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Neurons Forming Optic Glomeruli Compute Figure–Ground
Discriminations in Drosophila
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Many animals rely on visual figure– ground discrimination to aid in navigation, and to draw attention to salient features like conspecifics
or predators. Even figures that are similar in pattern and luminance to the visual surroundings can be distinguished by the optical
disparity generated by their relative motion against the ground, and yet the neural mechanisms underlying these visual discriminations
are not well understood. We show in flies that a diverse array of figure– ground stimuli containing a motion-defined edge elicit statisti-
cally similar behavioral responses to one another, and statistically distinct behavioral responses from ground motion alone. From studies
in larger flies and other insect species, we hypothesized that the circuitry of the lobula— one of the four, primary neuropiles of the fly optic
lobe—performs this visual discrimination. Using calcium imaging of input dendrites, we then show that information encoded in cells
projecting from the lobula to discrete optic glomeruli in the central brain group these sets of figure– ground stimuli in a homologous
manner to the behavior; “figure-like” stimuli are coded similar to one another and “ground-like” stimuli are encoded differently. One cell
class responds to the leading edge of a figure and is suppressed by ground motion. Two other classes cluster any figure-like stimuli,
including a figure moving opposite the ground, distinctly from ground alone. This evidence demonstrates that lobula outputs provide a
diverse basis set encoding visual features necessary for figure detection.
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Introduction
Sensory discrimination is one of the oldest subjects of study in
behavioral neuroscience (Weber, 1846; Fechner, 1860). The dis-
crimination of visual figures that differ in some quality from the
background is an everyday phenomenon and yet the neuronal
mechanisms remain largely enigmatic. The study of figure–
ground discrimination in humans, and in particular, the study of
the discrimination of motion-defined figures and contours, or
edges, was coincident with the earliest studies of how flies re-
spond to optic flow and elementary motion (Reichardt and Pog-
gio, 1976; Buelthoff, 1981). Flies are capable of figure-tracking
when the figure stimulus is discriminable from the ground only
by its relative motion, even when it occupies �10% of the visual
field, or is superimposed on a ground that moves opposite the
direction of the figure, moves randomly, or flickers (Reichardt et
al., 1989; Theobald et al., 2010; Fox et al., 2014). Neural mecha-
nisms for the discrimination of vertical edges from the ground
image likely evolved for navigating gaps and approaching perch

sites within natural landscapes (Maimon et al., 2008; Aptekar et
al., 2012).

Studying the neural mechanism of figure– ground discrimina-
tion is challenging because a figure is an abstract percept defined
by difference-from-ground in an expansive set of features (Sper-
ling et al., 1985; Theobald et al., 2008). Many qualitatively differ-
ent stimuli may elicit quantifiably similar behaviors. This may be
accounted for by the diverse inputs having in common core,
perceptually salient features. Work across species hypothesizes
that common features of figures found in nature(O’Carroll, 1993;
Kimmerle and Egelhaaf, 2000a,b; Nordström and O’Carroll,
2006; Straw et al., 2008; Wiederman et al., 2008; O’Carroll and
Wiederman, 2014), or the behavioral context of figure tracking
for pursuing prey or avoiding predators (Olveczky et al., 2003;
Baccus et al., 2008; Wiederman et al., 2008; Zhang et al., 2012)
require certain properties of figure discrimination circuits, such
as sensitivity to small size, luminance contrast, or special shapes.

Because a “feature” is a primitive quality that can be shared
among dissimilar stimuli, a natural way to describe the preferred
input to a “feature detector” is by a set of pairwise comparisons of
that detector’s outputs under different stimulus inputs. This set
of pairwise measures is a perceptual graph (PG). A PG provides a
schema for the perceptual properties of either a behavioral or
cellular response without the need to hypothesize a priori-
specific parameters to which the detector is tuned, such as size,
luminance, or shape. Clustering of two or more stimuli within the
PG, apart from others, demonstrates the capacity for discrimina-
tion between inputs by that detector.

We use a genetically encoded calcium indicator (Akerboom et
al., 2012) with two-photon excitation imaging (Clark et al., 2011)
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of dendrites of columnar neurons that project axons from the
lobula to distinct optic glomeruli or to the lobula plate. We use
PGs to test the hypothesis that the glomerular network provides
parallel information processing (Strausfeld et al., 2006), simulta-
neous encoding of higher-order motion features by distinct ana-
tomical loci, critical to figure– ground discrimination behavior.

Materials and Methods
Behavioral assay. Our aim was very specifically to map behavioral figure
tracking to neuronal responses. Keeping the scope focused on the hori-
zontal motion of vertical contours that drive fixation behavior, we did
not investigate variables, such as orientation or speed. Adult, female
Drosophila melanogaster were anesthetized under cold sedation at 3°C
and tethered by the dorsal thorax to tungsten pins with dental acrylic.
The head was free to move. After �1 h of recovery in a humidified box,
individuals were suspended in a light-emitting diode (LED) arena (Fig.
1B; Reiser and Dickinson, 2008). For the spatiotemporal action field
(STAF) experiments (Fig. 1C), the detailed procedure was reported pre-
viously (Aptekar et al., 2012). For the single-sweep experiments (Fig. 1E),
the assay was composed of three repetitions of 16 stimuli. A stimulus
period consisted of 4 s of open-loop tracking during which a ground, a
single edge, or a 30-degree-wide figure would traverse the azimuth of the
arena at 90°/s for one full revolution. All figures, grounds, and edge
stimuli consisted of randomly interspersed ON and OFF columns of
pixels. As a result, figures, edges, and ground stimuli could not be dis-
criminated at rest. Between each stimulus period, flies were provided
with a 30° dark bar under closed-loop feedback control for a period of 5 s.
“Open loop” refers to the animal being shown a series of images where
the steering behavior of the animal does not feedback and impact the
image trajectory. When feedback is integrated, this is referred to as
“closed loop” control.

