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The N-Ethylmaleimide-Sensitive Factor and Dysbindin
Interact To Modulate Synaptic Plasticity
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Dysbindin is a schizophrenia susceptibility factor and subunit of the biogenesis of lysosome-related organelles complex 1 (BLOC-1)
required for lysosome-related organelle biogenesis, and in neurons, synaptic vesicle assembly, neurotransmission, and plasticity. Protein
networks, or interactomes, downstream of dysbindin/BLOC-1 remain partially explored despite their potential to illuminate neurode-
velopmental disorder mechanisms. Here, we conducted a proteome-wide search for polypeptides whose cellular content is sensitive to
dysbindin/BLOC-1 loss of function. We identified components of the vesicle fusion machinery as factors downregulated in dysbindin/
BLOC-1 deficiency in neuroectodermal cells and iPSC-derived human neurons, among them the N-ethylmaleimide-sensitive factor
(NSF). Human dysbindin/BLOC-1 coprecipitates with NSF and vice versa, and both proteins colocalized in a Drosophila model synapse.
To test the hypothesis that NSF and dysbindin/BLOC-1 participate in a pathway-regulating synaptic function, we examined the role for
NSF in dysbindin/BLOC-1-dependent synaptic homeostatic plasticity in Drosophila. As previously described, we found that mutations in
dysbindin precluded homeostatic synaptic plasticity elicited by acute blockage of postsynaptic receptors. This dysbindin mutant pheno-
type is fully rescued by presynaptic expression of either dysbindin or Drosophila NSF. However, neither reduction of NSF alone or in
combination with dysbindin haploinsufficiency impaired homeostatic synaptic plasticity. Our results demonstrate that dysbindin/
BLOC-1 expression defects result in altered cellular content of proteins of the vesicle fusion apparatus and therefore influence synaptic
plasticity.
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Introduction

Genetic polymorphisms associated with neurodevelopmental
disorders frequently reside in noncoding regions, arguing that
most genetic variants modify gene and/or protein levels rather
than protein primary structure (Nicolae et al., 2010; Maurano et
al., 2012; Richards et al., 2012; Schizophrenia Working Group of
the Psychiatric Genomics, 2014). This is the case with genetic
polymorphisms in the gene encoding dysbindin, DTNBPI, which
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are risk factors for schizophrenia onset (Straub et al., 2002; Van
Den Bogaert et al., 2003; Bray et al., 2005; Mullin et al., 2011;
Ghiani and Dell’Angelica, 2011; Ayalew et al., 2012). DTNBPI
polymorphisms reside in noncoding regions of the dysbindin
gene and are thought to produce moderate effects in polypeptide
expression (Talbot et al., 2009). This observation is in rapport
with postmortem studies of adult schizophrenia brains, which
reveal a partial reduction in dysbindin transcripts and protein
(Talbot et al., 2004; Weickert et al., 2008). Nearly 80% of schizo-
phrenia subjects possess 30-50% reduced dysbindin protein
content in neuroanatomical regions affected by this disorder
(Talbot et al., 2004, 2011). The cellular consequences of DTNBPI
polymorphisms remain unknown, yet vertebrate and inverte-
brate animal models show that reductions of 50% in the content
of dysbindin are sufficient to generate molecular and functional
phenotypes in neurons and the synapse (Jentsch et al., 2009;
Karlsgodtetal.,2011; Larimore et al., 2014). These findings argue
for partial loss of function in dysbindin as a penetrant link con-
nected to the chain of events associated with schizophrenia
development.

Dysbindin associates with seven other polypeptides to form the
biogenesis of lysosome-related organelles complex 1 (BLOC-1;
Starcevic and Dell’Angelica, 2004; Mullin et al., 2011; Ghiani and
Dell’Angelica, 2011). Null mutations in mouse dysbindin reduce
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Table 1. Antibodies used

Dilutions
(atalog
Antibody number  Source Blot  Immunofluorescence
Dell’Angelica

Polyclonal anti-muted laboratory 1:1000
Polyclonal anti-pallidin 10891-AP  Proteintech 1:1000
Monoclonal anti-pallidin Dell’Angelica

(2G6) laboratory 1:500
Polyclonal anti-dyshindin ~ HPA029616 Sigma-Aldrich 1:125
Polyclonal anti-NSF Cell Signaling

(D31C7) 3924 Technology 1:1000
Monoclonal anti-Actin

(AC-15) A5451 Sigma-Aldrich 1:1000
Polyclonal anti-GFP 132002 Synaptic Systems  1:2000
Monoclonal anti-FLAG

(M2) F3165 Sigma-Aldrich 1:1000
Polyclonal anti-FLAG A190-102A  Bethyl Laboratories 1:1000
Monoclonal VAMP7 A.A. Peden
Monoclonal anti-TrFr (H84) 12-6800  Zymed 1:1000
Monoclonal anti-tomosyn 611296 BD Biosciences 1:500
Monoclonal anti-Munc18 610336 BD Biosciences 1:2000
Polyclonal anti-Syntaxin 7 A.A. Peden 1:1000
Monoclonal MAP2 M1406 Sigma-Aldrich 1:1000

Cell Signaling

Polyclonal B3 tubulin 5568 Technology 1:200

the expression of other BLOC-1 subunit mRNAs and polypep-
tides (Mullin et al., 2011; Ghiani and Dell’Angelica, 2011; Lari-
more et al, 2014). This suggests that dysbindin genetic
downregulation could elicit multiple alterations of protein con-
tent in cells (Foss et al., 2007; Albert et al., 2014). We identified
224 proteins whose content was modified by dysbindin/BLOC-1
partial loss of function using unbiased quantitative mass spec-
trometry. Our screen prominently identified components of the
N-ethylmaleimide-sensitive factor (NSF)-dependent vesicle fu-
sion machinery. We focused on NSF, a catalytic component of
the fusion machinery, and asked whether NSF participates in
dysbindin/BLOC-1-dependent synaptic mechanisms. We used as
an assay Drosophila presynaptic plasticity produced by the inhi-
bition of postsynaptic receptors. As previously reported by Dick-
man and Davis (2009) and Dickman et al., (2012), we observed
that mutations in fly dysbindin precluded the establishment of
homeostatic synaptic plasticity, a phenotype that we rescued by
presynaptic expression of dysbindin (Dickman and Davis, 2009;
Dickman et al., 2012). Neuron-specific expression of dNSF1, the
gene encoding Drosophila NSF, by itself does not modulate this
form of plasticity, yet NSF1 expression at the synapse of dysbindin
mutants rescued homeostatic synaptic plasticity defects to the
same extent as dysbindin re-expression in the presynaptic com-
partment. Our results demonstrate that partial dysbindin/
BLOC-1 loss of function alters the cellular content of proteins
that specifically have roles in synaptic mechanisms.

