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Abstract The role of endogenous animal opioids in the

biology of cancer is widely recognized but poorly under-

stood. This is, among others, because of the short half-life

of these peptides, which are quickly inactivated by endo-

peptidases, e.g., neutral endopeptidase (NEP, CD10). It has

been established that NEP is engaged in the modulation of

the tumor microenvironment, among others that of colon

cancer, by exerting influence on cell growth factors, the

extracellular matrix and other biologically active sub-

stances. Although there are some discrepancies among the

findings on the role of both opioids and NEP in cancer

development, authors agree that their role seems to depend

on the origin, stage and grade of tumor, and even on the

method of examination. Moreover, recently, natural

inhibitors of NEP, such as sialorphin, opiorphin and spin-

orphin have been detected. Their analgesic activity has

been established. It is interesting to ask whether there is a

relationship among opioid peptides, tumor-associated NEP

and its inhibitors.
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Abbreviations

AKT Protein kinase B/AKT

APN Aminopeptidase N

CALLA Common acute lymphoblastic leukemia

antigen

CC Colon cancer

CKI Cyclin dependent inhibitory kinases

ECM Extracellular matrix

FAK Focal adhesion kinase

GPI-complex Glycosyl phosphatidyl inositol complex

MAP kinases Mitogen-activated protein kinases

mRNA Messenger RNA

NEP Neutral endopeptidase

NK Natural killer cells

OGF Opioid growth factor

OGFr Opioid growth factor receptor

PROL1 Proline rich, lacrimal 1

PTEN Phosphatase and tensin homolog deleted

on chromosome Ten

SGP-T Submandibular gland peptide-T

SMR1 Submandibular rat1 protein

TGF-b1 Tumor growth factor b1

VCSA1 Variable coding sequence A1

Opioid Peptides and Cancer Cells

Opioids are a group of both naturally occurring and syn-

thetically produced molecules, traditionally known by their

analgesic activity.

Opium alkaloids derived from plants, for example,

morphine, are commonly used as medicines and are

regarded as the ‘‘gold standard’’ for relieving severe pain

associated with cancer (Lutz and Kieffer 2013). Moreover,

other than pain-suppressive activities of exogenous opioids

have been widely examined. It has been observed that

morphine exerts both tumor-growth promoting and growth

inhibiting activities, by influencing the proliferation and

migration of tumor cells and angiogenesis as well as by
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affecting the immune system (Gach et al. 2011; Harimaya

et al. 2002; Schäfer and Mousa 2009; Tabellini et al. 2014).

In animals, naturally occurring opioid peptides are

synthesized as prohormones. Most currently known

endogenous opioids originate from three types of prohor-

mones: proenkephalins, pro-opiomelanocortins and

prodynorphins (Hughes et al. 1975; Simon et al. 1973;

Terenius 1973). Despite their different activities in living

organisms, these endogenous peptides possess common

structural features, namely, an N-terminal enkephalin

sequence in molecules comprised of 5–40 amino acid

residues (Civelli and Douglass 1986; Thanawala et al.

2008). [Met5]-enkephalin and [Leu5]-enkephalin, the first

endogenous peptides discovered, differed only at the

C-terminal residues (Akil et al. 1984).

The Presence and Activity of Opioid Peptides

Many studies have indicated that opioid peptides possess-

ing an enkephalin sequence are widely spread in the human

body, where they play a broad variety of functions. Among

others, they act as neuromodulators and growth factors

through interaction with l, d and j opioid receptors

(McDonald and Lambert 2005; McLaughlin and Zagon

2012). Neuromodulatory activities of endogenous opioid

peptides are connected with inhibition of the release of

bioactive compounds, e.g., dopamine; regulation of pain

and motor activity; gastrointestinal motility and peristalsis;

regulation of emotional behavior; appetite and thirst and

many others (Bauvois and Dauzonne 2006; Bohlen and

Dermietzel 2006; McLaughlin and Zagon 2012).

The presence of opioid peptide receptors and/or their

agonists has been established not only in neurons but also

in immune cells (granulocytes, monocytes/macrophages,

lymphocytes, natural killer cells) (Iwaszkiewicz et al.

2013; Li et al. 2013; Schäfer and Mousa 2009) and tumor

cells originating from colon cancer (CC), breast cancer,

lung cancer, pancreatic cancer, thyroid cancer, endocrinal

tumors, endometrial carcinoma, glioma and melanoma

(Fichna and Janecka 2004).