STAF assay. In a flight simulator (Fig. 1), two sequences of white noise
were applied to a bar figure, one controlling velocity impulses of coherent
space-time correlated elementary motion (EM) generated by the figure’s
surface, and the other controlling figure motion steps (FM) generated by
displacing the window containing the figure (Fig. 1A; methods described
previously in detail by Aptekar et al., 2014). We measured the EM and
FM responses over the azimuth (Fig. 1B) to generate STAFs that describe
the retinotopic variation of temporal dynamical responses of the two
subsystems (Aptekar et al., 2012).

Fly lines. All Gal4 fly lines were identified through the Janelia Farm
online imaging database and obtained from the Bloomington FlyBase
(ID):

LC9 (ID 26438, http://flweb.janelia.org/cgi-bin/view_flew_imagery.
cgi?line�R14A11)

LC12 (ID 31156, http://flweb.janelia.org/cgi-bin/view_flew_imagery.
cgi?line�R65B05)

T5 (ID 32427, http://flweb.janelia.org/cgi-bin/view_flew_imagery.
cgi?line�R79D04)

LC10a (ID 32564, http://flweb.janelia.org/cgi-bin/view_flew_imagery. c g
i?line�R80G09).

The UAS-GCamp6m line was from the Bloomington FlyBase (Akerboom
et al., 2012), FlyBaseID: FBti0151346. For stochastic labeling of single cells,
we used a FRT-STOP-FRTmCD8::GFP line that was a gift from Larry Zipur-
sky (UCLA Department of Biological Chemistry, Los Angeles, CA).

We noted that LC10a, a subset of the LC10 cell-type that is limited only
to the medial most portion of the optic tubercle, has been described
previously (Otsuna and Ito, 2006), but never before imaged. Addition-
ally, LC9 was colabeled in the R14A11 line with both LC11 and LC13,
along with an unnamed lobula-intrinsic neuron. However, both gross
and specific labeling verified that the vast majority of the lobular neurites
labeled within this line belong to LC9.

Anatomical single-photon excitation confocal imaging. Gal4 expression
was visualized by crossing R79D04, R65B05, R80G09, and R14A11-
Gal4 to UAS-mCD8::GFP (5137). For single-cell analysis, hs-flp;
UAS-FRT-STOP-FRTmCD8:: GFP flies were crossed to R79D04-Gal4
(40034), R65B05-Gal4(49610), and R14A11-Gal4 (48595) and heat
shock (37°C) was applied for 15–25 min to 3- to 5-d-old larvae. Two to

7-d-old female flies were then dissected in 1� PBS. Brains were fixed in
4% paraformaldehyde and washed 3� for 15 min with 0.3% PBST (Tri-
ton X-100). Brains were then blocked in 5% goat serum diluted in 0.3%
PBST for 30 min and incubated in primary antibody for 2 d at 4°C. Then,
brains were washed 3� for 15 min in PBST and incubated in secondary
antibody for 2 d at 4°C. Finally, brains were mounted in Vectashield
(Vector Laboratories) on a microscope slide. Images were taken using a
Zeiss 710 confocal microscope and analyzed with ImageJ (NIH). The
following primary and secondary antibodies were used: mouse anti-nc82
(1:10, Developmental Studies Hybridoma Bank), rabbit anti-GFP (1:
1000, Invitrogen, A11122), goat anti-rabbit AlexaFluor 488 (1:200, Invit-
rogen, A11034), and goat anti-mouse AlexaFluor 568 (1:200, Invitrogen,
A11031).

Two-photon excitation calcium imaging. Briefly, the preparation pro-
cedure was adapted from prior work (Seelig et al., 2010). Adult female D.
melanogaster expressing the genetically encoded calcium indicator
GCamp6m under one of the four Gal4 drivers were anesthetized under
cold sedation. Once anesthetized, flies were wedged dorsal side up into a
1/32 inch slit cut into 0.001-inch-thick stainless steel shim (304 Stainless
Shim, Trinity Brand Industries) in a custom-built acetal stage. The cer-
vical connective was flexed downward to bring the posterior surface of
the head capsule flush with the shim, and the rim of the cuticle was fixed in
place with dental acrylic (Seelig et al., 2010). The proboscis and antennae
were fixed to prevent motion. The posterior cuticle was cut out and removed
with a pair of sharpened Dumont no. 5 forceps (Fine Science Tools). Over-
lying tissues were removed to provide clear access to the optic lobe.

During imaging, a perfusing solution was flowed over the imaging site
at a rate of �1 ml/min with a gravity drip, regulated by an in-line valve,
after passing through an in in-line temperature regulator (Warner In-
struments) set at 19°C, resulting in a well temperature of 21–23°C
throughout the experiment. Perfusate saline solution is based on Wilson
et al. (2004).

Imaging was performed in a two-photon excitation scanning micro-
scope (Intelligent Imaging Innovations). We used a 20�/NA � 1.0
water-immersion objective lens (Carl Zeiss). Laser power was regulated
to 10 –20 mW measured at the focus of the objective lens. Images were
collected at 8 –11 Hz and 300 –500 nm/pixel on a side. Temporal regis-
tration with input stimuli was achieved by recording a voltage pulse at the
completion of each frame that was output from the stimulus control-
ler to a data acquisition device (National Instruments). Visual stimuli
were produced by a 12–20 panel arena that subtended 105° of visual
azimuth and 120° of elevation on the retina (IO Rodeo) using open-
source MATLAB packages (flypanels.org; Reiser and Dickinson,
2008). Stimulus and data acquisition were controlled by custom-built
software in MATLAB (MathWorks).

