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Abstract

Bcl-2, the founding member of a family of apoptotic regulators, was initially identified as the 

protein product of a gene that is translocated and overexpressed in greater than 85% of follicular 

lymphomas (FLs). Thirty years later we now understand that Bcl-2 modulates the intrinsic 

apoptotic pathway by binding and neutralizing the mitochondrial permeabilizers Bax and Bak as 

well as a variety of pro-apoptotic proteins, including the cellular stress sensors Bim, Bid, Puma, 

Bad, Bmf and, under some conditions, Noxa. Despite extensive investigation of all of these 

proteins, important questions remain. For example, how Bax and Bak breach the outer 

mitochondrial membrane remains poorly understood. Likewise, how the functions of anti-

apoptotic Bcl-2 family members such as eponymous Bcl-2 are affected by phosphorylation or 

cancer-associated mutations has been incompletely defined. Finally, whether Bcl-2 family 

members can be successfully targeted for therapeutic advantage is only now being investigated in 

the clinic. Here we review recent advances in understanding Bcl-2 family biology and 

biochemistry that begin to address these questions.
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Introduction

Apoptosis is a distinct form of cell death initiated by various physiological and pathological 

stimuli. Morphologically, apoptosis is characterized by cell shrinkage followed by formation 

of cell fragments, which are rapidly cleared by phagocytes that recognize “eat me” signals 

on the plasma membrane [1–3]. Biochemically, apoptosis typically involves the conversion 

of various signals into caspase-mediated intracellular protease activity [1, 2, 4].

One of the two major pathways leading to apoptosis is the mitochondrial or intrinsic 

biochemical pathway [5, 6]. The signature biochemical change during activation of this 

pathway (Fig. 1) is the leakage of cytochrome c into the cytoplasm [7], where it facilitates 

caspase 9 activation to initiate a caspase cascade [1, 3, 8]. This release of cytochrome c from 

mitochondria is regulated by members of the Bcl-2 protein family, which include three 

functionally and structurally distinct subfamilies: i) Pro-apoptotic effector proteins Bax and 

Bak, which mediate mitochondrial outer membrane permeabilization (MOMP); ii) anti-

apoptotic family members, including Bcl-2, Bcl-xL, Mcl-1, Bcl-w and A1, which antagonize 

MOMP; and iii) pro-apoptotic BH3-only proteins, which promote apoptosis either directly 

by binding and oligomerizing Bax and Bak or indirectly by neutralizing anti-apoptotic 

family members [9–12]. When the balance between these Bcl-2 family members tips in 

favor of cell death, Bax and Bak form oligomers that permeabilize the mitochondrial outer 

membrane (MOM), resulting in release of cytochrome c and many other mitochondrial 

intermembrane space proteins [13].

Apoptosis plays an essential role in development, immune response and tissue homeostasis 

[14, 15]. Moreover, dysregulation of apoptosis is thought to play a critical role in 

degenerative diseases and cancer [16]. For example, genomic changes leading to 

overexpression of the anti-apoptotic proteins Bcl-2, Bcl-xL and Mcl-1 are observed in a 

variety of neoplasms [17, 18]; and genes encoding pro-apoptotic proteins such as Bax and 

Bim are mutated or deleted in selected cancers [19, 20]. Accordingly, dysregulation of 

apoptosis and particularly the intrinsic apoptotic pathway is considered a hallmark of cancer 

[21].

Although the intrinsic pathway of apoptosis was broadly outlined 20 years ago [1, 3], 

extensive progress over the past 3–4 years has provided new insight into its critical 

molecular processes. Structural studies of Bax and Bak have begun to illuminate their 

oligomerization and function. Moreover, new understanding of anti-apoptotic Bcl-2 family 

member regulation has emerged. Here we summarize these recent developments, focusing 

particularly on Bax/Bak activation and Bcl-2 regulation. For more comprehensive reviews, 

readers are referred to [9–12].

1. Advances in understanding Bax/Bak activation

1.1 Bax/Bak oligomerization: Some answers, more questions

Despite the strong correlation between Bax/Bak oligomerization and MOMP [22, 23], 

mechanisms of Bax/Bak activation and MOMP remain incompletely understood. Earlier 

studies showed that homo-oligomerization of Bak and Bax requires their BH3 domains [24]. 
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More detailed mutagenesis and crosslinking assays implicated two interaction interfaces in 

Bak oligomerization. One is a BH3 domain:BH3 binding groove interaction in which the 

BH3 domain (α2 helix) of one Bak molecule interacts with the BH3 binding groove (α3-α5 

helices) of another [25]. The second interface implicated in oligomerization involves Bak α6 

helices [26, 27]. Several models have been advanced to account for Bak oligomerization 

[26, 27].

First, Bak monomers could form head-to-tail oligomers. Along these lines, an octamer 

“asymmetric-single-conformer” model of oligomerization has been derived from molecular 

dynamics simulations [28]. Alternatively, it has been proposed that Bak monomers could 

form symmetric dimers, with the BH3 domain of one monomer inserted into the BH3 

binding groove of its partner and the opposite face of each molecule in the dimer involved in 

protein-protein interactions leading to higher order oligomerization [10, 26]. A similar 

model has been proposed for Bax [29]. One potential problem with models based on 

symmetric dimers is that C-terminal transmembrane (TM) domains of the two Bax or Bak 

monomers in each homodimer would face in opposite directions, i.e., with one 

transmembrane domain pointed into the membrane and the other oriented away from it. 

Nonetheless, recent crystal structures of Bax or Bak fragments fused to EGFP (to facilitate 

crystallization) provide strong evidence for symmetric dimers [30, 31]. Understanding in 

greater detail how assembly of these dimers contributes to formation of active Bax or Bak 

oligomers and MOMP is the next major challenge in this area.