Opioid Growth Factor

At the end of the twentieth century, Zagon and his team

proposed a hypothesis that opioid peptides also act as

growth regulators (McLaughlin and Zagon 2012). This was

related especially to [Met5]-enkephalin which was,

accordingly, renamed as the opioid growth factor (OGF)

(Zagon and McLaughlin 1987, 1988, 1989, 1991; Zagon

et al. 1987, 1997, 1999b). OGF is a non-cytotoxic molecule

produced in an autocrine and paracrine fashion. Extensive

research has demonstrated that OGF and its receptor,

OGFr, exert their activity through protein/RNA synthesis-

dependent regulation of cell proliferation (Bisignani et al.

1999; Donahue et al. 2009; Hatzoglou et al. 2005;

McLaughlin and Zagon 2012). Studies on normal and

cancer cells have revealed that OGF arrests the cell cycle at

phase G1/S through modulation or upregulation of cyclin-

dependent inhibitory kinases p16 and p21. This results in

the inhibition of DNA synthesis and subsequent arrest of

receptor-dependent proliferation of non-malignant and

cancer cells (Cheng et al. 2007, 2008, 2009; Donahue et al.

2009). The OGF and its receptor are engaged in the

maintenance of homeostasis through regulation of cell

proliferation, tissue (heart, corneal epithelium, astrocyte,

mesenchymal cell) development and renewal, as well as

wound healing and angiogenesis (Blebea et al. 2000;

Isayama et al. 1991; McLaughlin 1996; McLaughlin and

Zagon 2012; Zagon and McLaughlin 1987, 1988, 1991;

Zagon et al. 2000, 2002). The inhibitory activity of the

OGF-OGFr axis has also been assessed in vitro and in vivo

against cancer cells derived from neuroblastoma, pancre-

atic adenocarcinoma, colon adenocarcinoma, head and

neck squamous cell carcinoma, and renal, ovarian and

breast tumors (Donahue et al. 2009; Hatzoglou et al. 2005;

McLaughlin and Zagon 2012; McLaughlin et al. 1999a, b;

Zagon et al. 1999a, 2009). On the other hand, there are

some reports which indicate that opioid peptides (espe-

cially [Met5]-enkephalin) secreted by cancer cells, e.g.,

colon cancer, can suppress immune response to promote

cancer progression and invasiveness (Ohmori et al. 2009).

In the case of CC, a relationship has been found between

the expression level of the opioid peptide and tumor-infil-

trating T lymphocytes. In general, the number of

lymphocytes T, bearing the d opioid receptor, decreased

along with increased Met5-enkephalin expression (Ohmori

et al. 2009).

Enzymes Degrading [Met5/Leu5]-Enkephalin Type

Opioids

Opioid peptides are engaged in a wide range of processes,

presenting both advantages and disadvantages to living

organisms. Their characteristic feature is a short half-life

associated with the rapid degradation of those peptides by

endogenous enzymes (Janecka et al. 2008; Kreczko and

Maćkiewicz 2011). Neutral endopeptidase (NEP, neprilysin,

enkephalinase, CD10, EC 3.4.24.11, common acute lym-

phoblastic leukemia antigen) and aminopeptidase N (APN,

CD13, EC 3.4.11.2) are two of the many enzymes involved in

the degradation of endogenous opioid peptides (Janecka

et al. 2008; Kreczko and Maćkiewicz 2011; Schreiter et al.

2012). These enzymes are widely distributed in living
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organisms and engaged in diverse physiological and patho-

logical processes.

NEP and APN are membrane-bound, zinc-dependent

metallopeptidases of the gluzincin family. NEP gene is

located on human chromosome 3q21–27, whereas APN

gene on chromosome 15q25-26 (Maguer-Satta et al. 2011;

Noren et al. 1997). Both genes may be differentially

expressed, in a tissue-specific manner (Carl-McGrath et al.

2006; Maguer-Satta et al. 2011). The CD10 gene encodes a

90–110 kDa and CD13 gene an approximately 150 kDa

type II membrane protein (Carl-McGrath et al. 2006; Ma-

guer-Satta et al. 2011; Noren et al. 1997). NEP cleaves

peptide bonds on the amino side of hydrophobic residues

and has also peptidyl-dipeptidase activity with some sub-

strates (Rogues et al. 1993), whereas APN preferentially

cleaves N-terminal unsubstituted neutral amino acids from

proteins (Noren et al. 1997).