Materials and Methods

Antibodies cell culture. Antibodies are listed in Table 1. SH-SY5Y (ATCC)
cells were cultured in DMEM supplemented with 10% fetal bovine serum
(FBS) and 100 pg/ml penicillin and streptomycin (Hyclone) at 37°C in
10% CO,. The SH-SY5Y cell line carrying 3x-FLAG Dysbindin (catalog
#EX-Mm12550-M12) was previously described (Gokhale et al., 2012).
MNT-1 cells were a gift of Dr. Vincent Hearing (National Cancer Insti-
tute, NIH, Bethesda, MD) (Kushimoto et al., 2001). Cells were main-
tained in DMEM supplemented with 20% AIM-V medium (Life
Technologies), 10% FBS (heat inactivated at 65°C for 60 min), and 100
pg/ml penicillin/streptomycin at 37°C and 5% CO,. Blocls5™"/™,
Bloc1s6""%, and rescued melanocytes were a gift of Dr. Michael Marks (De-
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partment of Pathology & Laboratory Medicine, University of Pennsylvania,
Philadelphia, PA) (Setty et al., 2007, 2008).

Amniotic epithelial (AE) cells-induced pluripotent stem cells (iPSCs)
were obtained and cultured on human embryonic stem cell-qualified
Matrigel (BD Biosciences) with mTeSR-1 medium (STEMCELL Tech-
nologies), as described previously (Easley et al., 2012). The AE cells-
iPSCs were grown for a minimum of 5 d before being infected by the
control and pallidin lentiviral particles for 7 d in selection media, as
described above. After the 7 d treatment, the iPSCs were lifted and placed
in a neural stem cell medium (DMEM F-12 +N2 supplement) contain-
ing high concentrations of EGF and FGF-2 (100 ng/ml; Peprotech), and
heparin (5 pg/ml; Sigma-Aldrich) to produce cell aggregates termed EZ
spheres (Ebert et al., 2013). To induce neuronal differentiation EZ
spheres were removed from the N2/EGF/FGF/heparin media and differ-
entiated as follows: EZ spheres were cultured on poly-p-lysine/laminin-
coated, acid-etched glass coverslips for immunofluorescence, or 10 cm
culture dishes for biochemical analyses in Neural Differentiation Me-
dium containing Neurobasal, B27, and Glutamax (all from Life Technol-
ogies), with 20 ng/ml GDNF (Peprotech) and 10 ng/ml BDNF
(Peprotech). Medium changes on differentiating cells occurred weekly.
Neuronal differentiation was confirmed by immunofluorescence mi-
croscopy using MAP2 and B-III-tubulin as neuronal markers.

For shRNA-mediated Blocls5 muted and Blocls6 pallidin knock-
downs, shRNA in a pLKO.1 vector for lentiviral infection was obtained
from Open Biosystems (Pallidin, Clone ID: TRCN0000122781; Muted,
Clone ID: TRCN0000128812). Control shRNA in pLKO.1 was obtained
from Addgene (vector 1864). For shRNA-mediated dysbindin knock-
downs, shRNA in a psiHIV-U6 vector for lentiviral infection was ob-
tained from Genecopoeia (Dysbindin, catalog #HSH020444-1HIVUG6).
Control shRNA in a psiHIV-U6 vector was also obtained from Geneco-
poeia (Control, catalog #CSCHCTR001-HIVU6). SH-SY5Y cells were
treated with lentiviral particles for 7 d to obtain efficient knockdown.
After day 3 of lentiviral infection, cells were maintained in DMEM
supplemented with 10% FBS and selected with puromycin (2 pg/ml;
Invitrogen).

Stable isotope labeling by amino acids in cell culture labeling and mass
spectrometry analysis. SH-SY5Y cells were labeled using the protocol de-
scribed (Gokhale et al., 2012; Ryder et al., 2013). Briefly, cells were grown
in DMEM with either “light” unlabeled arginine and lysine amino acids
(ROKO) or “heavy” 13C- and 15N-labeled arginine, and 13C- and 15N-
labeled lysine amino acids (R10K8) supplemented with 10% FBS and 100
pg/ml penicillin and streptomycin, and in some cases 2 ug/ml neomycin.
Cells were grown for a minimum of seven passages ensuring maximum
incorporation (97.5%) of the amino acids in the cellular proteins. All
reagents for stable isotope labeling by amino acids in cell culture (SILAC)
labeling were obtained from Dundee Cell Products. Cell lysates were
prepared, as described below, and analyzed by mass spectrometry, as
described previously (Gokhale et al., 2012; Ryder et al., 2013) using the
services of MS Bioworks. Briefly, SILAC-labeled samples were separated
on a 4-12% Bis-Tris Novex mini-gel (Invitrogen) using the MOPS [3-
(N-morpholino)propanesulfonic acid] buffer system. The gel was
stained with Coomassie blue, and the lane was excised into 20 equal
segments using a grid. Gel pieces were processed using a robot (ProGest,
DigiLab) with the following protocol. First, slices were washed with 25
mM ammonium bicarbonate followed by acetonitrile; then they were
reduced with 10 mm dithiothreitol at 60°C followed by alkylation with 50
mM iodoacetamide at room temperature. Samples were digested with
trypsin at 37°C for 4 h and quenched with formic acid, and the superna-
tant was analyzed directly without further processing. Each gel digest was
analyzed by nano liquid chromatography-tandem mass spectrometry
(MS/MS) with a Waters nanoAcquity HPLC system interfaced to a
Thermo Fisher Scientific LTQ Orbitrap Velos. Peptides were loaded on a
trapping column and eluted over a 75 pum analytical column at 350
nl/min; both columns were packed with Jupiter Proteo resin (Phenome-
nex). The mass spectrometer was operated in data-dependent mode,
with MS performed in the Orbitrap at 60,000 FWHM resolution and
MS/MS performed in the LTQ. The 15 most abundant ions were selected
for MS/MS. Data were processed through MaxQuant software version
1.0.13.13, which served the data recalibration of MS, filtering of database
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search results at the 1% protein and peptide false discovery rate, and
calculation of SILAC heavy/light ratios. Data were searched using a local
copy of Mascot.