1.2 BH3-only proteins and Bax/Bak activation: Direct activation, indirect activation or 
both?

There is general agreement that formation of Bax or Bak oligomers requires BH3-only 

proteins [32]. The exact role of the BH3-only proteins in Bax/Bak oligomerization, however, 

has been contentious, with three different models proposed.

According to the direct activation model, BH3-only proteins are divided into direct 

activators and sensitizers [33–35]. Direct activators include Bim, Puma and tBid, which can 

directly bind to Bax and/or Bak to induce their oligomerization [36–39]. Accordingly, 

Bid−/−Bim−/−Puma−/− triple knockout mice show some of the same developmental defects 

as Bax−/−/Bak−/− double knockout mice [40], although other defects appear to be absent 

[41]. Moreover, Bim−/−Puma−/− double knockout cells [42] and Bid−/−Bim−/−Puma−/− triple 

knockout cells display extensive, albeit incomplete, resistance to most apoptotic stimuli, 

suggesting that these proteins play a predominant role in Bax/Bak activation [40]. Although 

Bid and Bim can both activate Bax and Bak, it has been reported that Bim preferentially 

activates Bax, while Bid preferentially activates Bak [43].

In this model, the BH3-only protein Bad is a sensitizer, i.e., a protein that neutralizes anti-

apoptotic Bcl-2 family members to release activators, which subsequently induce apoptosis 

[34]. Consensus regarding the role other BH3-only proteins has been more difficult to 

achieve. For example, while some studies have demonstrated direct activation of Bak by 

Noxa protein [39, 44], others have reported that Noxa BH3 peptide cannot directly activate 

Bax or Bak [30, 31, 45]. These different results might reflect, in part, use of full-length 

protein in some studies versus BH3 domain peptide in others.
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Other aspects of BH3-only protein interactions with Bax or Bak also remain unresolved. 

While transient binding of BH3-only proteins to the canonical BH3 binding grooves of Bax 

or Bak has been implicated in triggering Bax/Bak activation in some studies [30, 31, 39, 46], 

a secondary site for triggering Bax activation has been identified in others [37, 47, 48]. 

Because the peptide derivative used in the latter studies is much more effective than native 

Bim BH3 peptide in binding and activating Bax [49], detection of the secondary site might 

reflect unique properties of the ligand.

According to the alternative indirect activation model, the major role of BH3-only proteins 

is to neutralize anti-apoptotic Bcl-2 family members, causing them to release Bax and Bak, 

which are then immediately competent to permeabilize the MOM [50, 51]. An earlier 

argument for this model was the lack of direct evidence for complexes between BH3-only 

proteins and Bax or Bak in intact cells [50]. However, interactions between BH3-only 

family members and Bak are now known to be transient [39, 45]; and structural studies have 

also confirmed interactions between BH3-only proteins and Bax or Bak [30, 31]. While the 

indirect activation model has fallen out of favor, the possibility that Bax and Bak are present 

in a preactivated state in cells one of the postulates of this model has not been fully explored 

and might have important implications for Bax and Bak function.

A more recent, unified model combines elements of both prior models by suggesting that 

anti-apoptotic Bcl-2 family members inhibit MOMP both by sequestering direct activators 

and by binding activated Bax and Bak [52]. Consistent with this model, a number of 

biochemical [38, 53–55], cellular [56–58], and genetic studies [59] now agree that anti-

apoptotic Bcl-2 family members have dual functions in inhibiting apoptosis.

1.3 Once activated, how do Bax and Bak permeabilize the MOM?

Once BH3-only proteins trigger oligomerization of Bax and/or Bak, it is still unclear how 

MOMP occurs. Structural studies of Bcl-xL [60], Bax [61] and Bak [62] have revealed 

similarity between Bcl-2 family proteins and channel-forming domains of bacterial toxins 

such as diphtheria toxin [63] and colicin E1 [64], raising the possibility that all of these 

proteins may utilize similar mechanisms to permeabilize membranes. By analogy to the 

toxins, which are thought to insert their two hydrophobic core domains as hairpins into 

membranes to form pore like structures [65], a “hairpin insertion model” has also been 

proposed for Bax [66]. In particular, Bax α5 and α6, together with α9, are thought to insert 

into the MOM, while the other α helices from different Bax monomers interact to promote 

oligomerization at the MOM cytoplasmic surface [66–69].

On the other hand, recent crystal structures of activated Bax and Bak suggest that 

conformational changes during activation involve separation of α5 and α6 rather than 

hairpin formation [30, 31]. These observed changes, which are thought to allow Bax and 

Bak to assume more flexible conformations, may resolve the issue of conflicting TM 

domain orientation in the dimers described above. However, the observed crystal structures 

are not consistent with models in which Bax or Bak insert hydrophobic hairpins into the 

MOM to form pores. Instead, based on further results showing that some of the residues 

within the putative α5/α6 hairpin label with membrane-impermeable reagents and others do 

not, it has been suggested that α5 and α6 collapse onto the MOM rather than inserting into it 
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[70]. Whether this leads to MOMP through disruption of membrane curvature [71, 72] or 

another process still remains to be determined.

1.4 Harnessing BH3-only protein biology to predict chemotherapeutic response

Understanding the mitochondrial pathway has direct implications for cancer therapy. Over 

the past 20 years, this pathway has been implicated in the cytotoxicity of many 

chemotherapeutics [73, 74], including DNA damaging agents [75], spindle poisons [76, 77], 

and kinase inhibitors [78, 79]. Conversely, chemotherapy resistant cancers often contain 

mitochondrial pathway defects [80, 81].

