 4.36 – 29.28

< 0.002
B-Spline 20.53 ± 7.01 14.56 – 40.08

Time - Nonrigid Reg. (s)
GPU 76.90 ± 10.75 61.5 – 91.43

< 0.00002
B-Spline 42.48 ± 11.39 19.38 – 68.57

Time - Resampling (s)
GPU 2.07 ± 0.47 1 – 3

< 0.0000000001
B-Spline 27.72 ± 5.02 19.87 – 40.71

Time – Total
Computation (s)

GPU 87.55 ± 14.26 69.10 – 118.25
0.71

B-Spline 90.72 ± 21.81 58.42 – 149.36

Voxel Throughput
(voxels/s)

GPU 195024.67 ± 141785.32 104192.50 – 614978.60
< 0.0004

B-Spline 18050.36 ± 6324.58 12001.98 – 32628.07

Time – Manual ROI
Contouring

GPU N/A N/A
N/A

B-spline 466 ± 104 300–701

Time –Total Processing
GPU 87. 55 ± 14.26 69.10 – 118.25

<0.000000002
B-spline 557.08 ± 116.47 375.83 – 850.36
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