Immunoprecipitation. To confirm interactions between BLOC-1 sub-
units and NSF, we performed cross-linking in intact cells with dithiobis
succinimidylpropionate (DSP) followed by immunoprecipitation as pre-
viously described (Zlatic et al., 2010; Gokhale et al., 2012; Ryder et al.,
2013). Briefly, untransfected SH-SY5Y cells or SH-SY5Y cells stably
transfected with FLAG-dysbindin were placed on ice, rinsed twice with
PBS, and incubated either with 10 mm DSP (Pierce), or as a vehicle
control DMSO, diluted in PBS for 2 h on ice. Tris, pH 7.4, was added to
the cells for 15 min to quench the DSP reaction. The cells were then
rinsed twice with PBS and lysed in buffer A (150 mm NaCl, 10 mm
HEPES, 1 mm EGTA, and 0.1 mm MgCI2, pH 7.4) with 0.5% Triton
X-100 and Complete Anti-Protease (catalog #11245200, Roche), fol-
lowed by incubation for 30 min on ice. Cells were scraped from the dish,
and cell homogenates were centrifuged at 16,100 X g for 10 min. The
clarified supernatant was recovered, and at least 500 ug of protein extract
was applied to 30 ul of DYNAL Magnetic Beads (catalog #110.31, Life
Technologies) coated with antibody, and incubated for 2 h at 4°C. In
some cases, immunoprecipitation was performed in the presence of the
antigenic 3x-FLAG peptide (340 um; F4799, Sigma) or antigenic GST-
NSF (66 nm; H00004905-P01, Novus Biologicals) as a control. The beads
were then washed four to six times with buffer A with 0.1% Triton X-100.
Proteins were eluted from the beads with Laemmli sample buffer.
Samples were resolved by SDS-PAGE, and contents were analyzed by
immunoblot.

Sucrose density sedimentation. Control or BLOC-1 knock-down SH-
SY5Y cells were treated with DSP, as described previously (Zlatic et al.,
2010; Gokhale et al., 2012). Cells were rinsed twice with PBS and lysed in
buffer A with 0.5% Triton X-100 supplemented with Complete Anti-
Protease, followed by incubation for 30 min on ice. Cells were scraped
from the dish, and cell homogenates were centrifuged at 16,100 X gfor 10
min. The clarified supernatant was recovered and measured for total
protein content. Samples were then analyzed by immunoblot, or cell
lysates were resolved by sucrose sedimentation in 5-30% sucrose gradi-
ents, as previously described (Gokhale et al., 2012).

Immunofluorescence. Glass coverslips were coated with poly-p-lysine.
The next day, coverslips were washed two times with cell culture water
and air dried. The coverslips were then coated with laminin diluted in
HBSS and placed in a 37°C tissue culture incubator for 2 h. The coverslips
were washed twice with cell culture water and air dried, and the cells (EZ
spheres resuspended in conditioned media) were seeded onto the cover-
slips. The EZ spheres were grown on the coverslips for 2 weeks. At the end
of the 2 weeks, the cells are fixed with 4% paraformaldehyde in PBS for 15
min at room temperature. After fixation, all coverslips were washed two
times in PBS, and then blocked and permeabilized for 30 min at room
temperature in a solution of 5% BSA and 0.1% Triton X-100 in PBS.
Primary antibodies (Table 1) were diluted in blocking solution and ap-
plied overnight at 4°C. After primary antibody incubation, coverslips
were washed three times in a solution containing 0.1% Triton X-100 in
PBS. Coverslips were incubated for 1 h at room temperature with
fluorophore-conjugated secondary antibodies (Alexa Fluor mouse 488,
Alexa Fluor rabbit 568) diluted in blocking solution. Coverslips were
washed two times in blocking solution, one time in PBS, and one time in
ultrapure water; and then mounted on glass slides in ProLong antifade
mounting medium. Coverslips were imaged by confocal microscopy, as
described previously (Zlatic et al., 2013).

S2 Drosophila and HeLa cell secretion assay. We used S2 or HeLa cells
stably expressing a secretory reporter carrying a mutant FKBP protein
(F36M) EGFP. Secretion was induced by AP21998 to resolve EGFP protein
aggregates in a synchronous pulse of reporter secretion. Secretion was esti-
mated from the amount of EGFP fluorescence remaining in cells after siRNA
downregulation using flow cytometry or in 96-well fluorescence plate reader
(Synergy HT, Biotek). S2 cells were incubated with 20 g of double-stranded
RNA (http://genomernai.dkfz.de/GenomeRNAi/) targeting syntaxin 5 as a
positive control to inhibit constitutive secretion, misfire as a negative
control (reagents DRSC10543 and AMB34062), and the Drosophila
BLOC-1 subunits dysbindin (reagents DRSC10730 and DRSC35459),
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and muted (reagents DRSC36270 and DRSC36270). S2 cells were
maintained for 4 d in the presence of double-stranded RNA. Secretion
pulse lasted 80 min. Detailed procedures were already described
(Gordon et al., 2010).

Drosophila stocks, rearing, genetics, and biochemical procedures. All fly
stocks were raised throughout life at 25°C and maintained on normal
food. Appropriate second and third chromosome balancers were used
for all crosses. dysb'* and UAS-Dysb were from Graeme Davis (Uni-
versity of California, San Francisco, San Francisco, CA), and
UAS-NSF:FLAG was from Richard Ordway (Penn State University,
State College, PA). w'"'® Elav-GAL4“'**, and other fly strains such as
balancer chromosome containing stocks are part of the Sanyal laboratory
collection. dNSF1 RNAi lines were obtained from the Vienna Drosophila
Resource Center (catalog #31470 and #31666). Antibodies to dNSF1 and
a-SNAP were a gift from Leo Pallanck (University of Washington, Seat-
tle, WA). Drosophila neuromuscular junctions were stained as described
previously (Franciscovich et al., 2008).