Implications of NEP and APN for Health and Disease

Neutral endopeptidase and APN are widely distributed

among different tissues and organs, where they play certain

roles.

Neutral Endopeptidase

In the central nervous system, NEP processes enkephalin,

an opioid peptide liberated by neurons in response to pain

and substance P (Rogues et al. 1993). NEP is known as an

amyloid b-peptide-degrading enzyme. Its dysfunction leads

to an accumulation of insoluble neurotoxic b amyloid

peptide and neuronal death in Alzheimer’s disease (Iwata

et al. 2001; Yasojima et al. 2001). Recently, it has been

demonstrated that the neuroprotective activity of kynurenic

acid is associated, at least partially, with the induction of

the expression and/or activity of NEP in nerve cells (Klein

et al. 2013). In the immune system, NEP is present on the

surface of neutrophils. It regulates the activation of

immunocompetent cells by degrading inflammatory pep-

tides such as endothelin, bradykinin, atriopeptin and

interleukin-1. It is known that NEP also processes

somatostatin, neurokinin, cholecystokinin-8, angiotensin-I

and-II, gastrin-related protein, calcitonin, calcitonin gene-

related peptide and bombesin. NEP (CD10) has been used

as a marker of stem cells in normal tissues. It is engaged in

tissue morphogenesis and cell differentiation, among others

in the lung and mammary gland. This enzyme is also

implicated in the maturation of B cells (Carl-McGrath et al.

2006; Maguer-Satta et al. 2011).

Many previous studies have indicated that CD10 plays

an important role in tumor progression (Carl-McGrath et al.

2006; Fujita et al. 2007). NEP (CD10) might be a very

useful tool in the diagnosis and prognosis of B-lineage

acute lymphoblastic leukemia and several carcinomas

originating from kidney, lung, skin, pancreas, prostate,

liver, breast, stomach, cervix and bladder. It has been

detected that NEP can be up- or down-regulated in neo-

plastic cells. Moreover, it should be underlined that the

expression level of NEP is dependent on the proliferation

and differentiation status of tumor cells. NEP is implicated

both indirectly and directly in the regulation of signaling

pathways mediating cell migration, proliferation and sur-

vival. This indirect action results from proteolytic

degradation or activation of bioactive peptides, growth

factors and cytokines, which creates a microenvironment

that facilitates tumor cell proliferation, invasion and

metastasis. In addition to its function mediated through

enzymatic activity, NEP regulates signaling pathways in a

direct fashion. It acts as an immune receptor anchored in

the cell membrane through GPI-complexes. CD10 is

implicated in cell migration, cell proliferation and survival

through focal adhesion kinase and PTEN/AKT signaling

pathways. These functions of NEP have been extensively

explored among others in prostate cancer, but not in CC

(Carl-McGrath et al. 2006; Maguer-Satta et al. 2011;

Sumitomo et al. 2000, 2001, 2004, 2005). The CD10

antisense S-oligodeoxynucleotide treatment of CD10-

positive CC cell line, HT-29 resulted in inhibition of

growth, invasion and colony formation (Luo et al. 2009).

Further studies indicated that NEP contributes to liver

metastasis of CC cells by degradation of the anti-tumoral

peptide, Met5-enkephalin (Kuniyasu et al. 2010; Luo et al.

2009).

Aminopeptidase N

The numerous studies on APN biological roles revealed

that APN is involved in both physiological and patholog-

ical processes including cancers and inflammatory

diseases. APN plays its functions through degradation of

diverse bioactive peptides, e.g. vasoactive peptides, neu-

ropeptides, chemotactic peptides and extracellular matrix

(ECM) (Bauvois and Dauzonne 2006; Carl-McGrath et al.

2006). Moreover, APN is implicated in cell signaling

pathways involving MAP kinases and Wnt-5a protoonco-

gen (Lendeckel et al. 1998, 2000).