Eight stimulus classes in each of two horizontal directions were pre-
sented in a randomized block design. One of eight arena display patterns
was chosen at random for each trial to eliminate correlation between
neuronal responses and local elements within the random spatial pattern.
Every stimulus type was repeated three times to complete one trial. If a
preparation was stable and did not appear to bleach, we would complete
multiple imaging trials per animal. Each stimulus period had the follow-
ing structure: a control period consisting of 5 s of clockwise, wide-field
motion followed by turning off the arena for 2 s. The arena was then
turned back on to the randomly selected test pattern. Test pattern was
held stationary for 10 s, run continuously for 10 s, and then stopped. The
arena was turned off, and the cycle was repeated.

Image processing. Movies frames were aligned spatially to a single ref-
erence image (usually the first frame of the movie) with a two-
dimensional correlation algorithm built-in to the Slidebook software
(Intelligent Imaging Innovations). Following alignment, an image of the
mean fluorescence intensity over time was exported to MATLAB. We
used a custom-built algorithm to recursively parcelate this image into a
number of isoluminant rectangular cells. The image frame was broken
into quadrants recursively until each subdivision (ROI) contained �50
pixels with luminance greater than the mean luminance value for the
entire image stack. This has the effect of drawing larger ROIs over less-
active dim regions of the image and smaller ROIs over more-active bright
regions. This parcelated mask was then reimported into Slidebook and a
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matrix containing the sum of the intensity values within each ROI of the
mask at each frame of the movie was exported to MATLAB. This resulted
in �50� compression in the image data, while preserving variability in
the signal within each mask cell across the image, as well as the spatial
reference to the anatomical profile of the neurons.

Within the mask, the signal from each ROI was averaged with itself
over the three instances of each stimulus type. �F/F was calculated by

dividing the signal by the mean intensity over the 2 s preceding stimulus
onset (with arena ON) and subtracting 1. All data were then down-
sampled to 10 Hz and collated.

To minimize the effect of different ROIs having slightly different re-
ceptive fields within an animal and across animals, data within each
experiment and each ROI was time-shifted by the difference peak re-
sponses to the two Fourier figures, one in each direction. This has the
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Figure 1. Figure– ground discrimination is based on an edge-detection mechanism. A, Schematic diagram of panoramic LED arena for behavioral (*) and physiology (**) experiments. Pixel
spacing is 3.75°. All patterns were composed only of vertical stripes. B, Schematic diagram of fly orientation relative to flight and imaging arena. The angle of the thorax relative to the axis of the arena
is �35° in both cases. Due to flexion of the neck, the angle of the head relative to the arena is slightly larger in the restrained imaging preparation than in the flight arena. C, STAFs for FM and sfEM
for a 30° wide (Ci) and 9° wide (Cii) figure. The gray and black bars above each STAF signify the extent of the 90° and 30° bars, respectively. The lobe separation corresponds well to the separation
of the two edges of the 90° bar (black arrowheads). D, Stimuli used for both behavior and physiology studies. Mirror symmetric versions of all stimuli were also used for a total of 16 experimental
conditions. E, Steering responses to visual stimuli and their mirror symmetric counterparts. Means of all animals are plotted in black. Mean responses from individual flies are plotted in light gray.
Inset, Raw traces for the ground (black) and figure– ground (red); N � 34 flies.

Aptekar et al. • Figure–Ground Discrimination in the Fly Lobula J. Neurosci., May 13, 2015 • 35(19):7587–7599 • 7589



effect of centering each ROI about the center of its receptive field. Time
shifts were on the order of 2 s, and the effect of this time-shifted align-
ment is negligible to the overall results (data not shown), but allows for
direct comparison of responses across ROIs and between animals.

Whereas we qualitatively matched the stimulus conditions between
the behavioral and imaging experiments, we restrained the wings and
reduced the stimulus velocity to ensure reliable fluorescence signals.
Faster stimulus dynamics and flying behavioral mode could be expected
to modulate the activity of these cells (Maimon et al., 2010).

Covariance network analysis. We reasoned that two dynamic processes
are similar if they covary. However, we knew from previous behavioral
work that figure and figure– ground stimuli only evoke similar responses
within a limited range of the visual field (Aptekar et al., 2012; Fox et al.,
2014). This means that to measure the extent to which two responses are
similar by covariance, we needed to calculate the covariance between
responses over a limited time (space)-window. We defined our interval
as the average full-width at half-maximum for the response to the Fourier
figure and theta figure in both directions. This interval was 2.2 s.

The pairwise covariance was calculated between each group of eight
stimuli for the mean response of all aligned and pruned ROIs; repeated
for clockwise and counterclockwise stimulus directions. This yields two
covariance matrices for each time-point. To determine the distribution
of covariance values that would arise by chance for any particular cell
type, we did 19,200 simulations, where rather than calculated as de-
scribed, we calculated the pairwise covariance of a cell’s response over
two randomly chosen time intervals between two test stimuli.