Intracellular recordings from muscle 6 of abdominal segment 2 or 3 of
female, wandering third instar larvae were performed in modified HL3
saline solution containing the following (in mm): NaCl 70, KCI 5, CaCl,
0.3, MgCl, 10, NaHCO; 10, sucrose 115, Trehalose 5, BES [2 2-[bis(2-
hydroxyethyl)amino]ethanesulfonic acid, pH 7.25. For all physiological
recordings, severed motor neurons were taken up into a stimulating
electrode and stimulated at 1 Hz for 50 s. Only recordings where the
resting membrane potential was between —60 and —90 mV, and the
muscle input resistance was >5 M) were used. For acute pharmaco-
logical homeostatic challenge, semi-intact preparations were main-
tained with the CNS, fat bodies, and gut intact, and perfused with
Phillanthatoxin-433 (PhTx; Sigma-Aldrich), as previously described
(Dickman and Davis, 2009; Dickman et al., 2012). PhTx was prepared as
a stock solution (4 mm in DMSO) and diluted in modified HL3 to 4 M.
After 10 min in PhTx, preparations were rinsed in modified HL3, and
dissections were completed. Only recordings where the observed minia-
ture excitatory junction potentials of untreated synapses (mEJP) ampli-
tude following PhTx incubation was =60% of baseline were used,
indicating that the PhTx had gained access to the muscle. Microelec-
trodes were prepared on a magnetic glass microelectrode horizontal
puller (PN-30, Narishige) to 30—70 M() resistance and filled with 3 m
KCL. Signals were amplified using an Axoclamp 9004, digitized using a
Digidata 1440A, and recorded in Clampfit version 10.1. Signals were
analyzed in MiniAnalysis (Synaptosoft Inc.) and Microsoft Excel. Quan-
tal content was calculated by dividing the average EJP by the average
mEJP. Correction for nonlinear summation was applied. Quantal con-
tent for each recording was calculated and then averaged across all ani-
mals for the given genotype.

Fly heads were prepared as described previously (van de Goor et al.,
1995) Briefly, ~100 flies per genotype were flash frozen in liquid nitrogen
and decapitated. Frozen heads were collected by passing the tissue
through a microsieve in liquid nitrogen. The tissue was then ground into
a powder in a mortar and pestle. The powder was combined with 100 ul
of lysis buffer [Buffer A (150 mm NaCl, 10 mm HEPES, 1 mm EGTA, and
0.1 mm MgCL,, pH 7.4) plus 0.5% Triton X-100 with Complete Anti-
Protease (catalog #11245200, Roche), also was frozen and ground into a
powder, and stored at —80°C. After thawing, samples were sonicated,
tissue debris was removed by centrifugation, and protein concentrations
were determined by Bradford assay (Bio-Rad). Proteins were resolved by
SDS-PAGE on a 4-20% gel (Invitrogen), and immunoblot analysis was
performed as previously described (Gokhale et al., 2012). dNSF1 and
dSNAP antibodies were gifts from Dr. Leo Pallanck (Babcock et al.,
2004).

Drosophila immunolabeling. Immunohistochemical staining of third
instar larval neuromuscular junctions was as described previously (Free-
man et al., 2011). Briefly, wandering third instar larvae of specific geno-
types reared at 25°C were dissected in Ca®"-free HL3 saline solution
(Stewart et al., 1994) and fixed in 4% paraformaldehyde for 1 h at room
temperature. Preparations were then incubated in primary antibody
overnight in PBS containing 0.1% Triton X-100 (PBST). Following
washes in PBST, preparations were incubated in Alexa Fluor dye-
conjugated secondary antibodies for 2 h at room temperature, washed,



7646 - J. Neurosci., May 13,2015 - 35(19):7643-7653

A
102 100
® 10-2 S‘NAP25
5 NSFe . ;TIZBQM ST
8 310 STXQSTXBPS
= © NSF
%101 STXBP1 R S 400
STXBP5 @ [ o
Q vAwP?
n STXH 10°
./ SN.AP25 VAI\./IP7
\ 1070
100 'V'UTE'? . MU.TED' .
0.1 1 10 0.1 1 10
SILAC Fold of Change
C shRNA D shRNA
Control: + - Control: + -
Bloc1s6: - + Bloc1s5: - +
IB: Tomosyn e IB: Tomosyn ...
IB: Munc18 e . IB: Munci18 ___
IB: StX7 e ames |B: Bloc1s6
Pallidin ==~
IB: VAMP7 = IB: Actin® e e
1 2
IB: Bloc1s6 s
Pallidin
IB: ACtin s s
1 2

Figure 1.

Gokhale, Mullin et al.  NSF Interacts with BLOC-1

BLOC1S1

BLOC1S3
sTX12 SNA" ‘

STXBP!

5
sTX1 A. SNAP25
npsot @ ‘

BLOC1S2

EHD3 STX4 NSF .
SNAP23
VAMP? . ‘ N cNO
ST R . DTNBPA
SNAPZS k! ‘ .
STXBP1 ‘
‘ NAPG
STXS s7y17 VAR
e
NS
« Bloc1s6 Bloc1s5
shRNA shRNA
©100 ° o
b 'Y - —
! o
8 RS .
L]
—
= 50 | o c
O .
= O -
(0] °
o 9
C ON N~ © c © ©
> X0 » > 0
» O ~ n O <
O cNW=T0 O € o
g3 <29 E3 20
6= >m 6=m
[ [

Fusion apparatus content is altered in BLOC-1 deficiency. 4, Plots depict fusion machinery components whose content was modified by targeting the BLOC-1 subunits Bloc1s6 pallidin

orBloc1s5 muted. The x-axis depicts the SILACfold change; y-axes indicate spectral counts and the p value of the change. B, Interactome map of proteins modified after BLOC-1 downregulation. Pink
and green lines depict predicted protein—protein and genetic interactions, respectively, as per GeneMANIA. BLOC-1 complex subunits are in blue, NSFis in red, BLOC-1-sensitive proteins are in black,
and proteins are not identified here but are predicted to be part of the interactome, which are shown in gray. €, D, Downregulation of BLOC-1 subunits Bloc1s6 pallidin or Bloc1s5 muted decreases
the content of other fusion machinery components, as follows: tomosyn, munc18, syntaxin 7 (Stx7), and VAMP7 in neuroblastoma cells. £, Quantification of data in Cand D. All p values <<0.05, unless
otherwise indicated, are not significant (NS), Wilcoxon—Mann—Whitney rank sum test. Dots represent independent biological replicates.

and mounted in SlowFade mounting medium (Life Technologies). Pri-
mary antibodies to GFP (mouse) and dNSF (rabbit) were used ata 1:1000
dilution (Yu et al., 2011), and FITC-conjugated anti-HRP was used at
1:500 as a control counterstain for quantitative immunofluorescence.
Samples were imaged using the Zeiss 710 laser-scanning confocal micro-
scope at the Biogen imaging core. Identical imaging conditions were used
for all preparations, taking care to not saturate images in any sample.
UAS-NSF::FLAG animals were used to calibrate maximum intensity set-
tings. Large Ib boutons at the muscle 6/7 synapse in abdominal segment
A2 were imaged in all cases, and the terminal 3 boutons in a branch were
used for analysis. For these three boutons, average intensity was mea-
sured using Image] for both HRP and NSF, and the NSF staining inten-
sity was normalized to the HRP staining intensity in the same sample to
account for sample-to-sample variability. Twelve animals were imaged
for each genotype. The anti-dNSF antibody was a gift from Leo Pallanck.

