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SUMMARY

Fungi contribute extensively to a wide range of ecosystem pro-
cesses, including decomposition of organic carbon, deposition
of recalcitrant carbon, and transformations of nitrogen and
phosphorus. In this review, we discuss the current knowledge
about physiological and morphological traits of fungi that di-
rectly influence these processes, and we describe the functional
genes that encode these traits. In addition, we synthesize infor-
mation from 157 whole fungal genomes in order to determine
relationships among selected functional genes within fungal
taxa. Ecosystem-related traits varied most at relatively coarse
taxonomic levels. For example, we found that the maximum
amount of variance for traits associated with carbon mineral-
ization, nitrogen and phosphorus cycling, and stress tolerance
could be explained at the levels of order to phylum. Moreover,
suites of traits tended to co-occur within taxa. Specifically, the
genetic capacities for traits that improve stress tolerance—�-
glucan synthesis, trehalose production, and cold-induced RNA
helicases—were positively related to one another, and they
were more evident in yeasts. Traits that regulate the decompo-
sition of complex organic matter—lignin peroxidases, cello-
biohydrolases, and crystalline cellulases—were also positively

related, but they were more strongly associated with free-living
filamentous fungi. Altogether, these relationships provide evi-
dence for two functional groups: stress tolerators, which may
contribute to soil carbon accumulation via the production of
recalcitrant compounds; and decomposers, which may reduce
soil carbon stocks. It is possible that ecosystem functions,
such as soil carbon storage, may be mediated by shifts in the
fungal community between stress tolerators and decomposers
in response to environmental changes, such as drought and
warming.
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INTRODUCTION

Fungi can influence nearly every aspect of ecosystem function,
especially processes that occur in soils (1). On the one hand,

they can decompose organic material to obtain energy and nutri-
ents (2). In doing so, they release CO2 as a by-product. On the
other hand, they can also produce their own organic compounds
that form residues in soils that persist for years to decades (or
longer); in this way, fungi contribute to soil carbon (C) storage
(3–6). They also mediate the phosphorus (P) and nitrogen (N)
cycles by releasing extracellular enzymes that convert organic P or
N compounds to smaller products or mineral forms (7, 8). In fact,
this enzymatic step often limits the rate at which N cycles between
plants, microbes, and the soil (9). A subset of fungi (mycorrhizal
fungi) form symbiotic associations with most plants, which ulti-
mately increases rates of net primary productivity (10). Finally,
fungi dominate many soil communities, representing an average
of 55 to 89% of microbial biomass, depending on the biome (11,
12). Thus, their activities can have large-scale consequences for
global biogeochemical cycles.

This diverse collection of ecosystem functions is paralleled by
the taxonomic, physiological, and morphological diversity of
fungi themselves. It is estimated that there are millions of fungal
species worldwide (13–17). Yet, to date, we have described only a
small portion of them (18, 19). Even fewer have been character-
ized ecologically, especially in natural settings. Nevertheless, it ap-
pears that there are at least a few major lifestyles among fungi that
are reflected by suites of functional traits, which have important
implications for ecosystem functioning. For instance, “classic” de-
composer fungi are often described as free-living filamentous
fungi that can degrade complex compounds, such as lignin, cellu-
lose, and chitin (Fig. 1) (1). In contrast, yeasts (which are fre-
quently single-celled) are considered to be specialized for simpler
compounds, such as sugars (20). Last, mycorrhizal fungi form
symbiotic relationships with plant roots and are generally thought
to obtain most of their C from their host plants rather than from
soil organic matter (21). Thus, these three groups of fungi are
likely to elicit different consequences for C dynamics, based on
their morphology and physiology. In other words, an ecosystem in
which yeasts dominate might not necessarily be functionally
equivalent to one in which free-living filamentous fungi are prev-
alent, even if fungal biomasses are equal.

If these morphologically classified groups of fungi vary in their
responses to environmental conditions as well, they may generate
feedbacks on ecosystem function (Fig. 2). For instance, yeasts are
relatively rare in soils, except for more extreme or stressful envi-
ronments, such as very cold, dry, saline, or acidic habitats (20,
22–24). Thus, if climate change exposes an ecosystem to stronger
droughts (25), then perhaps the fungal community would shift
toward yeasts, with a concomitant decline in the decomposition of
recalcitrant soil C. However, this type of feedback depends on how
strongly these and other traits are correlated with one another (26,
27). Are drought tolerance and specialization on simpler C com-
pounds actually linked within individual fungal taxa, especially
yeasts? Moreover, which specific physiological, morphological, or
ecological traits confer drought tolerance, and will those traits
likewise influence ecosystem functions in their own right?

To better predict ecosystem functions, researchers recently be-
gan developing models structured around microbial traits (e.g.,
see reference 28), and models with distinct functional groups of

FIG 1 Examples of free-living filamentous fungi, yeasts, and mycorrhizal
fungi. Depicted are rhizomorphs of a free-living filamentous fungus (top)
(bar, 0.5 mm), cells of the model yeast Saccharomyces cerevisiae (middle) (bar,
5 �m), and a fine root tip colonized by an ectomycorrhizal fungus (bottom)
(bar, 4 mm). (Middle photo from Wikipedia [user name Masur; http://en
.wikipedia.org/wiki/Yeast#/media/File:S_cerevisiae_under_DIC_microscopy
.jpg].)
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microbes (e.g., see references 29–31). These models are capable of
addressing ecosystem feedbacks from shifts in microbial commu-
nities and, in doing so, improve their accuracy (32–34). However,
in order to parameterize them, we need better information re-
garding relationships among relevant traits within fungal taxa (for
the trait-based models) and how these traits vary among broad
groups of fungi (for the functional group models). In this review,
we address this issue by asking three questions regarding ecosys-
tem-relevant fungal traits. First, how are these traits distributed
among taxa and broad morphological groups (i.e., free-living fil-
amentous fungi, yeasts, and mycorrhizal fungi)? Second, what
suites of traits tend to co-occur within fungi? And third, what are
the implications for trait-mediated feedbacks on ecosystem func-
tions?

LINKAGES AMONG TRAITS

We address linkages among traits because they can influence how
ecosystems respond to environmental conditions. The conceptual
framework of Lavorel and Garnier (35) distinguishes between “re-
sponse” and “effect” traits of organisms and suggests that commu-
nity composition can influence ecosystem responses to the envi-
ronment if response and effect traits are linked within organisms.
Response traits determine how organisms respond to environ-
mental conditions, and effect traits determine how those organ-
isms contribute to ecosystem dynamics. For example, if a certain
response trait confers drought tolerance, then taxa with that trait
will be selected for, and ultimately will comprise a larger portion of
the fungal community, under dry conditions. If those taxa also
carry a trait that alters soil C stocks— one that is not common
among drought-sensitive taxa—then shifts in communities under
drought conditions might lead to changes in soil C.

We might expect certain response and effect traits to covary
within organisms owing to evolutionary, physiological, or ther-
modynamic trade-offs. In an evolutionary trade-off, for example,
allocation of finite resources within organisms might require in-
vestment in one function, but at the expense of another function
(36). For instance, in algae, adaptation to low nutrient availability
is accompanied by a loss of defenses against predation (37). In
terms of thermodynamic trade-offs, extracellular enzymes with
the structural stability to withstand high temperatures may not
perform as well under lower temperatures (38). Likewise, bacteria
that are adapted to warmer temperatures can experience a loss of
fitness at lower temperatures (39). Essentially, trade-offs can cre-
ate linkages among traits and can form fundamental mechanisms
through which changes in fungal communities can alter ecosys-
tem function. They represent a theoretically predictable way that
traits may be linked.