The time-varying sequence of covariance matrices for each stimulus
direction were then drawn as graphs. We drew only those edges whose
weights were significant at a level of p � 0.01. To validate this method of
analysis, we performed a test of persistent topology across graph repre-
sentations by calculating the number of disjoint clusters of stimuli within
each perceptual graph as a function of this threshold; as we varied the
significance threshold, effectively pruning more or fewer edges, we
looked to see whether the number of distinct clusters within the PG
changed. The results of this analysis, as well as the chosen significance
level are depicted in Figure 6. Note that across all cell types the passage of
the leading edge of the stimulus through the receptive field of the ensem-
ble of ROIs results in a singular clustering event that persists across a
range of significance values. This indicates that our choice of a pruning
threshold at p � 0.01 has little effect on the results reported. This proce-
dure is similar to strategies that transform continuous measures of near-
ness or similarity into discrete ones to understand the topology of a
neural code (Singh et al., 2008; Malmersjö et al., 2013). The graph layout
as shown is calculated by the Fruchterman–Reingold algorithm (Fruch-
terman and Reingold, 1991). Per the “Covariance Time Series” heatmaps
in Figures 6 and 7, note that only one clustering event predominates, and
that clustering event corresponds to the time when the edge discontinuity
is contained within the receptive field of these cells, but not when they
contain wide field motion only.

To rigorously characterize the degree of topological similarity for
LC10a between individual animals, we use a Jaccard metric (XJ) to com-
pare PGs by edges (Jaccard, 1901, 1912; Albatineh and Niewiadomska-
Bugaj, 2011). It is equal to one minus the magnitude of the set
intersection of the edges in two graphs divided by the magnitude of their
set union. For two graphs, G1 and G2 are as follows:

XJ�G1, G2� � 1 �
	G1 . edges � G2 . edges


	G1 . edges � G2 . edges


Smaller Jaccard distances exist between graphs with a higher proportion
of identical edges. By thresholding the covariance matrices of individual
flies at p � 0.01, as described above, we construct PGs for each individual
and then calculate the pairwise similarity between individual flies for
each cell type; an example of the covariance matrices used to construct
individual PGs over the specified time period in LC10a is shown in Figure
6E. Then, by randomly permuting the edges between all available stimuli
for each individual, preserving the numerosity of edges, we generate a
distribution of Jaccard distances that arise at chance for each cell type. We
then produce p values for the measured, mean Jaccard distances within

individuals for each cell type. This allows us to compare the measured
similarity of the individual PGs to the similarity that would arise at
chance.

Results
Figure-tracking on the edge
Flies fixate a vertical bar under closed-loop feedback conditions
(Götz, 1968). For a wide bar, fixation is bistable, with two peaks in
the fixation histogram corresponding to the position of the bar’s
edges; the salient component of the figure is its edge rather than
center of mass (Wehner and Flatt, 1972; Heisenberg and Wolf,
1984; Maimon et al., 2010; van Breugel and Dickinson, 2012). We
extended those studies with a white-noise systems identification
approach, the STAF, to analyze figure-tracking behavior
(Aptekar et al., 2012). Comparing the STAFs reveals that the EM
and FM responses are affected in a qualitatively different manner
by figure width (Fig. 1C). Consistent with EM detection originat-
ing from the sum of local motion detector inputs (Single and
Borst, 1998; Haag et al., 2004; Maisak et al., 2013), the EM STAF
broadens with the wider figure that generates more motion en-
ergy (Fig. 1Ci,Cii). However, the FM STAF shows two prominent
azimuthal peaks separated by the figure’s width (Fig. 1Cii, arrow-
heads), indicating that the strongest steering effort to FM cues is
produced when the edge is on midline. This supports the hypoth-
esis that flies track the edge of a figure (Reichardt and Poggio,
1979), and goes substantially further to indicate that the salient
cue for an edge is not provided by first-order Fourier motion
energy, whose spatial average is maximal at the center of the
figure, but rather on higher-order cues, like the edges or seams
between flow fields.

Figure detection operates on a single edge (Fig. 1C), varies
over the visual field (Theobald et al., 2008; Reiser and Dickinson,
2010; Aptekar et al., 2012; Bahl et al., 2013; Fox and Frye, 2014;
Fox et al., 2014), and interacts with ground stabilization (Fei et
al., 2010; Fox and Frye, 2014). We generated a stimulus set to
examine the perceptual similarity of figures defined by one or
both edges, and figures on moving grounds (Fig. 1D). We re-
stricted our analysis to the challenging set of figures defined by
relative motion, such that if the figure stops moving it is indistin-
guishable from the ground. For each experiment, we revolve a
stimulus around the LED arena at constant velocity (Reiser and
Dickinson, 2010; Bahl et al., 2013). We displayed a narrow figure
(F), a proceeding edge (pE), and a receding edge (rE) on a sta-
tionary background, and also each on a counter-rotating ground
(FG, pEG, and rEG). We included a ground-alone stimulus (G)
and a theta figure (tF); an important stimulus for assessing the
differential influence of the FM and small-field EM (sfEM) sys-
tems to figure-tracking (Zanker, 1996; Theobald et al., 2008;
Aptekar et al., 2012). These eight stimuli (G, FG, rEG, rE, F, pE,
pEG, tF) in two directions composed our 16 experiments (Fig.
1D). Our behavioral variable was the measured difference be-
tween left and right wing beat amplitude, �WBA (Götz, 1987),
which is proportional to yaw torque generated by a tethered fly
(Tammero et al., 2004).