Statistical analysis. Experimental conditions were compared using
Synergy Kaleida-Graph, version 4.1.3, or StatPlus Mac Built5.6.0pre/
Universal (AnalystSoft).

Results

Reduction in the abundance of dysbindin/BLOC-1 complex
could result in altered protein content in other polypeptides, pro-
viding insight into dysbindin/BLOC-1 complex functions rele-
vant to neurodevelopmental disorders. We tested this hypothesis
by screening for proteome-wide modifications associated with
dysbindin/BLOC-1 partial loss of function in mammalian neuronal

cells. We reasoned that studying the whole cellular proteome would
identify proteins involved in the genesis or compensation of
dysbindin/BLOC-1 partial loss-of-function phenotypes, regardless
of whether proteins downstream of dysbindin/BLOC-1 either di-
rectly or indirectly interact with this complex.

We profiled the whole cellular proteome from control and
shRNA BLOC-1 downregulated neuroblastoma cells using
shRNAs directed against Blocls5 muted or Blocls6 pallidin.
These hairpins partially reduce the levels of dysbindin by 50—
75%, emulating the reduction of dysbindin observed in schizo-
phrenia brains (Talbot et al., 2004, 2011; Ryder et al., 2013).
Quantitative mass spectrometry with SILAC identified 224 pro-
teins sensitive to BLOC-1 downregulation defined as proteins
upregulated or downregulated at least twofold after BLOC-1
knockdown (our unpublished observations; Ong et al., 2002;
Gokhale et al., 2012; Ryder et al., 2013). These proteins included
subunits of the BLOC-1 complex (Blocls5 muted and Blocls4
cappuccino; Fig. 1A). In this study, we confirmed and focused
on vesicle fusion machinery components whose content in-
creased or decreased by at least twofold compared with control
shRNA-treated cells. These dysbindin/BLOC-1-sensitive proteins
include the SNAREs syntaxin 7 and 17, SNAP25, VAMP7; and the
SNARE-binding proteins munc18 (STXBP1), tomosyn (STXBP5),
and NSF (Fig. 1A; Rizo and Sudhof, 2012). We and others have
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Figure 2.

NSF content is reduced in BLOC-1 deficiency. A, B, Downregulation of BLOC-1 subunits decreases NSF content in neuroblastoma cells. €, Quantification of datain Aand B. D—H, We used

two neuroectodermal-derived cells, MNT1 melanoma cells, and immortalized melanocytes from BLOC-1-null mice. Loss of BLOC-1 reduced the content of NSFin both cells. Controls were the mutant
melanocytes rescued by expression of the missing BLOC-1 gene (lane 1). G presents the quantification of D—F. H presents quantitative RT-PCR data measuring transcript levels of NSF and VAMP2
from immortalized melanocytes from BLOC-1-null mice and the above-described controls. All p values <<0.05, unless otherwise indicated, as not significant in H (NS), Wilcoxon—Mann—Whitney

rank sum test. Dots represent independent biological replicates.

documented phenotypes of SNAP25, SNAP29, and various syn-
taxins in BLOC-1/dysbindin-null animals and diverse cells; thus,
these proteins were not further studied here (Numakawa et al.,
2004; Kumamoto et al., 2006; Salazar et al., 2006a; Ghiani et al.,
2010; Newell-Litwa et al., 2010; Larimore et al., 2013; Saggu et
al,, 2013).

The BLOC-1 complex subunits along with the fusion machin-
ery form a predicted network of protein—protein/genetic interac-
tions (Fig. 1B), where NSF is a central hub of this interactome and
a catalytic activity that is required for the resolution of membrane
fusion reaction products (Rizo and Sudhof, 2012).

We first confirmed that the total cellular levels of tomosyn,
muncl8, syntaxin 7, and VAMP7 were significantly reduced in
BLOC-1 downregulated SH-SY5Y neuroblastoma cells (Fig. 1C-
E). Of these proteins, only muncl8 was sensitive to Blocls5
muted, but not to Bloc1s6 pallidin, downregulation. This obser-
vation is reminiscent of differences in phenotypes among loss-of-
function alleles affecting different BLOC-1 subunits in mice and
Drosophila (Larimore et al., 2014; Mullin et al., 2015). Similarly,
shRNAs against the BLOC-1 subunits Blocls5 muted, Blocls6
pallidin, or Bloc1s8 dysbindin all significantly reduced the total
cellular levels of Bloc1s8 dysbindin and NSF in neuroblastoma
cells (Fig. 2A-C). Exogenous expression of VAMP7 did not res-
cue the NSF phenotype in neuroblastoma cells, indicating that
the NSF phenotype is parallel to the VAMP7 content reduction
(data not shown). The effects of BLOC-1 downregulation were
also observed in two neuroectodermal cell lines of the melano-
cytic lineage. We chose this lineage because it is prominently
affected in mouse and human genetic defects in Bloc1s8 dysbin-
din and Blocl1s6 pallidin (Fig. 2D-G; Raposo and Marks, 2007).
Reduced NSF content in mouse melanocytes carrying BLOC-1-
null alleles Blocls5™™ or Blocls6?”?* is increased by re-
expression of the missing BLOC-1 subunit (Fig. 2 D, E,G; Setty et
al., 2008). Similarly, MNT-1 human melanoma cells treated with

shRNAs against either Bloc1s5 muted or Bloc1s6 pallidin down-
regulated NSF expression (Fig. 2F,G). Reduced expression of
NSF polypeptides in mouse melanocytes was not due to de-
creased NSF transcripts (Fig. 2H ). NSF sensitivity to dysbindin/
BLOC-1 downregulation with an shRNA against Bloc1s6 pallidin
was also observed in iPSC-derived human neurons (Fig. 3A-C).
NSF content was proportionately reduced with the expression of
dysbindin/BLOC-1 in human neurons (Fig. 3D). These results
establish NSF as a BLOC-1 sensitive factor.