It was widely investigated that APN is engaged in reg-

ulation of cell growth and maturation (Bauvois and

Dauzonne 2006). Similar to NEP, APN is considered as a

marker of differentiation as it is expressed on stem cells

and on leukocytes dependent on their stage of differentia-

tion (Razak and Newland 1992a, b). Moreover, it is

implicated in immune response mechanisms. APN is con-

sidered to regulate the secretion of proinflammatory and

immunosuppressive cytokines (Lendeckel et al. 2003;
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Mishima et al. 2002). The important role APN plays in

modulation of cell motility. It is executed not only by

chemokines processing but also the degradation of ECM

components. Taking into account the fact that many types

of malignant cancers overexpressed APN, this function of

peptidase seems to be especially important in tumor inva-

siveness and metastasis (Carl-McGrath et al. 2006; Fujii

et al. 1996; Hashida et al. 2002; Saiki et al. 1993). More-

over, the ability of APN to EMC degradation implicates it

in both physiological and pathological angiogenesis pro-

cesses (Aozuka et al. 2004; Bhagwat et al. 2001; Fukasawa

et al. 2006; Pasqualini et al. 2000; van Hensbergen et al.

2003). It was also demonstrated that APN acts as an

adhesion molecule during angiogenic morphogenesis

(Fukasawa et al. 2006).

Colon Cancer

The development and growth of tumor cells result from the

accumulation of mutations during carcinogenesis. These

mutations lead to essential alterations in cell physiology

that dictate malignant growth characterized by self-suffi-

ciency with respect to growth signals, insensitivity to

growth-inhibitory signals or sensitivity to weak growth

signals not detected by normal cells; resistance to cell

signals inducing death and elimination of defective cells;

limitless replicative potential; and the ability to induce

angiogenesis, evasion of the nearest tissues and metastasis

(Hanahan and Weinberg 2000). The promotion of prolif-

eration, inhibition of apoptosis, invasion and migration

through tissues as well as the induction of angiogenesis

during carcinogenesis are regulated by autocrine and par-

acrine growth factors, cytokines, hormones and signaling

peptides. The availability of these extracellular signaling

molecules is regulated through proteolysis, which may be

mediated among others by cell membrane-bound pepti-

dases, e.g. NEP and APN, expressed on the surface of

tumor, stromal and endothelial cells. These multifunctional

proteins are asymmetrically oriented in the cell membrane,

with the catalytic site exposed to the extracellular surface.

This enables them to release many growth factors and their

receptors into the circulation, remodel the ECM as well as

activate or inactivate the circulating signaling molecules

through proteolysis (Carl-McGrath et al. 2006).

Colon carcinoma is one of the most frequent tumors in the

world. The life expectancy in patients with the metastatic

form of this tumor has been extended in the past decade, but

the disease still remains incurable. The development of CC,

which starts with changes in normal colonic epithelium

through adenomatous polyps to metastatic cancer is depen-

dent on and supported by the tumor microenvironment. The

components of the tumor microenvironment include stroma

cells, vasculature, nerves and the ECM with associated

molecules. The essential part of stroma cells are tumor-

associated fibroblasts, which produce a set of factors facili-

tating tumor growth and promoting angiogenesis. They also

enable tumor invasion and metastasis, and produce ECM

components with associated molecules (Colucci et al. 2005,

2008; Mayordomo et al. 2012; Peddareddigari et al. 2010).

Additionally, transformed epithelial cells modulate the

function of their microenvironment to facilitate their own

growth, survival, invasion and metastasis (Peddareddigari

et al. 2010). One of the most important growth factors

expressed by both colon cancer tumor cells and tumor-

associated fibroblasts, which regulates cancer development,

is tumor growth factor (TGF)-b. In the case of CC, its

function depends on the tumor stage. In early stages, TGF-b1

acts as a tumor suppressor, whereas in later stages it presents

cancer-promoting activities (Paduch and Kandefer-Szerszeń

2009; Peddareddigari et al. 2010). TGF-b1 is secreted in a

latent complex, covalently linked to ECM, from which it is

released by proteases such as metalloproteases (McMahon

et al. 1996).

The Expression of NEP by CC Cells

The studies on NEP/CD10 in CC cells were concerned

mainly on comparisons of the protein level in tissue sam-

ples of colon adenocarcinoma with non-neoplastic adjacent

tissues, with respect to degrees of tumor differentiation,

invasion and metastasis. These reports, however, are dis-

crepant in some aspects. For example, de Oliveira et al.