We found that ground motion (G) elicits a canonical optomo-
tor response (Fig. 1E; compare G and G� conditions). A bar sub-
tending �10% of the visual field sweeping across the ground in
the opposite direction evokes a full reversal in steering as the
animal turns to pursue the figure (Fig. 1E; compare G� and FG�
conditions, and inset). Some very different stimuli, such as the pE
and the Fourier figure (F), produce qualitatively similar behav-
ioral responses (Fig. 1E; compare pE, F and pE�, F� conditions).
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Behavioral responses define a visual feature space
To explore how dissimilar inputs map to similar behavioral re-
sponses, we measured the covariance across all steering responses
within a one second sliding window over the stimulus interval
(Fig. 2A). This provided a measure of behavioral response simi-
larity across the different stimulus inputs, i.e., responses to per-
ceptually indistinguishable stimuli covary significantly (p � 0.05;
Fig. 2B, red), and responses to perceptually distinct inputs do not
(p � 0.05; Fig. 2B, blue). To visualize the relationships across the
stimulus set, we display the covariance matrix as a perceptual
graph, PG (Fig. 2C; see Materials and Methods for details). We
use the Fruchterman–Reingold algorithm (Fruchterman and Re-
ingold, 1991) to anneal the PG and reveal clusters of behavioral
responses (Fig. 2C). The PG reveals a window of time, defined by
an edge passing through the frontal visual field (Fig. 2A, gray
box), when the steering trajectories for many figure-like stimuli
covary at a significant level and do not covary with the ground-
alone condition (Fig. 2B,C). We find significant covariance be-
tween the F, tF, FG, pE, and pEG stimuli (Fig. 2B, red). These
perceptually clustered stimuli all contain the leading edge of a
figure. Receding edge (rE, rEG) stimuli did not elicit covariant
steering responses with the FG stimulus. These analyses using
simple constant velocity stimuli corroborate our white-noise
STAF work (Fig. 1C; Aptekar et al., 2012, 2014; Fox et al., 2014):
regardless of the presence or absence of a moving ground, flies
perceptually cluster and track figures by a mechanism that detects
the leading edge of a figure.

Projection neurons of the fly lobula
Within the lobula, a putative figure-coding region of the fly optic
lobe, we recorded calcium responses from the dendrites of three
cell classes projecting to distinct optic glomeruli (Otsuna and Ito,

2006; Strausfeld et al., 2007). LC12 is a
columnar-type neuron that projects to
the lateral portion of the ventrolateral
protocerebrum (VLPR; Fig. 3B). LC9 is
a columnar-type neuron that projects
through the anterior optic tract (AOT)
to the medial portion of the VLPR (Fig.
3C). LC10a is columnar-type neuron
that projects through the AOT to the
medial portion of the optic tubercle
(Fig. 3D). We include a schematic dia-
gram illustrating the layer- and glom-
erular-specificity of each of these cell
types (Fig. 3E).

To facilitate comparison between fig-
ure detection and canonical wide-field
motion vision, we imaged the dendrites of
columnar T5 projections to the lobula
plate (Fischbach and Dittrich, 1989; Jo-
esch et al., 2010; Fig. 3A). T5 is selective
for OFF edge-motion and its small-field
columnar outputs are collated by wide-
field lobula plate tangential cells (Buchner
et al., 1984; Maisak et al., 2013).

Each set of cells (T5, LC12, LC10, and
LC9/LC13) were genetically targeted with
GAL4 lines (Jenett et al., 2012) to express
GCAMP6m (Akerboom et al., 2012). In
some cases the driver lines labeled addi-
tional cell types (see Materials and Meth-
ods), but the specificity of the driver

within the lobula enabled us to use anatomical landmarks to
record from individual cell types (Fig. 3).

Neural coding properties do not vary retinotopically for T5,
LC12, LC9, or LC10a
Imaging preparations were shown a perspective-matched version
of the stimulus from our behavioral assays (Fig. 1A,B; see Mate-
rials and Methods). The imaging region contained many local
dendritic processes belonging to multiple individual columnar
neurons (Fig. 4A). To test for neuronal responses that could un-
derlie the figure– ground discrimination computations that we
know flies make (Fig. 1E), we first recorded responses to a 30° bar
sweeping across the azimuth of the LED display. The bar activates
sequential retinotopic columnar elements as the bar swept across
the azimuth (Fig. 1A, indicated in with pseudocolor mask). We
record from multiple ROIs, shown arranged in order along the
nasal–temporal (n–t) axis (Fig. 4B, top). The duration of GCaMP
excitatory response corresponds with the width of the bar (30°).
We did not identify any significant response variation along the
n–t axis. We therefore collapsed the spatial dimension to pool
responses across ROIs in time (Fig. 4B, bottom). All four classes
of lobula projection neurons showed similar retinotopic homo-
geneity (Fig. 4); i.e., each columnar element of T5 responds to the
passage of a Fourier bar in a similar way.

Throughout, we confined our measurements to the dendritic
arbors of these cells. Although we did attempt some measure-
ments from axonal terminals, there were no distinct responses.
This may represent preaxonal filtering of the dendritic re-
sponses. However, the dendritic responses are likely impor-
tant not only for axonal feedforward processing into the AOT
and optic glomeruli of the central brain, but also for local
dendrodendritic processing.
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Lobula projection neurons do not respond with transient ON
and OFF responses
We compared the mean �F/F response to switching the entire
LED arena ON and OFF (Fig. 4C). The response amplitude
within lobula dendritic arbors to full-field ON and OFF were very
small in each cell type (Fig. 4C), indicating that lobula projections
neurons are strongly tuned to motion and other motion-derived
features rather than transient flicker.

Calcium imaging reveals distinct figure– ground response
profiles by lobula projection systems
We presented the eight stimuli in each of the two azimuthal di-
rections in random order (Fig. 1E). The trajectory of average
fluorescence signals demonstrates by visual inspection that each
of the four lobula cell projections responds differently to the
ensemble of 16 stimuli (Fig. 5A–D). For example, all four colum-
nar cell types respond in a similar manner to the four bar figures
on static ground, regardless of the direction of figure motion or
the direction of coherent pattern motion within the figure win-
dow (Fig. 5A–D; F, F�, tF, tF�). By contrast, each cell type differ-
entially filters figure– ground stimuli. For example, LC12 appears
to be strongly selective for figures on static ground (Fig. 5B; F, tF,
pE), whereas LC9 and LC10a each show strong transients to a
passing edge regardless of background movement (Fig. 5C,D;
pEG, rE, pE, and rEG).