As described above, BH3-only proteins have been grouped into “direct activators” and 

“sensitizers” [35, 82]. “Priming of cells for death” was originally defined as a state in which 

addition of BH3 domains from sensitizer BH3-only proteins to isolated mitochondria (an 

assay termed “BH3 profiling”) results in robust cytochrome c release [83]. This state was 

correlated with the presence of Bim bound to anti-apoptotic Bcl-2 family proteins such as 

Bcl-2 or Mcl-1 as well as simultaneous expression of Bax and/or Bak on the MOM [83]. 

Moreover, sensitivity to the Bcl-2/Bcl-xL antagonist ABT-737 correlated strongly with 

release of cytochrome c by certain BH3 domain peptides, notably Bad [83–85].

In further studies, BH3 profiling predicted cancer cell sensitivity to not only BH3 mimetics, 

but also chemotherapeutic agents, particularly the topoisomerase II inhibitors etoposide, 

daunorubicin and mitoxantrone [86]. In contrast, this assay was less predictive of sensitivity 

to the nucleoside analogs cytarabine and clofarabine or the hypomethylating agents 

azacitidine and decitabine [85–87].

The original cytochrome c release assay employed for BH3 profiling has been replaced by a 

more efficient cell-based JC-1 dye binding assay [88] that measures loss of mitochondrial 

membrane potential [85, 89, 90]. This JC-1 assay can be performed by flow cytometry, 

which enables examination of responses in phenotypically distinct cell types such as 

leukemic myeloblasts or hematopoietic stem cells (HSC) [86]. Interestingly, this assay 

demonstrated that leukemic myeloblasts are more highly primed and exhibit a pattern more 

suggestive of Bcl-2 dependence than HSCs [86, 91], leading to a phase 2 trial of the Bcl-2 

antagonist ABT-199. For reasons that are still under investigation, the assay predicted far 

better clinical activity than was actually observed [92], raising the possibility that it might be 

better to assay the effects of the BH3 mimetic drugs themselves rather than effects of naked 

synthetic peptides. Before describing that trial, we first review recent advances in 

understanding and targeting antiapoptotic Bcl-2 family members.

2. Advances in understanding regulation of anti-apoptotic Bcl-2 family 

proteins

2.1. Structure and function: Variations on a theme

Since the discovery of Bcl-2 [17, 93, 94] and its ability to promote tumorigenesis by 

inhibiting cell death [95], five structurally related anti-apoptotic family members, including 

Bcl- xL, Mcl-1, Bcl-w, BFL1 (A1 in mouse) and Bcl-B (Bcl2L10 in mouse), have been 
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identified [10, 11, 96]. These share four conserved regions [Bcl-2 homology (BH) domains] 

(Fig. 2). In addition, Bcl-2, Bcl-xL, Mcl-1 Bcl-w and Bcl-B all contain C-terminal TM 

domains that direct them to intracellular membranes, particularly the MOM. BFL1 lacks a 

classical TM but is targeted to mitochondria by its C-terminal α-helix [97–99], whereas the 

mouse homolog Bcl-2A1 appears in some studies to be cytoplasmic. All of these proteins 

possess a remarkably similar globular structure containing a so-called “Bcl-2 core” [11] 

consisting of eight α-helices oriented so that helices 3, 4 and 5 form a hydrophobic groove 

that is capable of binding the BH3 domains of pro-apoptotic family members.

Despite their similarity, anti-apoptotic Bcl-2 family members exhibit specificity for various 

pro-apoptotic proteins [51, 100]. Most of the anti-apoptotic proteins bind most of the BH3-

only family members, but Bcl-xL and Bcl-w reportedly fail to bind Noxa; Bcl-2 does not 

bind truncated Bid, Bik, Hrk or Noxa well; Mcl-1 does not interact with Bad, Bik and Hrk; 

and BFL1/A1 fails to bind Bad and Bmf. Bcl-B, on the other hand, only binds Bim and Bik. 

Likewise, all of the anti-apoptotic family members bind Bax, but only Bcl-xL, Mcl-1, BFL1 

[101, 102] and in some cases Bcl-2 [103] bind Bak.

The selectivity of these interactions, coupled with differences in expression of pro- and anti-

apoptotic proteins under divers conditions, are thought to underlie the variable responses of 

cells to assorted stresses [36, 83, 101]. According to this view, Bcl-2, Bcl-xL and Bcl-w bind 

to almost all pro-apoptotic proteins and are more potent protectors than Bcl-B, BFL1 and 

Mcl-1, which bind only a subset of the pro-apoptotic proteins. On the other hand, several 

observations also argue against this model. First, it has been observed that Mcl1 gene 

deletion is lethal in a variety of cell lineages [104–109], although this might reflect an 

obligate role for Mcl-1 in oxidative phosphorylation within mitochondria rather than its anti-

apoptotic role on the surface mitochondria [106]. Moreover, recent results suggest that the 

relative potencies of these proteins might reflect their relative expression levels rather than 

the range of pro-apoptotic proteins neutralized [110].

2.2. The role of anti-apoptotic Bcl-2 family proteins in tumorigenesis

Apoptosis not only contributes to normal development and tissue homeostasis, but also 

provides a barrier to cancer development. For example, c-Myc provokes changes that induce 

not only proliferation, but also apoptosis, limiting its ability to transform cells [81, 111]. As 

a result, Myc-induced transformation of lymphoid cells in vitro and in vivo is augmented by 

overexpression of Bcl-2 [95, 112] or Bcl-xL [113]. Similar results in other neoplasms [114] 

have led to extensive efforts to elucidate apoptotic pathway dysfunction in various cancers.