Alternatively, suites of traits can be selected simultaneously by
a particular environmental condition if each is advantageous (40,
41). For instance, freshwater bacteria from resource-poor habitats
tend to display relatively efficient resource use as well as predator
avoidance, possibly because both traits are adaptive under these
circumstances (40). Selection for “lifestyles” or “syndromes” such
as this would elicit correlations between relevant traits.

Recently, Koide et al. (42) discussed the framework of Lavorel
and Garnier (35) as it applies to mycorrhizal fungi. They empha-
sized that some fungal traits perform dual roles as response and
effect traits; in these cases, mediation of ecosystem responses to
the environment by fungal communities should be relatively
straightforward to predict. For instance, mycorrhizal fungi with
melanized cell walls tend to persist better under drought stress
(43). In turn, melanized cell walls can be relatively resistant to
decomposition (44–46). Thus, melanin may act as a mechanism
for augmenting soil C storage (an effect) under drought condi-
tions because fungi that produce it may become more common
under dry conditions (a response). Because traits with dual roles
may elicit clear ecosystem feedbacks, they are of particular interest
in this review.

FUNGAL GROUPS

Suites of traits can frequently co-occur within groups of fungi that
are broadly categorized as mycorrhizal fungi, free-living filamen-
tous fungi, and yeasts. We can define these groups based on their
gross morphology (Fig. 1). For example, mycorrhizal fungi can be
characterized by the ability to form specialized structures (e.g.,
arbuscules, hyphal coils, and Hartig nets) that colonize plant roots
(21). Free-living filamentous fungi are known for their rigid tubu-
lar hyphae (47) and lack of a symbiotic life stage (i.e., they are not
mycorrhizal, pathogenic, endophytic, or lichen-forming). Yeasts
reproduce asexually by budding or fission and display single-cell
growth (48).

These morphologies coincide with some important ecological
characteristics of each group. For the most part, mycorrhizal fungi
form mutualistic relationships with plants; they receive C exu-
dates directly from their plant hosts in exchange for N, P, and
other soil nutrients. Free-living filamentous fungi can forage and
translocate nutrients across microhabitats within the soil (49), so
they have an advantage in acquiring resources that are spatially
heterogeneous (50). Thus, they can “integrate” activities over
larger environmental gradients than those of single-celled organ-
isms, such as yeasts and bacteria. Yeasts vary widely in their eco-

FIG 2 Hypothesized feedbacks on soil C storage associated with free-living
filamentous fungi or yeasts. Yeasts tend to prevail under extreme conditions
rather than moderate conditions, ostensibly because they possess one or more
traits that confer stress tolerance (“response traits”). If these traits are linked to
a relatively weak ability to decompose types of recalcitrant C (“effect traits”),
then yeasts may contribute to a decline in CO2 released into the atmosphere by
the fungal community in regions exposed to extreme climate conditions. The
specific response and effect traits that may be involved and the extent to which
they are linked are addressed in this review.
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logical functions, but they are particularly known for their toler-
ance of broad pH ranges, high osmotic pressure, high salinity (20),
low water availability (22), and cold temperatures (23, 24). Many
yeasts are capable of fermentation (20), and as a result, they are
often found in habitats where sugar availability is high, such as
nectar from flowers and sap from tree wounds (22). The single-
cell morphology typical of yeasts has evolved multiple times, one
of which is associated with a major evolutionary event within the
phylum Ascomycota: the divergence of the subphylum Saccharo-
mycotina (predominantly yeasts) and the subphylum Pezizomy-
cotina (predominantly filamentous fungi) (51, 52). Altogether,
these three morphological groups have such disparate ecological
and nutritional requirements that few studies have directly com-
pared ecosystem-related traits of all three under common condi-
tions.

None of these morphological groups are monophyletic. The
mycorrhizal habit is found in many of the major fungal lineages,
including the Mucoromycotina, Glomeromycota, Ascomycota,
and Basidiomycota (51). Free-living filamentous fungi occur
throughout most of the fungal tree of life, although the most an-
cient fungal phyla are more typically endoparasites (53). Yeasts are
found in subphyla of the Ascomycota (Taphrinomycotina and
Saccharomycotina) and Basidiomycota (Pucciniomycotina, Aga-
ricomycotina, and Ustilaginomycotina) (48). Because these
groups are somewhat interspersed phylogenetically, it is possible
to use phylogenetically independent contrasts (54, 55) to identify
ecosystem-relevant traits that are consistently linked to gross mor-
phology regardless of phylogenetic identity. For example, we can
make a series of comparisons between phylogenetically related
taxa that differ in gross morphology to identify other traits that are
consistently associated with changes in gross morphology regard-
less of evolutionary history.

FUNGAL TRAITS RELATED TO ECOSYSTEM PROCESSES

In this review, we discuss fungal traits that are related to select,
fundamental terrestrial ecosystem processes: the breakdown of
organic C, transformations of N and P, and contributions to soil C
storage. Fungi perform these processes as a by-product of their
efforts to obtain C (i.e., decomposition) and acquire N and P (i.e.,
mineralization, depolymerization, and immobilization of nutri-
ents). In addition, their capacity to withstand suboptimal condi-
tions (i.e., stress tolerance) can mediate the extent to which these
processes increase or decrease in response to changes in the envi-
ronment. Moreover, certain stress tolerance traits, such as mela-
nin or �1,3-glucan production, might directly contribute to soil C
storage. For each process, we describe the costs and benefits to the
fungus, the larger-scale consequences for ecosystem dynamics and
global biogeochemistry, and known differences among fungal
taxa in the ability to perform the process.

Decomposition

Breakdown of cellulose. Cellulose is a major component of plant
cell walls and, accordingly, the most abundant biopolymer on
land (56). It is essentially a chain of glucose units that can be used
by fungi for energy. A portion of this consumed glucose is used for
anabolic processes (growth), while the remainder is used for cat-
abolic processes (respiration), which release CO2 into the envi-
ronment. First, though, fungi use extracellular cellulases to de-
grade cellulose into smaller compounds, such as cellobiose or
glucose, which they can then take up across cell walls and metab-

olize (57, 58). Cellulases vary in their kinetics and mechanisms of
catalysis. For example, endoglucanases are one type of cellulase
that break cellulose into oligosaccharides that vary in length. An-
other type, cellobiohydrolases, release cellobiose or glucose from
cellulose. Moreover, �-glucosidases hydrolyze cellobiose to glu-
cose. In addition, the more recently described lytic polysaccharide
monooxygenase (i.e., the auxiliary redox enzyme AA9) (59) can
degrade relatively recalcitrant forms of cellulose, such as cellulose
that is highly crystalline (60) or cross-linked with lignin or other
cell wall constituents (61).

Many— but not all—fungi possess some capacity to break
down cellulose (e.g., see references 62 and 63). Cellulose degraders
are well represented among the Ascomycota and Basidiomycota
(58), and the capacity to break down cellulose is especially strong
in the class Agaricomycetes (64). In contrast, cellulose degraders
are less common in the other phyla, with the exceptions of certain
species of the genus Mucor in the Mucoromycotina (57) and of gut
symbionts in the Neocallimastigomycota (65).