For each neural subtype, there is substantial variation in the
responses to our battery of stimuli. Parameterization of visual
motion coding along the axes of figure, or flicker, coding within
any single-cell types is idiosyncratic. For example, LC10a shows
no difference in response to the two directions of ground-alone
stimulus, but shows a very different response to the two receding
edge stimuli (Fig. 5E). This demonstrates that LC10a has a strong
predilection to the non-EM components of the stimulus.

LC12 shows nearly identical responses to ground motion in
each direction, whereas the two directions of Fourier bar motion
elicit markedly different responses (Fig. 5F). In contrast, the theta
bar responses are nearly identical. In combination, these suggest
a mechanism whereby the contributions of both FM-direction
and EM-direction, and size-tuning interact directly.

Graph analysis of neural responses
These examples demonstrate the difficulty of either systemati-
cally evaluating pairwise responses within a particular neural
subtype across stimulus-conditions or producing conceptual
models for the underlying coding filters that these cells imple-
ment. The PG provides a method to consider all such possible
pairwise comparisons between responses. We therefore repeated
the behavioral time-varying covariance analysis (Fig. 2) for the
responses of each cell type, treating each ROI as an independent
sample to determine which cellular responses are homotopic to
behavioral figure tracking.

OpTu

LoPLo

Me

VLPR

AOT

T5
LC12
LC9
LC10a

R65B05>mcD8::GFP

OpTu

VLPR

MeLo

VLPR

LC12B

R80G09>mcD8::GFP

LoP

Me

Lo

AOT

LC10aD

R79D04>mcD8::GFP

LoP

Me

Lo

T5
nc82
GFP

A

E

R14A11>mcD8::GFP LC9C

AOT

Figure 3. Anatomy of lobula projection neurons. All confocal images indicate nc982 neuropil
staining in magenta and GFP in green. Scale bars, 50 �m. A, Whole-hemisphere labeling for

4

R79D04 Gal4 line and single-cell example (inset) of a T5 neuron. B, Whole-hemisphere labeling
for R65B05 Gal4 line and single-cell example (inset) of a LC12 neuron (shown glomerular region
contains projections from multiple cells but only one of them shown); white dashed circles
bound the optic tubercle (OpTu) and VLPR. C, Whole-hemisphere labeling for R14A11 Gal4 line
and single-cell example (inset) of a LC9 neuron (shown glomerular region contains projections
from multiple cells but only one of them shown). D, Whole-hemisphere labeling for R80G09
Gal4 line. We were unable to achieve single-cell labeling in this line, yet identified the LC10a
subtype based on the axonal projections being confined only to the medial part of the optic
tubercle (arrowhead). E, A schematic diagram depicting the input layers of the lobula and the
projection targets of each cell type imaged (Mu et al., 2012).
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T5 is a local motion-detector
Consistent with the model that T5 composes a columnar array of
motion-sensitive neurons (Buchner et al., 1984; Maisak et al.,
2013), each with a finite receptive field, we found that T5 re-
sponded similarly to the entire stimulus set, and in particular was
little perturbed by the passage of an edge or figure superimposed
on a moving ground (Fig. 5A). Accordingly, the only significant
clustering event that we observed was for the leading edge of tF, F,
and pE stimuli (Figs. 6A, 7A), each of which are characterized by
a delayed onset of motion through the receptive field, by contra-
distinction to the wide-field G, FG, pEG, and rEG stimuli that
drive the receptive field continuously.

Note that although we are measuring
responses from T5, and these cells have
been shown to have directionally tuned
responses at their axon terminals in the
lobula plate, we measure these responses
in the dendritic compartments of T5
within the lobula. Maisak et al., (2013)
demonstrated that signals delivered from
the dendrites of T4 and T5 cells are already
directionally selective. However, direc-
tional selectivity cannot be imaged en
masse because the directionally tuned
dendrites are mixed within strata of the
lobula.

LC12 is a ground-suppressed edge-detector
LC12 clusters figure stimuli on a station-
ary ground regardless of the direction of
internal EM or figure direction (Figs. 6B,
7B). In contrast to a cell that shows size-
selectivity via inhibition by wide-field
ground motion, e.g., figure detecting (FD)
neurons of the fly lobula plate (Warzecha
et al., 1992), LC12 exhibits its largest am-
plitude response to a single edge, pE-type
stimulus. Therefore LC12 is not size-
tuned per se, but rather is more broadly
sensitive to the onset of motion generated
by an edge (Figs. 6B, 7B).

AOT neurons encode high-order optical
disparities and figure-on-ground
Consistent with tuning to higher-order
edge features of the visual scene that drive
behavioral responses (Fig. 2), two cell
groups that project through the AOT
(LC9 and LC10a) show weak directional
preference, yet strong responses to figures
on both stationary ground and counter-
rotating ground (Figs. 6C,D, 7C,D). Similar
to LC12, both LC9 and 10a demonstrated
strong responses to the single-edge stimuli,
thus are not size tuned per se, but rather
respond to an approaching edge (Fig. 4).
However, unlike LC12, both LC9 and
LC10a respond to the edge progressing
across a counter-rotating ground, and are
not suppressed by ground motion (Fig.
5C,D).