High Bcl-2 protein levels are detected in a variety of neoplasms, including small cell lung, 

breast, prostate, colorectal, and bladder cancers, melanoma, and especially human lymphoid 

malignancies [115–117]. Elevated Bcl-2 expression has also been reported in acute myeloid 

leukemia (AML), particularly chemotherapy-resistant AML [118, 119], although this has not 

been universally observed [120].

As summarized in Table 1, many mechanisms contribute to the high Bcl-2 levels observed 

in various neoplasms. First, the t(14,18) chromosome translocation that places the BCL2 

gene next to immunoglobulin heavy chain (IGH) enhancer elements [17, 93, 94] is a major 
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mechanism for elevated Bcl-2 transcription in lymphomas. Second, chromosome deletions 

and mutations that result in loss of miR-15a and miR-16, which target and repress Bcl-2 

mRNA, occur in more than 50% of chronic lymphocytic leukemia (CLL) cases [121]. Third, 

Bcl-2 levels are regulated by protein ubiquitination [122–124]. The inhibitor of NF-E2-

related factor 2 (INrf2) interacts with the BH2 domain of Bcl-2 and directs it to Cul3-Rbx1-

mediated ubiquitination. Accordingly, inactivating mutations of INrf2 found in some lung 

cancer cell lines [124] can stabilize Bcl-2 and confer resistance to apoptotic stimuli. Similar 

mechanisms, i.e., genomic changes that enhance expression, altered regulation by miRNAs, 

and diminished ubiquitin-mediated turnover, contribute to upregulation of the other anti-

apoptotic Bcl-2 family members in various cancers as well (Table 1).

2.3. Anti-apoptotic Bcl-2 family member phosphorylation

The anti-apoptotic functions of Bcl-2 and its kin are governed not only by changes in 

expression, but also by phosphorylation. In particular, Bcl-2 is phosphorylated in response to 

a number of stimuli, including spindle poisons such as paclitaxel, vincristine and vinblastine, 

as well as serum starvation [125–128]. As summarized in Fig. 2, several residues within the 

unstructured flexible loop domain (FLD) of Bcl-2 are phosphorylated, including T56, T69, 

S70, T74, and S87 [122, 128–130]. Kinases implicated in these phosphorylations include c-

Jun N-terminal kinase (JNK) [131, 132], c-Raf [127], protein kinase A [133], p38 MAPK 

[134], PKCα [135], mTOR [136] and CDK1 [137, 138]. Importantly, Bcl-2 is 

phosphorylated on several of these residues during mitosis [139, 140], suggesting a possible 

physiological role for Bcl-2 phosphorylation during cell division.

How phosphorylation affects Bcl-2 function has been somewhat controversial. An S70A 

Bcl-2 variant protects cells from paclitaxel-induced cell death better than wild type (wt) 

Bcl-2 does, suggesting that S70 phosphorylation inhibits Bcl-2 function [141]. Likewise, 

Bcl-2 T69A/S70A/S87A affords enhanced protection from Ca2+-dependent death stimuli 

[142]. However, phosphomimetic mutants with Glu in place of T69, S70 and/or S87 also 

exhibit enhanced anti-apoptotic effects [143–145], suggesting that phosphorylation activates 

Bcl-2.

It was originally suggested that Bcl-2 phosphorylation might alter binding of proteins such 

as p53 or c-Myc to the Bcl-2 FLD, thereby modulating apoptosis [146, 147]. However, the 

observation that FLD deletion completely blocks paclitaxel-induced apoptosis [132] raised 

the possibility that FLD modifications might modulate Bcl-2 function through a process 

distinct from altering protein-protein interactions involving the FLD. Consistent with this 

view, we recently found that mutation of T69, S70, T74 or S87 to either Glu or Ala 

increases the affinity of Bcl-2 for Bak and Bim [54], indicating that FLD modifications 

modulate Bcl-2 function through a process that does not require introduction of a negative 

charge. Moreover, we also observed altered protease sensitivity, suggestive of a 

conformational change, after mutation of Bcl-2 S70 to either Glu or Ala [54]. During 

paclitaxel-induced mitotic arrest, Bcl-2 was phosphorylated and more tightly bound to Bak 

and Bim. Collectively, these results suggest that phosphorylation of the Bcl-2 FLD leads to a 

conformational change in the “Bcl-2 core” that affects binding of pro-apoptotic proteins to 

the BH3 binding groove.
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Interpretation of these results would have been enhanced by structural information about the 

impact of FLD alterations on overall Bcl-2 conformation. Unfortunately, all published Bcl-2 

structures either lack the FLD or replace it with the corresponding region of Bcl-xL [148, 

149].

Phosphorylation also modulates the function of other anti-apoptotic Bcl-2 family members. 

Bcl-xL is phosphorylated on T47 and S62 [150]. Phosphorylation of the latter site by JNK 

decreases binding of Bcl-xL to Bax, thus diminishing Bcl-xL anti-apoptotic function [151]. 

Likewise, Mcl-1 phosphorylation at S159 by glycogen synthase kinase-3 (GSK-3) 

diminishes Mcl-1 anti-apoptotic function, in this case by enhancing Mcl-1 binding to the 

ubiquitin E3 ligase βTrCP [152] and subsequent turnover [153]. In contrast, CDK- and JNK-

mediated Mcl-1 phosphorylation at S64 increases Mcl-1 binding to Noxa, Bak and Bim, 

thereby potentiating its anti-apoptotic activity [154]. Because phosphorylation of Bcl-2 (on 

its FLD) and Mcl-1 (at S64) increases the anti-apoptotic effects of these proteins, it has been 

suggested that these phosphorylations might contribute to chemoresistance [155–157].