Breakdown of lignin. Fungi use extracellular peroxidases to ox-
idize lignin, ostensibly to obtain access to cellulose, N, and other
nutrients that are physically or chemically protected by lignin in
plant litter (63, 64, 66, 67). Because lignin is the second most
common biopolymer on land (68), lignin degradation can have
global consequences for C cycling (69). In addition, because lignin
is often cross-linked with other compounds in plant litter, frag-
mentation of lignin by fungi can facilitate the decomposition of
these other compounds and broadly accelerate litter turnover in
ecosystems (70). Although some bacteria can break down lignin,
this role is often thought to be dominated by fungi (68). In fungi,
lignin degradation is conducted by high-oxidation-potential class
II peroxidases, which are categorized as lignin peroxidases (LiP),
manganese peroxidases (MnP), or versatile peroxidases (VPLs)
(66, 71, 72). Only a fraction of fungal taxa possess genes encoding
these enzymes, and they are largely restricted to the class Agarico-
mycetes within the Basidiomycota (63, 64).

Transformation of Phosphorus and Nitrogen

Phosphorus mineralization by extracellular phosphatases. Or-
ganic P represents one of the more common sources of P in soil
(73, 74). In many soil organic P compounds, P is bound to C via an
ester linkage (COOOP) (75). Fungi can use extracellular phos-
phatases to cleave the ester bond, releasing phosphate for uptake
(7). In this way, fungi contribute to mineralization of P in soils.
The production of extracellular phosphatases has been docu-
mented broadly among arbuscular and ectomycorrhizal fungi
(e.g., see references 76 to 79) and in model taxa, such as the free-
living filamentous fungus Neurospora crassa (80, 81) and the yeast
Pichia pastoris (82).

Depolymerization of nitrogen. (i) Extracellular chitinase.
Chitin is produced within the cell walls of most fungi (83) and is
also a primary component of arthropod exoskeletons. It consists
of chains of N-acetylglucosamine and is one of the more abundant
N-containing biopolymers in the biosphere (84). Fungi can use
extracellular chitinases to break chitin into smaller polymers and,
ultimately, glucosamine (84). They can then acquire and metab-
olize the glucosamine to meet demands for N or C (85). The de-
polymerization of relatively large N-containing polymers into oli-
gomers or monomers, which are more readily taken up by
microbes or plants, has been proposed as a rate-limiting step in the
N cycle (9). Thus, the ability of fungal taxa to produce extracellu-
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lar chitinases is a trait with particularly important consequences
for ecosystem function. Extracellular chitinase production and
the ability to grow on chitin as the sole N or C source in pure
culture have been verified for a number of ectomycorrhizal, eri-
coid, and saprotrophic fungi (e.g., see references 86 to 90).

(ii) Extracellular protease and peptidase. About 20 to 40% of
soil N is bound in various proteinaceous compounds (91–93),
which fungi can depolymerize via extracellular proteases and pep-
tidases. First, proteases, such as serine protease or metallopro-
tease, split long protein chains into shorter chains (94). Next,
amino acids are released from these shorter chains by peptidases,
such as glycine aminopeptidase and leucine aminopeptidase (7).
Collectively, these enzymes produce small peptides and single
amino acids, each of which can be taken up by fungi that possess
the appropriate membrane transport proteins (95–98). Mycorrhi-
zal fungi have received particular attention for their capacity to
break down proteins as a source of N. In a recent review, Talbot
and Treseder (99) reported that of 53 ericoid and ectomycorrhizal
species examined, 46 possessed this trait.

Immobilization of nutrients by N and P transporters. In order
to directly acquire N, P, and other nutrients from the environ-
ment, fungi can construct membrane transport proteins (i.e.,
transporters or permeases) to take up relatively small organic
compounds, such as amino acids (96, 97, 100–103), or mineral
nutrients, such as phosphate (104), ammonium (105), or nitrate
(106). Fungi can also conduct endocytosis (107–112), which is
another strategy for internalization of nutrients.

Even though fungi must take up N from the soil to maintain
growth, they differ in their preferences for various forms of N (99,
113, 114). For instance, Lilleskov et al. (113) reported that fungal
species dominating ecosystems with low N availability tended to
prefer protein-derived N, and those inhabiting N-saturated sys-
tems targeted mineral N instead. Plett and Martin (115) have
noted that amino acids, ammonium, and other N transporters are
broadly upregulated in ectomycorrhizal tissues. Finally, nitrate
transporter genes are known to be distributed widely throughout
the fungal phylogeny, including in numerous Ascomycota and
Basidiomycota genera (106).

As fungi internalize N and P, this activity results in microbial
immobilization (2). In other words, the acquired nutrients are no
longer readily available for other organisms, such as plants. This
has important ecosystem-level consequences. For example, mi-
crobes immobilize 20 to 35% of organic P in soils (116–118). In
contrast, microbially immobilized N represents about 2 to 5% of
total soil N globally (119). Nitrogen will remain immobilized
within fungi until their tissues senesce and are decomposed, until
they are consumed by other organisms, or until they secrete the N
as ammonium. Cycles of wetting and drying can alter each of these
processes in the soil (120). The secretion of ammonium contrib-
utes to N mineralization, and it is expected to occur if fungi use
acquired organic N as a source of energy or C instead of N (121,
122). In general, N mineralization is thought to be more prevalent
in systems where soil N availability is high enough that fungal
growth is not N limited (9).

Denitrification. In systems where O2 is absent or minimal, cer-
tain fungi can denitrify nitrate or nitrite, resulting in the produc-
tion of N2O (123). Denitrification is important because N2O is a
particularly effective greenhouse gas and because denitrification is
a pathway of N loss from ecosystems (2). Before the 1990s, fungi
were not widely recognized as major contributors to denitrifica-

tion in natural ecosystems (123–125). Nonetheless, terrestrial field
studies have suggested that fungal denitrification can indeed rep-
resent a significant ecosystem flux (126–129). The distribution of
this trait among fungal taxa has not been tested extensively, al-
though Shoun et al. (123) screened 72 fungal genomes and found
that 26% of them possessed homologues for at least one fungal
denitrification gene.

Stress Tolerance

A number of traits can allow fungi to maintain activity under
unusually dry, hot, or cold conditions; these include �1,3-glucan,
trehalose, RNA helicase, melanin, and budding growth. We dis-
cuss each here because they can serve as “response” traits (35) that
may direct shifts in fungal community composition in response to
global change. In addition, �1,3-glucan and melanin might also
influence ecosystem function directly (i.e., serve as effect traits),
because they lead to the deposition of fungus-derived C in soil.
This process is an important consideration, as microbial residues
may contribute as much as 50% of organic C in soils (130).

�1,3-Glucan. Fungal cell walls provide protection from desic-
cation, freeze-thaw damage, and other environmental stresses
(131, 132). Most fungal taxa construct cell walls with chitin (53);
some can incorporate �1,3-glucan as well (133, 134). �1,3-Glucan
is a carbohydrate that forms cross-linkages with chitin and other
components (135), improving the strength and integrity of the cell
wall (136). In fact, mutants of Saccharomyces cerevisiae that lack
the ability to synthesize �1,3-glucan are about 5-fold more sensi-
tive to drought stress than wild-type strains (137). �1,3-Glucan
can constitute as much as 55% of the dry weight of the fungal cell
wall (138). Moreover, it is highly polymerized, hydrophobic, and
acid and alkali insoluble when cross-linked with chitin (138),
which may make it relatively resistant to decomposition. Al-
though few studies to date have assessed turnover rates or standing
stocks of �1,3-glucan in soils, it is worth investigating as a poten-
tially significant component of microbial residues within ecosys-
tems (4). If it is such a component, the use of �1,3-glucan may be
a mechanism that facilitates soil C storage in response to drought
or other environmental stressors.