(2011) and Sato et al. (1996) have reported that the level of

CD10 expression was higher in CC tissue samples than in

non-neoplastic mucosa adjacent to the tumor, whereas

Ogawa et al. (2002) have not found any expression of this

marker in samples of normal tissue. Sato et al. (1996) and

Fujimoto et al. (2005) have identified a higher expression

level of CD10 in well or/and moderately differentiated

adenocarcinoma tissue specimens in comparison with

poorly differentiated ones. On the other hand, de Oliveira

et al. (2011) and Oshima et al. (2007) have not observed

any difference in the expression regarding histological

differentiation. The lymphatic, vascular and/or perineural

invasion of colorectal carcinoma has been found to be

associated with CD10 expression by Fujimoto et al. (2005)

and Yao et al. (2002), whereas de Oliveira et al. (2011) and

Fujita et al. (2007) have not observed a significant rela-

tionship of this kind. Moreover, there are some

controversies regarding the expression level of CD10 and

metastasis. Fujimoto et al. (2005) and Yao et al. (2002)

have identified a strong expression of this marker in

patients with a higher incidence of liver metastases. On the

other hand, de Oliveira et al. (2011) and Fujita et al. (2007)

have not found any relationship between these two
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parameters. It should be underlined that Fujita et al. (2007)

studied the expression of CD10 on the mRNA level not the

CD10 protein level. It is possible that those discrepancies

are caused by the fact that those authors examined tumors

at different stages of development.

Inhibitors of Enkephalin-Degrading Enzymes

Rapid degradation of peptide opioids is especially unde-

sired when they exert a beneficial action, e.g., analgesic,

anti-inflammatory and antitumoral. This has prompted

scientists to search for natural or synthetic inhibitors of

enkephalin-degrading enzymes and endomorphin analogs

with an increased stability (Janecka et al. 2008; Kreczko

and Maćkiewicz 2011; Rougeot et al. 2003; Schreiter et al.

2012; Wisner et al. 2006; Yamamoto et al. 2002).

Recently, three naturally occurring inhibitors of

enkephalin-degrading enzymes have been discovered: sia-

lorphin, opiorphin and spinorphin.

Sialorphin is an exocrine and endocrine signaling pen-

tapeptide (QHNPR), synthesized mainly in the

submandibular gland and prostate of adult rats in response

to androgen steroids. To our knowledge, the occurence of

this peptide was determined in milk and placenta, in

addition to saliva and urine (Dufour et al. 2013; Rougeot

2004). The sialorphin gene, VCSA1, encodes the precursor

prohormone, the submandibular rat1 protein (SMR1). It is

processed also into other bioactive peptides, namely hep-

tapeptide with the sequence TDIFEGG, named

submandibular gland peptide-T and its C-terminal deriva-

tive, tripeptide FEG. The last mentioned above peptides are

considered as regulators of inflammatory and allergic

reactions in various animal models (Mathison et al. 2010;

Morris et al. 2007). Sialorphin is released locally and

systematically from SMR1 protein. It is also acutely

secreted in response to stress (Rougeot et al. 2003). Rou-

geot et al. (2003) have provided evidence that sialorphin is

a natural inhibitor of the cell surface NEP in several

mammals models. This indicates the lack of species-spe-

cific activity, similar to TDIFEGG peptide (Morris et al.

2007). It has been demonstrated that this peptide acts as a

competitive inhibitor of renal and spinal NEP, inhibiting

the degradation of substance P and Met5-enkephalin and

thus displaying analgesic activity (Rougeot et al. 2003). It

has also been postulated that sialorphin could be involved

in the regulation of systemic mineral ion homeostasis due

to distribution of its peripheral target sites within tissues

engaged in the regulation of ion capture and transport

(Rougeot et al. 2003). Moreover, this inhibitor causes the

enhancement of sexual behaviour and increased erectile

function of male rats (Kos and Popik 2005; Messaoudi

et al. 2004).