3. BCL2 sequence variation

3.1. BCL2 sequence variation in clinical lymphomas

As indicated above, BCL2 translocation to the IGH locus contributes to high level Bcl-2 

expression in 90% of FLs and 20% of de novo diffuse large B-cell lymphomas (DLBCLs), 

mostly of the germinal center B-cell subtype (GCB-DLBCL) [158]. Some of these 

lymphomas also contain BCL2 mutations. Single nucleotide variants (SNVs), including 

some that cause amino acid substitutions and others that are silent, were demonstrated soon 

after BCL2 was cloned [159, 160]. Detection of similar SNVs in untreated FL ruled out 

chemotherapy as a cause of these BCL2 mutations [159]. In contrast to the impact of other 

abnormalities involving BCL2, e.g., the extremely poor prognosis of so-called “double hit” 

lymphomas that harbor translocations involving both the MYC and BCL2 genes [161], the 

effects of BCL2 SNVs on DLBCL and FL have been less clear.

Recent sequencing of large numbers of primary DLBCL samples and matched germline 

DNA has demonstrated a high incidence of tumor-associated BCL2 mutations and linked 

these changes to somatic hypermutation, an activation-induced cytidine deaminase- (AID-) 

driven mutagenic process that ordinarily generates antibody diversity [162–165]. Because 

most BCL2 mutations in DLBCL (60–90%) are synonymous [162] and not associated with 

any impact on chemosensitivity or survival [165], it has been assumed that BCL2 mutations 

in DLBCL are passenger mutations.

Additional studies have examined BCL2 mutations in FL. More indolent than DLBCL, FL 

nonetheless carries a 2–3%/year risk of transformation to a more aggressive neoplasm. 

Transformed FL (tFL) most often resembles DLBCL morphologically [166, 167] but 

historically has been quite resistant to therapy [167, 168]. This poor therapeutic response of 

tFL has provided the impetus for recent genomic comparisons of untransformed and 

transformed FLs [169–171]. These analyses have demonstrated that BCL2 is mutated, at 

least to some extent, in the majority of FLs and tFLs [169–171]. Analysis of subclonal 

heterogeneity has suggested that tFL arises from the original mutant FL clone, but not 
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always through linear progression of the clone that predominates during the indolent phase 

of the disease. Instead, FL transformation commonly reflects divergent evolution from a 

common mutated ancestor, with independent acquisition of further aberrations in the 

indolent FL clone and the more aggressive tFL [166, 170].

3.2. Some BCL2 variants exhibit gain of function

Because BCL2 sequence variants inhibit cell death [172] and facilitate lymphomagenesis 

[173], it has been assumed that BCL2 mutations do not affect Bcl-2 protein function. Our 

recent studies question this assumption. In particular, we have observed that some variant 

Bcl-2 proteins from lymphoma cell lines exhibit enhanced activity [103, 174]. For example, 

the D31H/A60V Bcl-2 variant from the BCL2-translocated lymphoma line RL binds Noxa 

20-fold more tightly than wildtype Bcl-2 and provides increased protection from the 

proteasome inhibitor bortezomib, which upregulates Noxa to kill lymphoma cells [174]. 

These observations prompted us to examine whether BCL2 mutations in clinical lymphoma 

might also impact Bcl-2 function.

To address this issue, we compared the incidence, nature, and clinical implications of BCL2 

mutations in a number of lymphoid neoplasms [175]. In contrast to DLBCL, where most 

mutations are silent, a vast excess of amino acid altering (nonsynonymous) variants was 

observed in FL. Moreover, the presence of BCL2 mutations at diagnosis was an independent 

prognostic factor that correlated with increased risk of death due to lymphoma [175]. The 

sequence context of the BCL2 mutations in FL suggested that AID is responsible for these 

mutations. Consistent with this conclusion, high AID levels in FL were associated with a 

higher probability of BCL2 mutation at diagnosis and a shorter interval before 

transformation [175]. In FL, amino acid altering mutations are spread along the Bcl-2 

protein [165, 175], with the highest frequency in the FLD (Fig. 3), a region implicated in 

regulating affinity of Bcl-2 for pro-apoptotic Bcl-2 family members [54] as described above. 

Consistent with earlier studies in lymphoma cell lines [103, 174], preliminary analysis 

demonstrated that some variant Bcl-2 proteins identified in FL exhibit increased ability to 

bind and sequester the pro-apoptotic Bcl-2 family members Bim and Puma [175]. Further 

analysis of additional variant proteins is needed to determine the prevalence of BCL2 gain of 

function mutations in this region.

FL-associated mutations also occur in other regions of Bcl-2 (Fig. 3). For example, several 

mutations alter the BH4 domain, a region partially conserved in Bcl-xL, Bcl-w, BFL1 and 

Bcl-B [10, 176]. The implications of these BH4 domain mutations are currently unknown. 

Although multiple studies have reported that deletion of the BH4 domain abrogates Bcl-2 

anti-apoptotic function [177–179], the underlying mechanism has been unclear. It has been 

suggested that BH4 domain deletion abrogates Bcl-2 heterodimerization with Bax [178]. 

Consistent with this view, binding of a stapled BH4 peptide to unique site on Bax has 

recently been reported [180]. Other studies, however, have found no impact of BH4 deletion 

on binding of Bcl-2 to Bax, Bak, Bad, Bik or Bim [177]. Accordingly, further work is 

required to clarify the function of the Bcl-2 BH4 domain and assess the impact of FL-

associated mutations in this region.
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Comparison of sequential FL biopsies revealed a 4-fold increase in frequency of overtly 

detectable BCL2 mutations at transformation compared to the same patients at diagnosis 

[175], suggesting that mutagenesis is ongoing in FL during the course of disease. Mutations 

identified at transformation had a lower frequency of classical AID signatures, possibly 

reflecting AID-induced mutation of cytidines outside the context of preferred AID target 

sequences [181]. Moreover, some of these mutations were clearly nonfunctional, e.g., a 

BCL2 variant with a premature stop codon [175], again emphasizing that not all BCL2 

mutations enhance Bcl-2 function.