Trehalose. Trehalose is a compatible solute that improves stress
tolerance in fungi via several potential mechanisms (139, 140).
First, it is thought to substitute for water molecules in cell mem-
branes, protecting them from desiccation and freezing damage
(141–145). Second, trehalose may confer thermotolerance (146–
148) by stabilizing proteins during heat shock (149). Third, it may
act as a compatible osmolyte (150). Accordingly, a number of
studies have documented increases in trehalose concentrations in
fungi in response to environmental stress (139, 140, 145, 148).
Trehalose concentrations can vary among fungi (145) and have
been studied primarily in yeasts (e.g., see references 139 and 146).

Trehalose can represent a significant trade-off for fungi, be-
cause it requires C that could otherwise be allocated to growth or
metabolism (120). It is a high-energy compound (139, 140), and it
can represent as much as 20% of the fungal biomass (146). Indeed,
Schimel et al. (120) estimated that the C cost of producing stress
resistance compounds, such as trehalose, during a single drought
event can reach as much as 6% of an ecosystem’s annual net pri-
mary productivity.

RNA helicase. Under cold conditions, RNAs can form stable
tertiary structures that render them nonfunctional and prevent
translation (151). Certain cold-induced RNA helicases can un-
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wind the RNAs or bind to them, which allows translation to pro-
ceed (152, 153). Fungi that carry these RNA helicases display im-
proved cold tolerance (154–159) and can be more prevalent in
colder environments (157). RNA helicase may form part of a gen-
eralized stress response (156, 160).

Melanin. Melanin is a condensed, randomly arrayed, aromatic
pigment that is located in the cell wall or extracellular matrix of
fungi (161–163). It broadly protects fungi from an array of en-
vironmental stresses, including extreme heat and cold,
drought, UV radiation, high salinity, heavy metals, and anthro-
pogenic pollutants (164–170). As a result, melanized fungi are
often disproportionately represented in extreme environ-
ments, such as the Antarctic (171, 172). Many melanized fungi
belong to the Dothideomycetes or Chaetothyriales within the
Ascomycota (164, 173). They also include members of the yeast
(e.g., see reference 174), mycorrhizal (e.g., see references 42
and 175), and free-living filamentous groups (e.g., see refer-
ences 162 and 176).

Melanin resists decomposition, likely owing to its complex,
aromatic structure (44). As a result, tissues of melanized fungi are
particularly recalcitrant (46, 177, 178). Accordingly, it has been
suggested that melanin contributes to C storage in soils (5), even-
tually accumulating as humic material (163, 177, 179). In consid-
eration of these properties, Koide et al. (42) proposed melanin
production as a fungal trait that may form a direct link between
environmental stress and ecosystem function.

Budding growth. Budding growth forms, which are typical of
yeasts, tend to allow better stress tolerance (180), perhaps because
each cell is encased in a protective cell wall. In contrast, in many
filamentous fungi, cells can be connected, allowing water and sol-
utes to flow between them (47, 181). This connectivity can leave
the cells more vulnerable to water loss (182). However, a trade-off
of the budding growth form is that single-celled organisms must
obtain resources from the microenvironment that immediately
surrounds them. Their activities may slow or halt when one or
more nutrients become limiting within this microsite (9).

In contrast, filamentous fungi do not have this restriction,
since they can forage over relatively long distances— up to several
meters for some species (50, 183, 184). As a result, decomposition
is often faster when filamentous fungi translocate nutrients to
meet their stoichiometric needs—such as transferring N from soil
to maintain fungal growth on plant litter with high C:N ratios
(185–190). In this sense, the filamentous growth form can indi-
rectly augment C mineralization in ecosystems, via a mechanism
that is not likely to occur with budding growth forms.

FUNCTIONAL GENES

Functional genes can indicate the genetic potential of fungal taxa
to carry particular traits, and they are especially informative if
their function has been verified empirically in mutant or tran-
scription assays for at least one fungus (191–193). Of course, pos-
session of a gene does not mean that the gene is expressed or
translated (194–196). Nevertheless, gene identification is a useful
tool for supplementing empirical measurements of traits of fungal
taxa (197), which can be limited owing to logistical challenges,
such as difficulties in generating laboratory cultures or measuring
functions in situ. Moreover, we can use functional genes to docu-
ment linkages among traits within whole genomes. Where possi-
ble, we have identified experimentally verified functional genes
encoding ecosystem-related traits in fungi and have listed them in
Table 1.

For some enzymes, additional care must be taken to ensure
that the functional genes encode enzymes that are active in the
appropriate sites. For example, fungi use chitinases internally to
reorganize their own cell walls (198), and we would not consider
this process to contribute to N depolymerization in soils. Never-
theless, the GH18-5 gene has been verified as an extracellular chiti-
nase gene, based on its sequence (198), mutation assays (199), the
activity of the purified protein (200), and secretion of the protein
into growth medium (201). Moreover, in Trichoderma, its tran-
scription is induced by C and N starvation (198, 202). Altogether,
the data indicate that it is a good candidate as a gene encoding a

TABLE 1 Examples of ecosystem-relevant functional genes that have been verified experimentally in fungi

Fungal trait Ecosystem function Gene(s) Domaina Reference(s)

Decomposition traits
�-Glucosidase Breakdown of cellulose GH1-1 IPR001360 272–274
Cellobiohydrolase Breakdown of cellulose CBH1/cel7A and GH7 family IPR001722 275–278
Lytic polysaccharide monooxygenase Breakdown of cellulose AA9 family IPR005103 60, 61, 279–281
Lignin peroxidase Breakdown of lignin LIP, MNP, VPL IPR001621 66, 71, 72

Traits involved in transformation of P and N
Extracellular phosphatase P mineralization PHO3 in Neurospora IPR000560 80, 81
Extracellular chitinase N depolymerization GH18-5 IPR001223 198–202
Phosphate transporter P immobilization PHO4 in Neurospora IPR001204 104, 282–284
Ammonium transporter N immobilization AMT2 IPR001905 105
Nitrate transporter N immobilization NRT2 IPR004737 106, 285, 286
Amino acid permease N immobilization AAP1 and GAP1 IPR004762 96, 97, 100–103
Denitrification Denitrification P450nor, NOR1, and nirK NA 123, 125, 287–289

Stress tolerance traits
�1,3-Glucan synthase C deposition FKS1 GO:0000148 131, 132, 290, 291
Trehalase C deposition NTH1 GO:0005991 146
RNA helicase MRH4 IPR014014 156, 157, 292, 293
Melanin C deposition PKS1 in Colletotrichum GO:0006582 294–297

a From the InterPro (www.ebi.ac.uk/interpro/) or Gene Ontology (geneontology.org/) database.
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standard extracellular chitinase used by fungi to acquire C or N, so
we have listed it as such in Table 1. Likewise, only membrane
transport proteins that internalize compounds from the environ-
ment are relevant for immobilization of nutrients, even though
fungi use these proteins for intracellular transport as well. Thus,
only functional genes for transporters that operate in the outer
membrane are included in Table 1.