We next asked whether changes in NSF and SNARE levels
detected in BLOC-1-deficient cells reflected molecular associa-
tions of BLOC-1 with components of the fusion apparatus. To
determine whether BLOC-1, SNAREs, and NSF might exist in a
complex together, we analyzed their sedimentation in sucrose
gradients. We used the cross-linker DSP to stabilize transient
interactions. We previously used this procedure to detect inter-
actions between the SNAREs VAMP7 and SNAP29 with BLOC-1
complexes (Gokhale et al., 2012; Ryder et al., 2013). The BLOC-1
complex, detected with Bloc1s8 dysbindin antibodies, mostly co-
sediments with NSF, with minimal overlap with the SNARE
VAMP?7 even though cell lysates were treated with the cross-
linker DSP (Fig. 4A,B). Endogenous NSF associates with
BLOC-1 complexes containing FLAG-tagged dysbindin (Fig.
4C). FLAG antibodies precipitated the BLOC-1 subunit Bloc1s6
pallidin together with NSF (Fig. 4C, lane 2). This coprecipitation
was prevented by the addition of an excess of FLAG peptide (Fig.
4C, lane 3). Conversely, antibodies against NSF precipitated en-
dogenous NSF together with Blocls6 pallidin (Fig. 4D, lane 2).
Controls with an excess of recombinant full-length GST::NSF
prevented endogenous NSF-BLOC-1 coprecipitation (Fig. 4D,
lane 3).

To address whether this association between NSF and
BLOC-1 detected by coimmunoprecipitation (Fig. 4C,D) occurs
in the context of SNAREs, we profiled by quantitative mass spec-
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trometry proteins present in anti-NSF an-
tibody immunoprecipitates such as those
depicted in Figure 4, D (lane 2) and E
(heat maps). In the absence of competing
GST:NSF, an experimental condition
where we can detect BLOC-1 subunits as-
sociated with NSF (Fig. 4D, lane 2), we
found molecules known to interact with
BLOC-1, such as subunits of the adaptor
complex AP-3 and components of the
HOPS complex (homotypic fusion and
vacuole protein sorting complex) (Salazar
etal., 2009; Fig. 4E). a-SNAP and low lev-
els of two SNARES, YKT6 and syntaxin 5,
were detected coprecipitating with endog-
enous NSF. In contrast, the addition of
GST=NSF increased the content of re-
combinant NSF bound to anti-NSF beads
17-fold, which in turn recruited three
SNAP isoforms from cell lysates (24-fold
increase), and increased the number of
SNARE:s identified in content and num-
ber (11 SNAREs detected; Fig. 4E).
Among these SNAREs were SNAP29 and
syntaxin 7, both of which are BLOC-1-
sensitive SNAREs. The increase in these
fusion machinery components bound by
GST:NSF occurred even though there was
no detectable increase in BLOC-1 binding
determined by immunoblot (Fig. 4D, E).
These results and the cosedimentation
profile of SNAREs, NSF, and BLOC-1 in-
dicate that BLOC-1 indirectly forms com-
plexes preferentially with either NSF or
SNAREs, but not both at the same time.

The functional consequences of re-
duced NSF cellular levels in BLOC-1 defi-
ciencies were assessed measuring the
constitutive secretion of a pulse of GFP released from the endo-
plasmic reticulum by the addition of the AP21998 compound to
either Drosophila S2 or HeLa cells (Gordon et al., 2010; Fig.
5A,B). We used as positive controls RNAi-mediated depletion of
Drosophila syntaxin 5 (Fig. 5A) or brefeldin A treatment of mam-
malian cells (Fig. 4B), both of which stopped GFP secretion (Gor-
don et al., 2010). These controls impaired secretion, yet
downregulation of either Drosophila or human BLOC-1 subunits
dysbindin, Bloc1s5 muted, or Bloc1s6 pallidin did not affect con-
stitutive GFP secretion along the exocytic route in either cell type
(Fig. 5A, B). Thus, we conclude that BLOC-1 deficiency does not
globally impair NSF-dependent processes.

The Drosophila neuromuscular junction undergoes acute ho-
meostatic synaptic plasticity in response to the blockage of post-
synaptic glutamatergic receptors with PhTx-433. This plasticity
mechanism localizes to the presynaptic terminal and requires
the BLOC-1 subunits dysbindin, SNAPIN and SNAP25 and
RIM, which are components of the vesicle fusion machinery
and (Dickman and Davis, 2009; Dickman et al., 2012; Miiller
etal., 2012). Thus, we asked whether NSF function is required
for this dysbindin-dependent plasticity at the Drosophila neu-
romuscular junction. We focused on this presynaptic homeo-
static process since a requirement for dysbindin/BLOC-1 in
postsynaptic homeostatic mechanisms has been excluded in
Drosophila (Dickman and Davis, 2009; Dickman et al., 2012).

Figure 3.
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microscopy with antibodies against the neuronal markers MAP2 and 3-lll-tubulin. €, Cellular content of NSF was determined by
immunoblot. Loading controls were performed in parallel samples resolved by SDS-PAGE and stained with Coomassie blue. D,
Graph depicts NSF quantifications in four independent experiments.

Moreover, there have not been studies yet in mammals ad-
dressing whether dysbindin/BLOC-1 participates in presynap-
tic or postsynaptic homeostatic mechanisms, even though
these subunits localize to the mammalian presynapse and
postsynapse (Talbot et al., 2006; Larimore et al., 2013; Jia et al.,
2014).

First, we colocalized endogenous dNSF1 and Venus-
Dysbindin in the presynaptic compartment of the Drosophila
neuromuscular junction (Fig. 6A). dNSF1 confocal microscopy
detected either a twofold increase or reduction of dNSF1 expres-
sion after neuronal expression of a ANSF1-FLAG transgene (Fig.
6B,C) or ANSF1 RNAI, respectively (Fig. 6C). However, we did
not observe a significant reduction of dNSF1 by quantitative
confocal microscopy in the neuromuscular junction of animals
carrying mutations in dysbindin (dysb'; Fig. 6C), although re-
combinant dNSF1-FLAG content was reduced by the dysb1 allele
in neurons (Fig. 6B, compare lanes 2 and 3).