In accord with studies showing that FL transformation is genetically complex and 

heterogeneous [166, 169–171], BCL2 mutations can suffer several fates during the course of 

FL. In cases where there is a linear evolution from an original malignant clone, BCL2 

mutations would be maintained throughout the course of the disease, perhaps with the 

acquisition of additional alterations in the same mutant gene over time. In cases where 

clones that give rise to the indolent FL and tFL follow divergent paths from a common 

precursor, mutations present in the dominant clone at diagnosis might not predominate at 

transformation, where new genetic alterations that confer a stronger proliferation or survival 

advantage could instead emerge. Conversely, in clones that lack BCL2 mutations initially, 

BCL2 mutations might emerge at transformation, as reported in our cohort [175]. Whether 

these are driver or passenger mutations remains to be determined.

In comparing recent studies of BCL2 mutations in FL [169–171, 175], several important 

methodological differences must be kept in mind. First, most of the studies were designed to 

identify all mutations in the BCL2 locus. These studies not only sequenced the BCL2 

promoter and extensive intronic regions in addition to exons, but also counted BCL2 as 

mutated even when a relatively small percentage of the reads were variant, e.g., as few as 

three reads out of 85 [169]. In contrast, our recent study, which involved Sanger sequencing 

of the protein coding exons, was designed to identify mutations that are i) present in 

predominant clones and ii) capable of altering Bcl-2 protein sequence and function [175].

Second, the studies comprehensively examining genomic changes in FL at transformation 

relied on the availability of paired FL pathological samples. In contrast, in order to assess 

the relationship between FL mutations, AID expression and clinical outcome, our recent 

study relied on a prospectively maintained clinical database and relatively uniform treatment 

practices at a single institution [175]. To have enough events for survival analysis, however, 

the vast majority of samples in our study predated the introduction of the anti-CD20 

antibody rituximab into clinical FL treatment [182]. Retrospective analyses from the pre-

rituximab era have reported a median survival of only 1–2 years after FL transformation 

[167, 168], whereas recent studies suggest improved survival with tFL in the rituximab era 

[166, 183], raising the possibility that rituximab might partially counter the adverse impact 

of genomic changes leading to transformation. Thus, it will be important in the future to 

assess whether BCL2 mutation status correlates with outcome in FL treated with rituximab-

containing chemoimmunotherapy.
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4. Targeting Bcl-2 as an anticancer strategy

4.1 Small molecule inhibitors of Bcl-2 family proteins

Because Bcl-2 overexpression contributes to the pathogenesis of various lymphoid 

neoplasms, particularly FL and CLL [17, 93, 94, 121], and possibly solid tumors [80], there 

has been substantial effort to develop Bcl-2 inhibitors as therapeutic agents. A combination 

of nuclear magnetic resonance-based binding assays and fluorescence polarization 

displacement assays [184, 185] have identified a number of small molecules that interfere 

with protein-protein interactions involving the Bcl-2, Bcl-xL and/or Mcl-1 BH3 binding 

grooves [10, 11, 186–189], thus mimicking the effects of sensitizer BH3-only proteins 

depicted in Fig. 1.

For a small molecule to truly be a BH3 mimetic, its killing must depend on Bax and/or Bak, 

it must have a high affinity for at least one anti-apoptotic Bcl-2 family member, and it must 

induce cytotoxicity that correlates with binding to anti-apoptotic protein(s) [186]. Some 

compounds originally reported to be BH3 mimetics, e.g., BH3I class compounds, HA14-1, 

antimycin A, and purpurogallin, are no longer thought to kill in this manner because they 

exhibit poor binding to BH3 binding grooves or Bax/Bak-independent killing [186, 190, 

191]. Other agents (Table 2) meet the criteria outlined above and have undergone preclinical 

and, in some cases, clinical testing. These include AT-101 [the R-(-) enantiomer of 

gossypol] [192–194]; the gossypol derivatives TW37 [192], apogossypol, and 

apogossypolone (ApoG2) [195, 196]; and obatoclax (GX15-070) [186, 197–199], although 

obatoclax also kills Bax/Bak-deficient cells [191, 200], perhaps because it inhibits the pro-

survival kinase mTOR [201].

Of particular interest are ABT-737 and its orally bioavailable derivative ABT-263 

(navitoclax). These agents bind the BH3 binding grooves of Bcl-xL, Bcl-2, and Bcl-w [186, 

191, 192, 202–204] to kill cells in a Bax- or Bak-dependent manner [191, 192]. 

Interestingly, their major toxicity, thrombocytopenia, also results from Bcl-xL inhibition 

[205, 206]. To avoid this side effect, the Bcl-2-selective derivative ABT-199 has been 

developed [207]. Cellular studies have shown that ABT-737, navitoclax and ABT-199 

displace Bim from their identified anti-apoptotic binding partner(s), facilitating Bax-

mediated MOMP [203, 208, 209]. Priming of Bcl-2 with the activator Bim increases 

sensitivity to ABT-737, navitoclax and ABT-199, whereas Mcl-1 overexpression favors 

resistance [56, 191, 203, 208–210]. All of these observations are consistent with the 

proposed mode of action of these agents.