The graph analysis demonstrates that
both cell classes show more robust figure–

ground selectivity than any known cell class in the fly motion
pathway. Both LC9 (Figs. 6C, 7C) and LC10a (Figs. 6D, 7D)
cluster the figure– ground stimulus along with the other figure-
like stimuli, yet apart from the ground-alone stimulus. Although
the LC9 and LC10a cell classes seem to respond to the entire
stimulus ensemble, the cellular responses to any motion discon-
tinuity generated by a leading edge, regardless of ground motion
in either direction, covary with figure-alone stimuli, but not with
ground-alone motion. Furthermore, sensitivity to the figure–
ground stimulus is coupled with sensitivity to the receding edge
(Figs. 6C, in LC9, and 7D, LC10a in the opposite direction), or the
receding edge on counter-rotating ground (Figs. 6D, in LC10a,
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pixel (see Materials and Methods, Image processing). Average pixel size was 400 –500 nm on a side. Minimum ROI size was set at
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lights-ON or lights-OFF. These cell types are configured to detect motion stimuli preferentially.
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and 7C, in LC9). This suggests that the
ability to distinguish figure– ground from
ground-alone imparts sensitivity to a
broad class of discontinuities in optic
flow.

Figure– ground discrimination emerges
from a hierarchy of conserved
feature-detection motifs
We also note that the graph topology,
meaning the set of edges between like
stimuli, is conserved across individual
flies (Fig. 6E). In the example from LC10a,
several features predominate: across all
individuals, the top row of the covariance
matrix is generally empty, highlighting
the very low level of covariance between
the G condition and the others. A similar,
highly conserved motif exists for the rEG
stimulus across individuals. Per the Jac-
card similarity metric described in Mate-
rials and Methods, we found that the PGs
calculated for a single cell-type, calculated
across individuals, were much closer to one
another than would be expected at chance.
For LC10a, p � 0.0009; LC12, p � 0.0067;
T5, p � 0.0044; and LC9, p � 0.0290.

With respect to the Jaccard similarity
between different cell types, we did not
expect to find stark statistical differences
between individual neurons of each cell
type, because our hypothesis was that each
cell type encodes figure-like stimuli in a
similar, but progressively more complex
way. As expected, the average pairwise
distances between each cell type were uni-
formly shorter than chance with p � 0.01.
However, for T5, LC9, and LC10a, the
mean Jaccard distance for PGs from indi-
vidual cells of a single type was shorter
(nearer) than the mean Jaccard distance
to PGs derived of any other type. For
LC12, its nearest neighbor was the LC9
cell-type, with which its response shares
many similar features (Figs. 6, 7). These
results demonstrate that while PGs are
consistent across measurements within a
single cell-type, the PG of a given cell can-
not be used in isolation to determine its
identity relative to the other cell types imaged.

Discussion
We demonstrate that the optical disparity generated by the edge
of a motion-defined figure elicits robust figure tracking steering
responses in tethered flight, regardless of opposing ground mo-
tion (Fig. 1). We then employ a novel analytical construct called a
perceptual graph to visualize the flies’ perceptual classification of
diverse figure stimuli, and demonstrate that figure-like stimuli
elicit behavioral responses similar to one another and distinct
from ground alone (Fig. 2). Choosing from a set of distinct glo-
merular output targets from the lobula, a putative figure sensitive
region of the fly brain, we study four target cell types with distinct
projection patterns (Fig. 3). Using calcium imaging (Figs. 4, 5)

and the perceptual graph method, we compared the response pat-
terns of these cell types to whole animal behavior (Figs. 6, 7). We
found that passage of the leading edge through these cells receptive
field elicited a single, marked clustering event in the PG. We found
that this PG is highly conserved across individual recordings from
different animals (Fig. 6); the topology of figure–ground discrimi-
nation in these LPNs is a characteristic property of each cell type. We
found a set of conserved motifs in both behavior and neurophysiol-
ogy demonstrating that figure–ground discrimination relies pri-
marily on the detection and response to the edge of a figure (Fig. 8).

Feature detection persists over ground dynamics
The dynamics of figure and ground motion affect steering behav-
ior in a spatial, visual-field-dependent manner (Theobald et al.,
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2008; Aptekar et al., 2012; Fox et al., 2014), and are particularly
robust to the interference of uncorrelated ground motion (Fox et
al., 2014). A figure occupying �10% of the total visual field fully
reverses the steering response of the animal to counter-rotating
ground (Fig. 1E; Buelthoff, 1981; Fox et al., 2014).

Behavioral responses to opposing figure–ground stimuli (Fig.
1E) therefore cannot be attributed to the responses of T5, which
responds to ground motion and is little perturbed by a small
counter-rotating figure (Fig. 5A), consistent with its role as local
columnar retinotopic elementary motion detector supplying the
wide-field collating neurons of the lobula plate (Schnell et al., 2012).
By contrast, the LPNs (LC12, LC9, and LC10a) demonstrate com-

plex figure-selective responses despite superimposed ground mo-
tion (Fig. 5), consistent with the hypothesis that these lobula
projection systems support higher-order feature detection demon-
strated behaviorally (Mu et al., 2012). The segregation of each output
to separate regions of the lateral protocerebrum suggests that this com-
plexity, and diversity, of the response profiles from each of these higher-
order detectors may play a separate, or parallel, role in behavior.

Figure– ground discrimination emerges from a hierarchy of
conserved feature-detection motifs
Each cell type generated a unique PG upon entry of the leading
figure edge into the receptive field (Figs. 6, 7). The subset of
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stimuli that are indistinguishable (perceptually clustered) is dis-
tinct for each of the four cell classes. By extension, each cell type
encodes different features of the stimulus set.

Several motifs become apparent in the PGs across cell type.
For both T5 and LC12, the PG produced a triangular simplex of
covariance between the F, tF, and pE stimuli (Fig. 8A, blue links).
This topological feature was then conserved upon the addition of
the proceeding edge on ground stimulus to the PG of LC9 and
LC12 to produce a tetrahedral PG (Fig. 8A, orange edges). This
tetrahedral PG is represented within the clusters that add the
figure– ground stimulus to LC9 and LC10a (Fig. 8A, red edges).
The figure– ground detector cluster also displays sensitivity to the
receding edge (LC9) or receding edge on ground (LC10a) stimuli
(Fig. 8A, dark gray edges).