ANALYSIS OF ECOSYSTEM-RELATED TRAITS WITHIN WHOLE
GENOMES

We have an unprecedented opportunity to examine how genes
related to ecosystem function are linked within fungal taxa. The
1,000 Fungal Genomes Project (1000.fungalgenomes.org), in col-
laboration with the Fungal Genomics Program of the U.S. Depart-
ment of Energy Joint Genome Institute, is a community effort to
obtain, annotate, and share whole genomes of taxa representing
the breadth of the fungal kingdom (203, 204). By June 2014, 157
whole annotated, published genomes were publicly available at
the JGI MycoCosm web portal (205). They represented seven fun-
gal phyla, with three subphyla each in the Basidiomycota and As-
comycota. For each of the whole genomes, we used the Myco-
Cosm search tool to count numbers of genes identified as
encoding a cellobiohydrolase (“cellulase GH7”), lytic polysaccha-
ride monooxygenase (“cellulase AA9”), lignin peroxidase, amino
acid permease, ammonium transporter, extracellular phospha-
tase, phosphate transporter, trehalase, RNA helicase, or �1,3-glu-
can synthase. For search terms, we used relevant domains from
the InterPro (www.ebi.ac.uk/interpro) and Gene Ontogeny
(geneontology.org) databases (Table 1). We omitted from our
analyses any genes from Table 1 that were not assigned to InterPro
or Gene Ontogeny domains (fungal denitrification genes) or that
represented only a minority of the genes included in their respec-
tive domains (�-glucosidase gene GH1-1, extracellular chitinase
gene GH18-5, nitrate transporter gene NRT2, and melanin gene
PKS1).

Genome sizes varied widely among taxa, ranging from 1,831
genes in Encephalitozoon romaleae to 30,282 genes in Rhizophagus
sp. To avoid spurious positive relationships owing to genome size,
we standardized for genome size by calculating the frequency of
genes in each genome (per 10,000 genes) that were represented by
each function. Finally, to support our phylogenetic analyses, we
downloaded the 2014 MycoCosm All-Fungi Species Tree, which
was created based on clusters of conserved genes. We pruned the
tree to remove any taxa not represented in our analyses.

Phylogenetic Distribution of Ecosystem-Related Traits

First, we analyzed the genomes to determine how the ecosystem-
related traits were distributed among fungal taxa. Specifically, we
wondered what level of taxonomic resolution would capture the
greatest variation in a particular trait (akin to “ecological coher-
ence” [206]). For instance, Floudas et al. (63) demonstrated that
lignin peroxidase genes became common in the ancestors of the
class Agaricomycetes but were relatively uncommon in other
clades. Thus, if we wish to characterize the lignin-degrading ca-
pacity of a given fungal community, we should use a taxonomic
resolution at the class level or finer. At the other end of the spec-
trum, Lennon et al. (207) found that preferences for soil moisture
(i.e., optimum water potential) by fungi and bacteria varied most
at the phylum level, which indicates that coarser-level distinctions
among taxa are sufficient for this trait.

To address this question, we used Phylocom (54) to calculate
the contribution index (CI) for each node within the fungal phy-
logeny. The CI is similar to a partitioning of the sum of squares in
an analysis of variance, and it indicates the degree to which diver-
gence at a particular node accounts for the total variation in a
given trait across the entire phylogeny (208). Essentially, for a
given trait, larger CIs indicate greater variation in that trait among
the descendant taxa. We next determined the average CI for nodes
at which phyla diverged, then subphyla, classes, and so on.

For nearly every trait that we examined, the average CIs tended
to peak where subphyla or phyla diverged (Fig. 3). In other words,
these ecosystem-related traits diverged relatively early in fungal
evolutionary history, perhaps owing to broad selective advantages
conferred by stress tolerance and nutrient acquisition. This indi-
cates that for practical purposes, we can bin fungal taxa within
subphyla and still expect to capture much of their variation in
these particular traits (e.g., see Fig. 4). For instance, if one can
identify a fungus to the subphylum level, one can make general
predictions about its genetic capacity to construct trehalose or
incorporate �1,3-glucan into its cell walls, even if the genome of
that particular species remains unknown. This approach is also
useful because the structures of functional group-based models
would be much simpler if they could be based on relatively few
subphyla rather than more diverse groups at a finer taxonomic
resolution. Altogether, it is more tractable to isolate, characterize,
or model representatives of each fungal subphylum than to do so
for each of the millions of still-undescribed fungal species.

Lignin peroxidase was somewhat of an exception—the average
CIs for this trait tended to peak at the order level (Fig. 3), especially
where the orders Hymenochaetales and Corticiales diverge within
the class Agaricomycetes. This finding is consistent with recent
analyses of genomes of wood decay fungi, which noted that the
class Agaricomycetes contains taxa that vary widely in their capac-
ity to break down lignocellulose (63, 64, 204). Relatively recent
evolutionary events may have influenced the radiation of lignin
degradation in the Agaricomycetes. As Floudas et al. (63) sug-
gested, the origin of lignin-degrading capabilities occurred during
the Carboniferous period, when lignin-derived organic C was ac-
cumulating in the biosphere. It is likely that the prevalence of this
compound selected for fungi that could degrade it to obtain
lignin-protected C.

We should note that the phylogenetic distributions of func-
tional genes involved in ecosystem function will likely change as
additional whole fungal genomes are sequenced. For example, we
may discover previously undescribed fungal clades that possess
any number of these traits, and this might change the known tax-
onomic resolution of the traits accordingly. Most of the whole
fungal genomes in our analyses were obtained from fungi that
could be isolated in the laboratory. Although it is currently chal-
lenging to isolate most fungi, novel cultivation strategies are being
developed, which may improve the taxonomic breadth of our cul-
ture collections (209, 210). In addition, genome sequencing of
single cells or hypha may improve our ability to examine their
traits in the near future (211–214).

The relatively coarse taxonomic resolution of ecosystem-re-
lated traits in fungi may not necessarily be mirrored in bacteria. In
bacteria, phylogeny is sometimes correlated with functional traits
(215) and habitat preferences (207, 216, 217), but not always
(218). For bacteria, decomposition-related traits, such as cellulase
production and organic C use, vary primarily at the species and
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subspecies levels (219, 220). Horizontal gene transfer is common
within prokaryotes (221), and it may contribute to this pattern.
Although horizontal gene transfer can also occur among fungi, it
is believed to be less frequent (222–224).

Notably, the CIs of four traits were highest at the same node in
the fungal phylogeny and occurred at the divergence between the
subphyla Pezizomycotina and Saccharomycotina (within the As-
comycota). These traits included cellulase AA9, which was less
prevalent in the Saccharomycotina than in the Pezizomycotina,
and amino acid permease, ammonium transporter, and �1,3-glu-
can synthase, which were all more frequent in the Saccharomyco-
tina (Fig. 4). Most taxa within the Saccharomycotina are yeasts,
whereas the members of the Pezizomycotina include filamentous
fungi as well as some yeasts (48). Differences between yeast and
filamentous morphologies may have contributed to the trait vari-
ation observed at this node, which would suggest a linkage be-
tween gross morphology and functional traits.