Homozygotic mutations in BLOC-1 subunits dysbindin and
snapin each block philanthotoxin-induced homeostatic increase
in quantal content, while heterozygotic mutations have no effect
(Dickman and Davis, 2009; Dickman et al., 2012). However, dou-
ble heterozygotic mutations in dysbindin and snapin also reduce
homeostatic compensation compared with wild type (Dickman
and Davis, 2009; Dickman et al., 2012). This suggested to us that
this paradigm would be ideal for testing the genetic interactions
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BLOC-1 interacts with NSF or SNAREs. 4, Sucrose sedimentation of detergent-soluble cross-linked complexes from neuroblastoma cells. BLOC-1 was detected with antibodies against

dysbindin. SNARE sedimentation was determined with VAMP7 antibodies. B, Relative distribution plot of data in A. ¢, DSP-treated neuroblastoma cells expressing FLAG-dysbindin immunoprecipi-
tate NSF with FLAG antibodies (lane 2). D, NSF antibodies immunoprecipitate Bloc1s6 pallidin (lane 2). Short and long exposures are presented. Lane 3 in Cand D shows controls with an excess of
antigen FLAG peptide or GST-NSF. E, Mass spectrometry analysis of the replicated experiment, as in D. Heat map depicts spectral abundance, which is defined as the ratio of spectral counts to the
molecular weight of a polypeptide. Columns 1and 2 depict the spectral abundance where rows 1and 2 have amean of 0 and a variance of 1; thus, the red in column 2 represents an increase in spectral

abundance. Columns 3 and 4 depict absolute spectral abundance values per row.
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biological replicates).

between dysbindin/BLOC-1 and NSF predicted from our coim-
munoprecipitation experiments. We genetically modified the ex-
pression of NSF and dysbindin in the presynaptic compartment
of the fly neuromuscular junction. These genetic manipulations
affected neither the amplitude of evoked EJPs (Fig. 6D-I) nor the
amplitude (Fig. 6D-I) and frequency of mE]JPs (Fig. 6K ). How-
ever, our results show that wild-type synapses increase their
quantal content by 182 = 14.8% following PhTx treatment (Fig.
6M, row 1). In contrast, and consistent with previous reports

A pulse of a constitutive secretion cargo is not impaired by BLOC-1 deficiency. A, S2 Drosophila cells expressing a
signal-peptide EGFP-FKBP chimera retained in the endoplasmic reticulum were treated with mock transfection, one or two siRNA
duplexes against syntaxin 5 (positive control), misfire (negative control), and the Drosophila BLOC-1 subunits dysbindin and muted.
EGFP secretion was induced by disaggregation of chimeras by incubation with AP21998, and the amount of EGFP retained in cells
after 80 min of secretion was measured by flow cytometry. B, HeLa cells were treated with shRNA control or against Bloc1s6 pallidin
for7 d. EGFP secretion was induced by incubation with AP21998. We measured EGFP retained in cells after 80 min of secretion using
afluorescence plate reader in 96-well plates. Cells were incubated with brefeldin A 10 r.g/ml as a control to inhibit secretion. Data
are depicted as box plots and compared by one-way ANOVA followed by Bonferroni’s all-pair comparisons (n = 16 from two

rows 1, 2, and 6). Strikingly, presynaptic ex-
pression of dANSF1-FLAG rescued the dysb'
synaptic homeostasis defect (c155-GAL4;
UAS-dNSF1-FLAG, dysb') to the same ex-
tent as presynaptic dysbindin rescue (Fig. 6,
compare J and F, G and H; compare row 7
with M, rows 8 and 9). Presynaptic addition
of either dysbindin or dNSF1 restored the
homeostatic quantal content increase to
wild-typelevels, 182.9 = 17.5% and 171.3 *
10.4%, respectively (Fig. 6M, rows 8 and 9).
These results demonstrate that dysbindin and NSF genetically inter-
act in a molecular pathway necessary for synaptic homeostasis at the

presynapse.

Discussion

Genetic polymorphisms associated with schizophrenia mostly re-
side in noncoding regions modifying gene and/or protein levels
rather protein sequence (Nicolae et al., 2010; Maurano et al.,
2012; Richards et al., 2012; Schizophrenia Working Group of the
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NSF presynaptically rescues dyshindin synaptic homeostasis defect. 4, Confocal microscopy of Drosophila neuromuscular junction stained with antibodies against dNSF1 and GFP to

detect functional recombinant neuronal expressed Venus-Dysbindin. Scale bar, 5 pum. B, immunoblot demonstrating the expression of the UAS-dNSF1 transgene in animals with or without the
dysb™ mutation. dSNAP was used as a loading control. €, Confocal microscopy of boutons stained with HRP as a control and dNSF1. Fluorescence was normalized per bouton to HRP and to wild-type
genotype. D-J, Representative EJP and mEJP traces without PhTx-433 (black) and following PhTx incubation (blue). Representative mEJP traces are shown only for wild-type w1118 animals. J,
Overlay of EJP traces after PhTx presented in F-H. K, No differences across genotypes in mEJP frequency in the absence of PhTx. L, No differences across genotypes in mEJP amplitude after PhTx. M,
Quantal content across different genotypes. Dots represent individual animals; n > 6 for all genotypes and all conditions. The p values were obtained with one-way ANOVA followed by Bonferroni’s

all-pair comparisons.

Psychiatric Genomics, 2014). The question of how widespread
the effects are of a single mutation or polymorphism across the
proteome has been poorly explored. Here we addressed this ques-
tion by modeling a partial reduction in the cellular content of
dysbindin/BLOC-1 using shRNAs against BLOC-1 complex sub-
units. We identified 224 proteins (our unpublished observations)
whose content is affected by a partial loss of function of
dysbindin/BLOC-1 and focused on an interactome centered
around a schizophrenia susceptibility gene, dysbindin, and NSF
(Fig. 1B), a component of the membrane fusion machinery that
localizes to the synapse and was previously implicated in
schizophrenia mechanisms (Mirnics et al., 2000). We con-
firmed functional outcomes of the dysbindin/BLOC-1 and

NSF association using a Drosophila synaptic adaptive re-
sponse. Our results demonstrate that dysbindin/BLOC-1 ex-
pression defects induce multiple downstream quantitative
protein expression traits associated with the vesicle fusion ap-
paratus, which influence synaptic plasticity in an invertebrate
model synapse.