This apparent “inheritance” of topology represents a modular
and hierarchical construction of figure detection from feature
primitives. First, the individual stimulus types are not treated
independently by these cells. For each of these cell types, the
response to tF, F, and pE are essentially indistinguishable at the
leading edge and therefore represent an indivisible perceptual
unit for this set of cells. That topology emerges at the lowest-
levels, T5 and LC12, and is present at the higher-levels, LC9 and
LC10a. This persistence of primitives across cell types is consis-
tent with a hierarchical organization of feature detectors under-
lying figure– ground discrimination. We do not intend to argue
for common inputs to T5, LC12, LC9, and LC10a or serial con-
nections per se, but rather that the information processing archi-
tecture of the lobula shows a characteristic and fundamental
sensitivity to leading edges. This progression leads to a final
clustering topology that is very similar to the behavioral clus-
tering (Fig. 8B). In both behavior and lobula physiology, the
encoding of a leading edge seems to be a computational pre-
requisite or, at the very least, an intrinsic component of fig-
ure– ground discrimination.

Edge-tracking may arise from an EMD-like mechanism
Motion discrimination of two directions of motion is encoded in
at least several of the LPNs we surveyed, as well as in expansion-
sensitive neurons in the lobula plate (De Vries and Clandinin,
2012). This challenges the hypothesis that figure detection arose
from a single, ancient neural mechanism that is very brittle and
could be easily perturbed or lost. Rather, we argue that figure–

ground discrimination is an emergent property of the visual sys-
tem’s propensity to detect spatiotemporally coherent patterns of
disparity. The elementary motion detector (EMD) is simply a
special case of sensitivity to coherence in luminance disparity
(increments or decrements in light input). Figure-detection may
arise from a similar mechanism that takes as its input motion
disparity; i.e., an edge where the direction of motion reverses. A
future challenge will be to identify the equivalent of a reverse-phi-
type stimulus for an edge motion detector to validate whether this
edge-tracking mechanism in fact follows the computational
structure of the EMD, or whether it is fundamentally different.

Emerging cellular models of feature detection
FD cells of the lobula plate identified in blowflies have narrow
receptive fields, but are inhibited by wide-field motion (Egelhaaf,
1985; Warzecha et al., 1992, 1993; Liang et al., 2008) and so would
not serve behavioral responses that track a figure moving across a
counter-rotating ground (Fig. 1E). Furthermore, genetic silenc-
ing experiments have shown that animals with nonfunctional
columnar T5 neurons show strongly compromised OFF-edge
wide-field motion wide-field responses, but essentially intact re-
sponses to a dark vertical bar on a uniform white ground suggest-
ing that the lobula plate is dispensable for basic figure detection
behavior in Drosophila (Bahl et al., 2013; Maisak et al., 2013).
However, the lobula plate circuitry of hoverflies is equipped for
high performance feature detection, perhaps as an adaptation to use
natural vertical contours to stabilize gaze to maintain a precise hov-
ering posture between bouts of conspecific pursuit (Wiederman et
al., 2008; O’Carroll et al., 2011; Lee and Nordström, 2012).

A growing body of research on the lobula from dragonflies
(O’Carroll, 1993; Olberg et al., 2000) and hoverflies (Nordström
and O’Carroll, 2006; Nordström et al., 2006) has described classes
of intrinsic and projection neurons within the lobula specialized
for detecting very small targets with marked luminance differ-
ence from the s. These neurons are useful for models that describe
prey capture or conspecific pursuit, but do not capture the phe-
nomenology of figure– ground based edge detection or active
visual fixation of a prominent vertical contour observed here
(Fig. 1), which likely serve for navigation around plant stalks and
gaps in the landscape.

Other lobula cell systems map retinotopic inputs recombined
into glomerular outputs, an anatomical convergence suggesting
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to highlight persistence across PGs at higher levels of complexity. The figure– ground stimulus is highlighted in red. Note that the red edges are not necessarily between homologous stimuli. B, PG
for behavior.
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that the lobula forms the nexus between sensation and feature
coding (Strausfeld et al., 2006; Strausfeld and Okamura, 2007).
Feature primitives have been found to be represented by the elec-
trophysiological responses of glomerular projection neurons in
Drosophila (Mu et al., 2012), and neurogenetic silencing of these
cell classes produces defects in higher-order figure tracking be-
havior by tethered flies (Zhang et al., 2013).

The AOT is a prominent anatomical feature in many insects
that projects from the lobula complex to the anterior portion of
the lateral protocerebrum (Fischbach and Heisenberg, 1981; Fis-
chbach and Lyly-Hünerberg, 1983). This study shows for the first
time in Drosophila that the AOT is strongly implicated in higher-
order feature coding, of the sort necessary for figure– ground
discrimination (Figs. 6, 7). The congruence of this finding with
work in other insects (Collett, 1971, 1972) argues that this archi-
tecture is both ancient and fundamental. We note also that the
presence of a multiplicity of other similar outputs from the lobula
(Fig. 8) may explain why substantial lesions to subsets of this
neuropil do not result in profound optomotor deficits (Fischbach
and Heisenberg, 1981). Parallel pathways of visual information
allow for the sensitivity of flies to higher-order features and con-
stitute a robust framework that cannot be easily perturbed by
lesions. Future work should focus on refinement of stimuli to
probe narrow sets of these filters, as well as measurement of cel-
lular responses in animals that are actively engaged in figure-
tracking behavior (Seelig et al., 2010; Weir et al., 2014).
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