Suites of Traits Associated with Broad Morphological
Groups

To follow up on the possible influence of gross morphology, we
tested for differences in ecosystem-related traits among yeasts,
free-living filamentous fungi, and mycorrhizal fungi. The distri-
butions of traits among these groups could be influenced simul-
taneously by their phylogenetic relatedness and by physiological/
morphological trade-offs. For example, yeasts occur throughout
the Dikarya but are most clustered within the Saccharomycotina
(48). This means that if two yeast taxa possess similar comple-
ments of traits, it may simply be because they are likely to be
closely related to one another, or it may be that selection for a
single-cell morphology simultaneously selects for (or against) cer-

tain other traits (55). Thus, for each trait, we examined the varia-
tion among the three morphological groups, with and without the
influence of phylogenetic relationships. First, we conducted a se-
ries of Kruskal-Wallis tests to check for significant differences in
each trait among yeasts, free-living filamentous fungi, and mycor-
rhizal fungi; these differences may be influenced by phylogenetic
relatedness. Second, we used Phylocom (54) to perform a series of
phylogenetically independent contrasts for yeast versus nonyeast
taxa, free-living filamentous fungi versus non-free-living filamen-
tous fungi, and mycorrhizal fungi versus nonmycorrhizal fungi.
At the time of writing, only three genomes of mycorrhizal fungi
had been published, which limited our ability to analyze this func-
tional group. Nonetheless, we present the mycorrhizal data to in-
dicate preliminary trends.

We found that the three morphological groups exhibited dis-
tinct suites of traits independently of their phylogenetic related-
ness (Fig. 5). Free-living filamentous fungi tended to be more
genetically capable of breaking down lignin (independent contrast
P � 0.001), cellobiose (GH7) (P � 0.005), and crystalline cellulose
(AA9) (P � 0.019), and they possessed fewer trehalase genes (P �
0.018). They were not particularly distinct in other functional
traits related to stress tolerance. On the other hand, yeasts were
notable in their genetic capacity for traits that confer stress toler-
ance, such as trehalase (independent contrast P � 0.006), RNA
helicase (P � 0.024), and �1,3-glucan synthase (P � 0.018). They
also possessed higher gene frequencies for amino acid permeases
(P � 0.045), ammonium transporters (P � 0.027), and extracel-
lular phosphatases (P � 0.012) than did nonyeasts. However, they
did not possess strong lignin- or cellulase-degrading capacities.

In essence, yeasts appeared to disproportionately possess traits

FIG 3 Variation in traits by taxonomic rank. The contribution index represents the proportion of trait variance across the entire phylogenetic tree that is
attributable to the variance at a particular node. We categorized each node within the phylogenetic tree by the taxonomic rank of the clades that diverged from
that node. For example, a node assigned to the “phylum” level represents a divergence between two phyla. Bars represent means � 1 standard error (SE) for nodes
within each taxonomic rank. Each trait was assigned based on the frequency of relevant functional genes within each whole genome. Genomic data are from the
1,000 Fungal Genomes Project, obtained via the JGI MycoCosm Web portal (205).
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associated with stress resistance and nutrient acquisition, but not
necessarily decomposition; with free-living filamentous fungi, the
reverse was true. These distinctions may represent life history
strategies akin to the “stress tolerator” (for yeast) and “competi-
tor” (for free-living filamentous fungi) strategies in the conceptual
framework originally proposed by Grime (225) and later refined
for microbes (26, 120, 226). In Grime’s framework, competitors
are characterized as species that can outcompete other species by
more effectively exploiting available resources or by directly inter-
fering with competitors. Recently, Crowther and colleagues (227)
specifically addressed how this framework applies to fungi, espe-
cially with respect to drought tolerance versus combative ability.
In fact, they reanalyzed data from a previously published study of
fungal competition (228), and they found that strong competitors
tended to display less tolerance for low water availability than did
weaker competitors. In the case of fungi, the ability to deploy
extracellular enzymes to acquire organic carbon that is unavail-
able to others—such as lignin-protected resources—may also
confer competitive success (229). Filamentous growth can like-
wise be advantageous among fungi competing for wood coloniza-
tion (50, 230–232).

Linkages among Ecosystem-Related Traits

Next, we addressed the question of which suites of traits tend to
co-occur within fungi. We tested for positive or negative relation-
ships between each pairwise combination of traits, and we were
especially interested in relationship traits that met two criteria.
First, they had to be significantly related independently of phylo-
genetic relationships (i.e., phylogenetically independent contrast
[54]). Second, they also had to be significantly correlated in a
standard correlation (i.e., Spearman ranked correlation on gene
frequencies [233]). In this way, we could identify links between
traits that are likely to be mechanism driven (indicated by a sig-
nificant phylogenetically independent contrast) and, at the same

time, broadly evident across known fungal taxa (indicated by a
significant Spearman ranked correlation).

We found that several functional genes, especially genes that
controlled similar processes, were positively related within fungal
taxa (Fig. 6). For example, the traits related to stress tolerance were
each positively related to one another. Others have noted that
fungi exhibit a generalized stress response in which exposure to an
environmental stressor initiates multiple physiological and bio-
chemical changes that are relatively consistent regardless of the
type of stress (e.g., heat, cold, or osmotic stress) (234). It is possible
that environmental stress can simultaneously select for traits such
as trehalase, RNA helicase, and �1,3-glucan synthase, because
they confer stress tolerance via complementary mechanisms. To-
gether, these suites of traits may form the “syndrome” or “life-
style” of a stress tolerator (40, 41).

Traits related to decomposition—the genetic capacity to pro-
duce lignin peroxidase, cellulase AA9, and cellulase GH7—were
likewise significantly positively related to one another. There may
be selective advantages in the ability to target multiple types of
organic compounds. For instance, a fungus that can use cellulose
might possess a competitive advantage over other cellulose users if
it can break down lignin as well (235). For example, it can release
cellulose from its physical and chemical protections by lignin (70,
236) and then immediately break down and acquire the cellulose
before “cheater” fungi can exploit it (237). In fact, fungi that can
target lignin as well as cellulose often outcompete fungi that target
cellulose alone (238, 239).

N- and P-acquisition traits were inconsistently linked with one
another and with decomposition traits. If anything, nutrient ac-
quisition was associated more strongly with stress tolerance traits,
but not exclusively. For instance, both types of cellulases were
positively associated with phosphate uptake. It is possible that
stoichiometric constraints require acquisition of N and P to sup-

FIG 4 Distribution of ecosystem-related traits across fungal phyla (or subphyla, for Dikarya). Frequencies of functional genes were calculated for each whole
genome by using MycoCosm to search for relevant InterPro and Gene Ontology domains (Table 1). Bars are means � 1 SE for each phylum/subphylum.
Phylogeny is from the 2014 MycoCosm All-Fungi Species Tree.
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port a broad range of fungal activities and that multiple nutrient
sources and uptake mechanisms can be used to meet that need.
For example, N can be acquired in inorganic or organic forms, and
the relative abundances of these forms may determine which form
is targeted in a given ecosystem, owing to physiological trade-offs
(240).

Certain stress tolerance traits were negatively related to decom-
position traits, but these relationships were only significant as
standard correlations (see Table S2 in the supplemental material).
Specifically, gene frequencies for RNA helicase were negatively
correlated with those for cellulase GH7, cellulase AA9, and lignin
peroxidase (Spearman correlation P value of �0.001 in each case).
In addition, �1,3-glucan synthase and cellulase GH7 were nega-
tively correlated, albeit only marginally significantly (Spearman
correlation P � 0.099). However, none of these relationships were
significant when phylogenetic identities were taken into account
(independent contrast P value of �0.10 in each case). This incon-
sistency may be due to the limited phylogenetic distribution of the
decomposer traits—they are evident in only a few subphyla. Thus,
there was relatively little variation in contrasts of the decomposer
traits, especially compared to contrasts of the stress tolerance
traits. Altogether, we are cautious in how we interpret these rela-
tionships. It seems that fungal taxa that possessed these specific
stress tolerance traits were less likely to perform cellulose or lignin
breakdown, and vice versa. This information is useful for predict-
ing ecosystem-level responses to environmental conditions. Nev-
ertheless, we do not have strong evidence for an evolutionary or

FIG 5 Ecosystem-related traits of free-living filamentous fungi, yeasts, and
mycorrhizal fungi. Different letters indicate significant pairwise differences
between morphological groups (P � 0.05), based on the Kolmogorov-
Smirnov test. Asterisks indicate a significant phylogenetically independent
contrast between members and nonmembers of the morphological group.
†, for RNA helicase, gene frequency units are numbers per 1,000. Data are
means � 1 SE.