Our proteomic search prominently highlights the following
components of the vesicle fusion apparatus: muncl8, tomosyn,
NSF; and the SNARESs syntaxin 7, syntaxin 17, SNAP23, SNAP25,
SNAP 29, and VAMP7. Importantly, most of the aforementioned
vesicle fusion machinery components have been implicated by
genomic and postmortem studies in several neurodevelopmental
disorders, including schizophrenia (Thompson et al., 1998; Mir-
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nics et al., 2000; Saito et al., 2001; Halim et al., 2003; Behan et al.,
2009; Gil-Pisa et al., 2012), intellectual disability (Hamdan et al.,
2009), and autism spectrum disorder (Matsunami et al., 2013;
Cukier etal., 2014). Our strategy is validated by the identification
of proteins previously known to be downregulated in null alleles
of BLOC-1 subunits and/or known to interact with BLOC-1.
These proteins include subunits of the BLOC-1 complex (Bloc1s5
muted and Bloc1s4 cappuccino) and the SNARE VAMP7 (Li et
al., 2003; Starcevic and Dell’Angelica, 2004; Salazar et al., 2006;
Newell-Litwa et al., 2010; Mullin et al., 2011; Ghiani and
Dell’Angelica, 2011; Yang et al., 2012). We further authenticated
these fusion machinery components as part of a dysbindin/
BLOC-1 network by (1) coimmunoprecipitation of a fusion ma-
chinery component with dysbindin/BLOC-1 subunits and/or (2)
downregulation of a fusion machinery component after genetic
or shRNA-mediated reduction of dysbindin/BLOC-1 subunits.
We centered on NSF since it is a hub of protein—protein interac-
tions with components of the fusion machinery, and is a catalytic
activity thatis required for the resolution of fusion reaction prod-
ucts and other protein—protein complexes (Rizo and Sudhof,
2012). We found that NSF associates with dysbindin and BLOC-1
subunits in neuroblastoma cells in culture. However, our efforts
to document the association of NSF and dysbindin-BLOC-1 by
immunoprecipitation with NSF antibodies were unsuccessful in
brain. This outcome occurred regardless of whether NSF was
immunoprecipitated from brain homogenates or cross-linked
synaptosomal lysates from adult mouse brain. We attribute this
negative result to the high abundance of NSF in brain compared
with dysbindin/BLOC-1. Reverse immunoprecipitations with
dysbindin/BLOC-1 antibodies were not possible, as none of the
antibodies available to us are suitable for immunoprecipitation.
Since most of the associations between NSF and dysbindin/
BLOC-1 are detected in the presence of the cross-linker DSP in
cell lines, it is likely that the biochemical interactions between
NSF and dysbindin/BLOC-1 are indirect. However, NSF cellular
levels are decreased following shRNA-mediated or genomic reduc-
tion of BLOC-1 complex members, arguing in favor of a functional
outcome of this association. We could not detect a NSF downregu-
lation phenotype in hippocampal extracts of BlocIs8**** mice at
days 7 or 50 of postnatal development (data not shown). This sug-
gests that NSF phenotypes may be anatomically restricted either to a
region of the hippocampus or to an earlier and transient develop-
mental stage. However, this reduced NSF trait is robustly and
reversibly induced by genetic disruption of the dysbindin/
BLOC-1 complex or by downregulation of dysbindin/BLOC-1
subunits in neuroblastoma and human embryonic kidney cells, neu-
roectodermal cells, and iPSC-derived human neurons.

Our studies indicate that the functional outcome of NSF re-
duction in BLOC-1 loss of function become evident only when
the synapse is challenged. Constitutive secretion in Drosophila or
mammalian non-neuronal cells is unaffected, as are spontaneous
and evoked neurotransmission at the Drosophila neuromuscular
junction. However, a requirement for NSF in BLOC-1 loss-of-
function phenotypes can be localized to a presynaptic homeo-
static mechanism, which is engaged when postsynaptic receptors
are blocked with philanthotoxin. After a brief incubation with
philanthotoxin, the resultant reduction in postsynaptic signal
transduction rapidly induces a compensatory increase in quantal
content, a response known as homeostatic synaptic plasticity
(Davis, 2013; Frank, 2014). This adaptive compensatory mecha-
nism is precluded by dysbindin mutations, and can be rescued by
presynaptic expression of dysbindin (Dickman and Davis, 2009).
However, we were able to rescue this phenotype in the dysbindin
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mutants to the exact same extent through presynaptic expression
NSEF. The observation that RNAi downregulation or overexpres-
sion of NSF in the neuromuscular junction does not interfere
with homeostatic synaptic plasticity argues that the NSF is not an
obligate component downstream of dysbindin/BLOC-1 in a lin-
ear pathway, but rather is an adaptive response to network per-
turbation induced by a dysbindin mutant allele. This hypothesis
predicts that transheterozygotic reduction of NSF and Dysbindin
should impair plasticity, a result that is at odds with our finding
that plasticity is normal in dysb1~'";UAS-NSF RNAi flies (Fig.
6M, row 6). We believe that this may be a consequence of a
modest reduction of dysbindin polypeptide in dysb1 " animals,
which we predict is ~25% (Shao et al., 2011).

How does the BLOC-1-NSF interaction affect synaptic mech-
anisms? We believe a model integrating our findings has to con-
sider three key elements. First, BLOC-1 subunits reside at
endosomes as well as on synaptic vesicles in presynaptic terminals
in neurons (Di Pietro et al., 2006; Setty et al., 2007; Ryder and
Faundez, 2009; Mullin et al., 2011). Second, BLOC-1 binds mo-
nomeric SNAREs rather than tetrahelical SNARE bundles in vitro
(Ghiani et al., 2010). Finally, NSF and SNAREs bind to
dysbindin/BLOC-1, yet they do not seem to form a ternary com-
plex. Thus, we propose that BLOC-1 bound to a single SNARE
(perhaps for SNARE sorting into vesicles) is resolved by NSF,
making SNAREs permissive for vesicle fusion. Therefore, when
dysbindin and NSF levels are reduced by hypomorphic muta-
tions in the fly or as a quantitative expression trait in humans,
SNARE-dependent mechanisms might be impaired due to defec-
tive SNARE sorting, a consequence of the reduced levels of
BLOC-1 complex and, additionally, by decreased NSF content
that would impair the resolution of remaining SNARE-BLOC-1
complexes. Thus, noncoding polymorphisms in several genes
and their quantitative expression traits may converge to impair
synaptic mechanisms. We propose that unbiased identification of
quantitative traits across the proteome of neurodevelopmental
deficiency models is a simple approach to unravel mechanisms of
complex neurodevelopmental disorders.
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