4.2 Clinical trials of BH3 mimetics

In view of the important role of Bcl-2 in the pathogenesis of lymphoid malignancies (see 

above), BH3 mimetics have been extensively tested in these disorders (reviewed in [211]). 

Early clinical testing revealed activity of navitoclax in CLL and non-Hodgkin’s lymphoma 

(NHL) [212, 213]. With the development of ABT-199, studies of navitoclax continue in 

solid tumors, where it is being used to target Bcl-xL, whereas studies in Bcl-2-dependent 

hematological malignancies have focused more extensively on ABT-199.
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As of January 2015, 16 clinical trials testing ABT-199 either as a single agent or in 

combination therapy (www.clinicaltrials.gov) are ongoing. A variety of neoplasms are being 

studied, including CLL, aggressive NHL, FL, multiple myeloma (MM) and AML (Table 3). 

In preclinical studies, anti-tumor activity of ABT-199 has also been reported in T-cell ALL, 

chronic myelogenous leukemia, colorectal and breast cancers [214–217].

Early clinical results suggest that ABT-199 has promising activity in relapsed or refractory 

(R/R) lymphoid malignancies. In particular, ABT-199 has an overall response rate (ORR) of 

56% in R/R NHL [218] and 84% (20% complete response) in R/R CLL and small 

lymphocytic leukemia (SLL) [219]. Indeed, responses in CLL and SLL have been so risk 

that tumor lysis syndrome has been a major complication of therapy. In contrast, despite 

tantalizing activity against AML cells ex vivo [91], ABT-199 has shown disappointing 

activity (12.5% complete remission rate) in R/R AML [92], perhaps because of elevated 

Mcl-1 in this setting [120].

Additional studies are investigating ABT-199 in combination with other therapies (Table 3). 

For example, Roberts et al. reported an 86% OR (31% CR) in R/R CLL treated with 

ABT-199 and the anti-CD20 antibody rituximab [220]. Other studies in R/R or untreated 

CLL patients combined ABT-199 with Obinutuzumab, a glycoengineered anti-CD20 

antibody [221], or in CLL and NHL with Bendamustine/Rituximab [222, 223]. More mature 

reports of these promising investigations are awaited with interest.

5.0. An agenda for the future

Despite improvements in understanding signaling through the intrinsic apoptotic pathway 

over the past 2–3 years, important questions remain. Recent studies have clarified how BH3-

only proteins induce Bax or Bak activation and provided detailed descriptions of Bax and 

Bak homodimers, but these results provide limited insight into the mechanism by which Bax 

and Bak breach the MOM. Further studies of higher order Bax and Bak oligomers, perhaps 

in the presence of appropriate lipids, are required for progress in this area.

Even though the Bcl-2 protein was identified almost 30 years ago, important questions about 

its structure and function persist. How phosphorylations in the FLD affect affinity of the 

BH3 binding groove for its ligands is entirely unclear. While recent studies suggest that 

changes in the FLD can affect Bcl-2 conformation [54], an NMR or crystal structure of 

Bcl-2 with its own loop intact is required to better understand this aspect of Bcl-2 regulation.

The consequences of nonsynonymous BCL2 mutations also require further investigation. 

While these mutations become more prevalent during the course of FL [175], it is unclear 

whether they are driving FL transformation or are merely bystanders that reflect high AID 

activity in FLs at highest risk of transformation. Further study is also required to determine 

which BCL2 mutations affect Bcl-2 protein function and how these amino acid changes, 

whether in the FLD or elsewhere, alter affinity of the BH3 binding groove.

Finally, a number of questions need to be answered to assure the optimal clinical 

development of ABT-199. In hematological malignancies, this agent currently appears to be 

most active in CLL, a disease driven by overexpression of wt Bcl-2. Whether the BCL2 
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mutations observed in FL will affect ABT-199 sensitivity remains to be determined. 

Furthermore, it is presently unclear whether ABT-199 will be as active in diseases where 

Bcl-2 overexpression, while present, plays a less clear-cut role in pathogenesis (e.g., small 

cell lung cancer). Finally, additional work is required to identify optimal combinations that 

capitalize on the promising single-agent activity of ABT-199 observed to date.

Given the recent exciting advances, continued investigation of these questions appears 

warranted.
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Highlights

• Here we review recent advances in understanding of Bcl-2 family members.

• Recent x-ray crystal structures have provided insight into Bax and Bak 

activation.

• Some lymphoma-associated BCL2 mutations were shown to enhance Bcl-2 

function.

• The Bcl-2-selective BH3 mimetic ABT-199 has shown promising clinical 

activity.
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Figure 1. Overview of the mitochondrial pathway
[1, 2, 4]. The signature event of the mitochondrial or intrinsic death pathway is MOMP, 

which results in release of cytochrome c and other mitochondrial intermembrane proteins to 

the cytoplasm [13]. Once in the cytoplasm, cytochrome c facilitates the interaction of the 

cytoplasmic scaffolding protein Apaf-1 and procaspase 9, activates a caspase cascade 

leading to cleavage of hundreds to cellular caspase substrates to generate the apoptotic 

phenotype [3, 4].

As described in the text, Bcl-2 family members regulate this pathway upstream of MOMP. 