FIG 6 Relationships among traits and their associations with morphological
groups of fungi. Symbols represent traits. Symbol size is proportional to the
number of fungal phyla (or subphyla, for Dikarya) that possess the trait. Lines
connect traits that are significantly positively related based on the following
two criteria: (i) significance based on Spearman ranked correlations and (ii)
significance based on phylogenetically independent contrasts. Line thickness is
proportional to Spearman’s � or phylogenetically independent contrast r,
whichever is smaller; these values ranged between 0.2 and 0.47 (see Table S2 in
the supplemental material). Ovals encompass traits that are significantly pos-
itively associated with yeasts or free-living filamentous fungi (Fig. 5).
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physiological trade-off that drives this pattern, since it is not phy-
logenetically independent. Perhaps as more whole genomes
within the Dikarya are sequenced, we will have a higher statistical
power to detect phylogenetically independent relationships be-
tween stress tolerance and decomposer traits.

Environmentally Induced Shifts in Fungal Groups

Since fungal phyla and subphyla vary in their genetic capacity for
stress tolerance (Fig. 4), we might expect their environmental dis-
tributions to covary accordingly, with stress tolerators occupying
harsher climates. In a recent large-scale study, Treseder et al. (241)
reported that ancient fungal phyla were relatively constrained to
regions with higher precipitation levels, whereas younger phyla
occurred in dry as well as wet ecosystems. The underlying physi-
ological or morphological trait driving these differences in envi-
ronmental preferences remained unknown. However, we found
that the capacity to produce �1,3-glucan was linked to the pre-
ferred precipitation levels of fungi (Fig. 7). For example, the mem-
bers of the Cryptomycota, the oldest phylum, did not possess any
known �1,3-glucan synthase genes. Correspondingly, they pre-
ferred wetter habitats, with average precipitation rates of 4,000
mm year	1. In contrast, the younger phyla/subphyla preferred
drier sites, with the exception of the Glomeromycota, which con-
tained the lowest frequency of �1,3-glucan synthase genes in this
group. It is possible that the capacity to produce �1,3-glucan may
be an important trait that allows fungi to tolerate drought stresses
typical of ecosystems with low rainfall levels.

In a high-latitude boreal forest, Allison et al. (242) used green-
houses to simultaneously increase soil temperature and decrease
soil moisture and then assessed changes in fungal community
composition. In this ecosystem, ambient soil conditions are quite
cold and dry, so the manipulations exacerbated drought while
ameliorating temperature extremes (242). For the current study,
we reanalyzed their community data and found that phyla/sub-
phyla that responded most positively to warming and drying were
those that carried higher frequencies of trehalase genes (Fig. 8).
This response is consistent with our understanding of the role of
trehalose in resistance to desiccation in fungi (120).

Likewise, Lennon et al. (207) recently reported that fungal taxa
differed in preferred moisture availability under laboratory con-
ditions. They assayed yeasts as well as free-living filamentous
fungi. In a follow-up analysis of their published data, we observed
that the yeasts displayed significantly lower optimum water po-
tentials (i.e., greater drought tolerance) than those of free-living
filamentous fungi (Fig. 9). Other researchers have found that
yeasts are common in glacier ice in Antarctica and elsewhere,
where water availability and temperature are extremely low (243,
244). These patterns are consistent with our findings of particu-
larly high frequencies of genes related to stress tolerance in yeasts
(Fig. 5).

IMPLICATIONS

Altogether, our analyses indicate that ecosystem-related traits are
unequally distributed among fungi, in a way that creates at least
two distinct functional groups of fungi: stress tolerators (yeasts)
and competitors (free-living filamentous fungi). Accordingly, our
findings support the trade-off between these two fungal groups as
theorized by Crowther and colleagues (227). These functional
groups can form distinct feedbacks on ecosystem function owing
to their possession of different response and effect traits. Specifi-

cally, drought or other extreme conditions can select for stress-
tolerant fungi that might lead to soil C accumulation via their
production of recalcitrant C residues derived from �1,3-glucan,
for example (Fig. 2). In contrast, less stressful conditions may
favor competitive fungi that more effectively decompose recalci-
trant C compounds, such as lignin and cellulose. If these responses
occur over a large scale, then global change-induced increases in
extreme environmental conditions might lead to slower losses of
soil C via shifts in the relative abundances of these functional
groups. At the same time, in regions where environmental condi-

FIG 7 Relationship between preferred mean annual precipitation and fre-
quency of �1,3-glucan synthase genes among fungal phyla (or subphyla, for
Dikarya) (upper panel), with corresponding phylogenetically independent
contrasts (lower panel). In the upper panel, symbols show the means for the
fungal phyla/subphyla detected in a survey of soil fungi from North and South
America. In the lower panel, symbols represent the contrast at each phyloge-
netic node (see Fig. 4 for the phylogenetic tree). Logarithmic lines show the
best fit. “Preferred mean annual precipitation” is the average mean annual
precipitation of all ecosystems in which a given taxon was detected in a survey
of soils from North and South America; these data are from the work of
Treseder et al. (241). The mean frequency of �1,3-glucan synthase genes for
each phylum/subphylum was calculated as described in the legend to Fig. 4.
Fungal phyla/subphyla that possessed higher frequencies of �1,3-glucan syn-
thase genes were found in significantly drier ecosystems (phylogenetically in-
dependent contrast; r � 	0.813; P � 0.026). Ag, Agaricomycotina; Cr, Cryp-
tomycota; Gl, Glomeromycota; Mu, Mucoromycotina; Pe, Pezizomycotina;
Pu, Pucciniomycotina; Sa, Saccharomycotina; Us, Ustilaginomycotina.
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tions become less extreme, we may observe increased losses of soil
C. Essentially, this knowledge of the distribution of—and rela-
tionships between—fungal traits might improve our predictions
of ecosystem function in response to global change.

Mycorrhizal fungi are an additional morphological (and eco-
logical) group that was not positively related to any of the func-
tional gene-based traits that we examined. To date, their defining
characteristic—symbioses with plant roots—is not associated
with known universal genes (245). In addition, only three pub-
lished genomes of mycorrhizal fungi were available when we con-
ducted our analyses, which limited our ability to detect phyloge-
netically independent differences between mycorrhizal fungi and
other groups. Nevertheless, mycorrhizal fungi are common in
many fungal communities and are globally distributed (246, 247).
Their root-associated structures are also relatively easy to identify
(248). Since their ecological functions have long been studied, we
know that they typically improve plant growth (reviewed in refer-
ence 10) and net primary productivity. Although they can act as

“decomposers in disguise” (reviewed in reference 249), their ca-
pacity for breakdown of complex organic C is relatively low (115,
250). In addition, ectomycorrhizal root tips and rhizomorphs can
be long-lived and slow to decompose (45, 251–257), which can
contribute to microbial immobilization of C, N, and P. Alto-
gether, mycorrhizal fungi may augment soil C storage (30, 42, 255,
258, 259). Moreover, their abundance is influenced not only di-
rectly by climate and nutrient availability but also by the presence
and activities of host plants (260–262). For instance, mycorrhizal
fungi often decline upon exposure to anthropogenic N enrich-
ment, ostensibly because host plants reduce their investment in
mycorrhizal fungi when soil nutrients become less limiting to
plant growth (reviewed in reference 263). These fungi merit con-
sideration as a separate functional group with distinct responses to
environmental conditions, even though they do not readily fit
within the competitor/stress tolerator dichotomy.