Opiorphin is a human pentapeptide (QRFSR) which was

first discovered in saliva and characterized by an inhibitory

activity against two enkephalin-degrading enzymes, NEP

and APN (Wisner et al. 2006). Recently, the expression of

opiorphin was additionally identified in male reproductive

system, in mammary and lachrymal glands. This results in

the occurence of peptide in semen, milk, tears, human

plasma and even urine (Dufour et al. 2013). It is of interest

that the secretion and concentration pattern of opiorphin is

differentiated. It depends on gender and type of organ

(Dufour et al. 2013). It was determined that opiorphin

displays analgesic and antidepressant activity in in vivo

animal models of pain and depression (Javelot et al. 2010;

Popik et al. 2010; Rougeot et al. 2010; Tian et al. 2009;

Yang et al. 2011). It is worth to be underlined that opior-

phin is as effective as morphine on acute pain (Rougeot

et al. 2010). Moreover, it is well documented that opior-

phin demonstrated weaker or even no adverse side effects

e.g. addiction or tolerance at active doses used in in vivo

tests what is typical for morphine usage (Popik et al. 2010;

Rougeot et al. 2010). It is proved that opiorphin displays

these features by potentiating the activation l- and d-opioid

pathways. This is resulted from inhibition of NEP- and/or

APN-mediated degradation of endogenous enkephalins,

similarly as in case of sialorphin (Javelot et al. 2010;

Rougeot et al. 2003, 2010; Tian et al. 2009; Wisner et al.

2006).

Spinorphin, a bovine heptapeptide (LVVYPWT)

belonging to the hemorphin family has been isolated from

the spinal cord (Nishimura and Hazato 1993b). It presents

inhibitory activity against enkephalin-degrading enzymes

such as NEP, APN and dipeptidyl peptidase III (Nishimura

and Hazato 1993a). This feature of spinorphin is a pre-

requisite for its analgesic and anti-inflammatory activity

(Chen et al. 2000; Honda et al. 2001; Polosa et al. 1997;

Thanawala et al. 2008; Yamamoto et al. 1997, 2002). The

in vitro and in vivo studies indicated that this inhibitor acts

as antagonist of N-formylpeptide receptor subtype FPR

which resulted in blockage of fMet-Leu-Phe-induced

stimulation of neutrophils (Liang et al. 2001; Yamamoto

et al. 1997).

Conclusion

It is well documented that endogenous and exogenously

administered opioids are engaged in the regulation of stress

and inflammation, wound healing, elimination of pathogen

invasion and tumor growth. The findings regarding the

effects of the action of opioids, especially concerned tumor

development, are, however, contradictory. This issue has

been widely reviewed by Gach et al. (2011). Some studies

have pointed to the inhibitory action of endogenous opioid
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peptides on normal and tumor cell proliferation. Their

immunosuppressive action has been regarded as beneficial in

chronic inflammation. On the other hand, there are reports

indicating that this feature of opioids is detrimental to tissue

repair and tumor progression and metastasis. In spite of these

discrepancies, there is some interest among researchers, in

substances that inhibit the activity of enzymes degrading

opioid peptides, among other NEP. The use of such inhibitors

would allow to replace the administration of detrimental

exogenous opioids, e.g., morphine, in patients with tumors.

Although the role of NEP in tumor biology is well estab-

lished, there are still no data on the inhibition of tumor-

associated NEP by naturally occurring inhibitors, e.g., sia-

lorphin, opiorphin, spinorphin or their derivatives. It is,

therefore, interesting and worthwhile to examine whether

natural inhibitors and their synthetic derivatives could

modulate the activities of cancer cells expressing NEP such

as, for example, colon cancer cells. The natural inhibitors of

NEP are peptide molecules easily degraded by endogenous

proteases. Numerous studies are carried out to increase

their stability and bioactive availability or to improve their

biological activity in relation to amino acid sequence and

molecule structure (Bogeas et al. 2013; Jung et al. 2007;

Kamysz et al. 2013a, b; Kotynia et al. 2010; Rosa et al.

2012). This may be advantageous to relieve the pain con-

nected with cancer development or treatment and

simultaneously to abrogate or diminish the development of

pathological processes. It seems that the study of the opioid

peptides-neutral endopeptidase-NEP inhibitors axis could

be a step towards achieving this goal.VCSA1 gene encoding

the precursor of rat sialorphin and the PROL1 gene

encoding human opiorphin are members of the same gene

family identified in rat, mouse and human. It was proved

that the products of these genes do not present species

specificity considering the interactions with target. It has

also been found that the target of sialorphin, opiorphin and

bovine spinorphin, namely NEP, is highly conserved

among different mammalian species (C93 % sequence

homology in rat and human) (Rougeot et al. 2003; Wisner

et al. 2006). Taking into account the considerations above,

these peptide inhibitors constitute potentially therapeutic

inhibitors of NEP.
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