While Bax and Bak are directly responsible for breaching the outer membrane, their 

oligomerization and activation are modulated by other family members. BH3-only proteins 

such as Puma, Bim, tBid, and Noxa, which are termed “activators,” transiently bind Bax or 

Bak [39], facilitating their activation. BH3-only proteins such as Bad, which are unable to 

directly bind Bax or Bak, are termed “sensitizers” because they bind and neutralize anti-

apoptotic Bcl-2 family members.
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Figure 2. Bcl-2 phosphorylation. (A)
Schematic representation of the Bcl-2 protein with BH domains boxed in blue and flexible 

loop domain (FLD) labeled in gray. Residues T56, T69, S70, T74 and S87 are located within 

the FLD and selectively targeted for phosphorylation. S70 (red) is phosphorylated by CDK1 

in vivo, inducing a conformation change of the FLD and enhancing the anti-apoptotic 

function of Bcl-2 [54]. (B). Residues S62 and S64 (labeled in red) within the FLD of Bcl-xL 

and Mcl-1, respectively, are targeted for phosphorylation by CDK1 [137, 154]. TM, 

transmembrane domain. (Adapted from [54, 154]).
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Figure 3. Distribution of Bcl-2 amino acid substitutions in FL. (A)
Schematic representation of the Bcl-2 protein with BH domains boxed in blue and flexible 

loop domain (FLD) labeled in gray. Somatic variants detected in FL derived from 2 

independent cohorts (black and green bars) are distributed throughout the Bcl-2 protein. 

Color-coded symbols depict distinct types of alterations, with purple for synonymous, white 

for nonsynonymous with no charge introduction, red for nonsynonymous with negative 

charge introduction, and blue for nonsynonymous with positive charge introduction. TM, 

transmembrane domain. (Adapted from Correia et al. [175].) (B). Affinities of Bak BH3 

peptide and Bak protein for Bcl-2 variants derived from lymphoid cell lines. (Adapted from 

Dai et al. [103].) † indicates undetectable binding. (C). Kaplan Meier plots showing impact 

of BCL2 mutations on death due to lymphoma in a FL cohort (n=128). (Adapted from 

Correia et al. [175].)
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Table 2

Selective List of BH3 Mimetics

Agent Target BH3 mimetic Statusa Clinical statusb References

A-124077 Mcl-1 Authentic NAc [188]

ABT-737 Bcl-xL, Bcl-2, Bcl-w Authentic NA [186, 191, 192, 202, 204]

ABT-263 (Navitoclax) Bcl-xL, Bcl-2, Bcl-w Authentic Ph2d [203]

ABT-199 Bcl-2 Authentic Ph3e [208, 280]

GX15-070 (Obatoclax) Bcl-xL, Bcl-2, Bcl-w, Mcl-1 Putative/off-target effects Ph2f [197]

Gossypol Bcl-2, Bcl-xL, Mcl-1 Putative/off-target effects NA [184, 281]

Apogossypolone (ApoG2) Bcl-xL, Bcl-2, Mcl-1 Putative/off-target effects NA [195]

TW37 Bcl-xL, Bcl-2, Mcl-1 Putative/off-target effects NA [186, 192, 282]

AT-101 Bcl-xL, Bcl-2, Mcl-1 Putative/off-target effects Ph2g [192, 193, 280]

a
BH3 mimetic status defined as in [186]

b
Most advanced clinical testing reported at https://clinicaltrials.gov/

c
Abbreviations used are: NA, not applicable (no clinical testing); Ph, phase.

d
Randomized Ph2 study of navitoclax + rituximab vs. rituximab alone in CLL.

e
Ph3 study of ABT-199 + rituximab vs. bendamustine + rituximab for CLL.

f
Ph2 studies in acute myelogenous leukemia, small cell lung cancer (with topotecan or carboplatin/etoposide), mantle cell lymphoma (with 

bortezomib), Hodgkin lymphoma, multiple myeloma (with bortezomib) and non-small cell lung cancer (with docetaxel).

g
Ph2 studies in chronic lymphocytic leukemia (with rituximab), hormone-resistant prostate cancer (with prednisone/docetaxel), diffuse large B cell 

lymphoma (with lenalidomide), non-small cell lung cancer (with docetaxel), small cell lung cancer (alone or with topotecan), and glioblastoma 
(alone or with radiation).
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Table 3

Summary of Selected Current ABT-199 Clinical Trials

Disease Clinical Characteristics or Eligibility Regimens Phase Ref.b

AMLa Treatment naïve ABT-199 Ib

Age ≥65 + Decitabine or + Azacitidine

Ineligible for Standard Chemotherapy

AML Treatment naïve ABT-199 I/II

+ Cytarabine

AML NA ABT-199 II [92]

B-Cell NHL, DLBCL NA ABT-199

+ Rituximab or Oblinutuzumab

+ CHOP

CLL R/R or Treatment naïve ABT-199 Ib [221]

+ Oblinutuzumab

CLL R/R or Treatment naïve ABT-199 Ib [222]

+ Bendamustine

+ Rituximab

CLL, NHL R/R ABT-199 I [219]

CLL, SLL R/R ABT-199 Ib [220]

+ Rituximab

CLL R/R to B-Cell Receptor Inhibitor ABT-199 II

CLL, 17p deletion R/R ABT-199 II

CLL R/R ABT-199 III

+ Rituximab or + Bendamustine and Rituximab

FL R/R ABT-199 II

+ Rituximab or + Bendamustine and Rituximab

MM Treatment with Bortezomib and Dexamethasone ABT-199 I

MM R/R ABT-199 I

NHL, MM R/R ABT-199 I

NHL R/R ABT-199 Ib [223]

+ Bendamustine

+ Rituximab

a
Abbreviations: AML, acute myeloid leukemia; CHOP, cyclophosphamide, doxorubicin, vincristine, and prednisone; CLL, chronic lymphocytic 

leukemia; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; NA, not available; NHL, Non-Hodgkin’s lymphoma; MM, multiple 
myeloma; R/R, relapsed/refractory; and SLL, small lymphocytic leukemia.
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b
References for ABT-199 trials that have been reported in abstract form.

Biochim Biophys Acta. Author manuscript; available in PMC 2016 July 01.