Pathogenic fungi can also influence ecosystem processes by
altering the function or population dynamics of other organisms
(264). Nevertheless, these interactions are complex, and their eco-
system consequences depend upon traits of the target organisms
as well as the pathogens. As such, a discussion of ecosystem-re-
lated traits of pathogenic fungi is beyond the scope of this review.

INTEGRATING FUNGAL TRAITS INTO ECOSYSTEM MODELS

Conventional ecosystem models do not contain many microbial
details—most represent microbes as a single undifferentiated pool
of biomass that uniformly transforms C, N, or P in response to
environmental conditions (265). Thus, they are not necessarily
structured in a way that facilitates the incorporation of fungal
traits or functional groups (32). Instead, next-generation models
with this capability were recently constructed (28-30, 266). One of
the first was developed for ocean microbes by Follows et al. (266).
Allison (28) used a similar approach for soils in his decomposition

FIG 8 Relationship between frequency of trehalase genes and response to
warming and drying among fungal phyla (or subphyla, for Dikarya) (upper
panel), with associated phylogenetically independent contrasts (lower panel),
detected in a climate manipulation experiment in an Alaskan boreal forest
(242). In the upper panel, symbols represent means for the phyla/subphyla. In
the lower panel, symbols represent the contrast at each phylogenetic node (see
Fig. 4 for the phylogenetic tree); values were ranked to avoid an undue influ-
ence of outliers. Lines show the best fit. The mean frequency of trehalase genes
for each phylum/subphylum was calculated as described in the legend to Fig. 4.
The response to warming and drying of each fungal taxon was calculated as the
Cohen’s d effect size (298) and averaged within each phylum/subphylum. Co-
hen’s d is the difference between the treatment mean and the control mean
divided by the pooled standard deviation. Larger values of Cohen’s d indicate
stronger increases in relative abundance in response to warming and drying.
Ag, Agaricomycotina; Cr, Cryptomycota; Gl, Glomeromycota; Mu, Mucoro-
mycotina; Pe, Pezizomycotina; Pu, Pucciniomycotina; Sa, Saccharomycotina;
Ta, Taphrinomycotina. Fungal phyla/subphyla with higher frequencies of tre-
halase genes became significantly more prevalent under warmer and drier
conditions (phylogenetically independent contrast; r � 0.821; P � 0.023).

FIG 9 Difference in drought tolerance between free-living filamentous fungi
and yeasts in a laboratory study by Lennon et al. (207). A more negative opti-
mal water potential indicates greater drought tolerance. Bars show means and
1 SE. Yeasts were significantly more drought tolerant than were free-living
filamentous fungi (Kruskal-Wallis test; H � 53.5; P � 0.020). The taxa repre-
senting free-living filamentous fungi were Hypocrea (2 isolates), Mucor, Peni-
cillium (2 isolates), Rhizopus, Schizophyllum, Trametes, and Umbelopsis, and
those representing yeasts were Galactomyces, Geotrichum, and Trichosporon (5
isolates).
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model of enzymatic traits (DEMENT). In DEMENT, individual
microbial taxa are represented, and they can be assigned suites of
traits based on empirically derived relationships among traits (or
theoretical trade-offs among traits) (28). Taxa then independently
respond to environmental conditions, conduct ecosystem-rele-
vant processes, and interact with one another based on their com-
plements of traits. Relatively simple traits with known effects on
ecosystem function—such as those we reviewed here—are most
useful for these models. By integrating these activities, trait-in-
formed models may better predict not only ecosystem function
but also microbial community composition.

A number of approaches could be used to incorporate fungal
traits into trait-based models such as DEMENT. First, we could
model an ecosystem with highly diverse (i.e., hundreds to thou-
sands) fungal species and assign traits to species based on observed
relationships among traits (e.g., as in Fig. 6). In this case, the tax-
onomic identities of species need not be defined if we use trait
relationships that are phylogenetically independent. Second, we
could create a model ecosystem with known fungal subphyla (or
phyla, orders, etc., as appropriate), each with its own set of traits as
defined by representative genomes (e.g., as in Fig. 4). Third, we
could simply use the three morphological groups (free-living fil-
amentous fungi, yeasts, and mycorrhizal fungi) and their traits
(e.g., as in Fig. 5). The best approach might vary by study, depend-
ing on the research question, the availability of trait information
with which to parameterize the model, and the characterization of
fungal communities for model validation. For instance, comple-
ments of functional genes derived from environmental meta-
genomics or metatranscriptomics could be used to test the predic-
tive capability of the first modeling approach, taxonomic
identities of communities the second, and microscopic assess-
ments the third.

CONCLUSIONS

In the past few decades, we have learned a great deal about fungal
traits that drive ecosystem functions. For instance, numerous em-
pirical studies have established that fungal taxa are not function-
ally equivalent in their contributions to decomposition, nutrient
transformations, and formation of fungal residues, nor do all
fungi respond similarly to environmental stressors. Whole-ge-
nome sequences support these findings, since distributions of re-
lated functional genes vary among fungal phyla, subphyla, and so
forth. Moreover, two distinct suites of ecosystem-related traits
tend to occur within fungal taxa: the genetic capacity to decom-
pose complex organic C versus the genetic capacity to tolerate
environmental stress. Genes for N and P acquisition are more
loosely distributed, perhaps because N and P can be obtained from
diverse sources. Notably, free-living filamentous fungi are more
likely to possess traits related to decomposition, whereas yeasts are
more likely to possess traits related to stress tolerance. These dis-
tinctions are perhaps not surprising, given the documented ten-
dency for yeasts to dominate extreme environments, such as Ant-
arctic glaciers, and for free-living filamentous fungi to break down
recalcitrant substrates, such as wood.

We found that by binning taxa within taxonomic groups (e.g.,
phyla/subphyla) or morphological groups (e.g., free-living fila-
mentous fungi versus yeasts), we can identify traits that are related
to previously published environmental responses of fungi. By tak-
ing this approach, we can broadly explore potential mechanisms
influencing shifts in fungal community composition in response

to environmental conditions, as well as potential effects on eco-
system function. Knowledge of the taxonomic resolution of rele-
vant traits can also be useful for researchers who are analyzing
sequence data for fungal communities. Historically, taxa have fre-
quently been defined by binning at 97% sequence similarity (267,
268), but other delineations may coincide better with ecological
functions of interest (269–271). Finally, our knowledge of fungal
traits can be synthesized in next-generation ecosystem models to
improve our predictions of ecosystem responses to global change.
Altogether, this research area requires the integration of fungal
taxonomy, microbial ecology, genomics, and ecosystem model-
ing. This is certainly a challenging endeavor, but one that we are
increasingly capable of meeting— especially given the astounding
rates of progress currently witnessed in each of these areas.
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