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The high transduction efficiency of lentiviral vectors in a 
wide variety of cells makes them an ideal tool for forward 
genetics screenings addressing issues of cancer research. 
Although molecular targeted therapies have provided 
significant advances in tumor treatment, relapses often 
occur by the expansion of tumor cell clones carrying 
mutations that confer resistance. Identification of the cul-
prits of anticancer drug resistance is fundamental for the 
achievement of long-term response. Here, we developed 
a new lentiviral vector-based insertional mutagenesis 
screening to identify genes that confer resistance to clin-
ically relevant targeted anticancer therapies. By applying 
this genome-wide approach to cell lines representing 
two subtypes of HER2+ breast cancer, we identified 62 
candidate lapatinib resistance genes. We validated the 
top ranking genes, i.e., PIK3CA and PIK3CB, by showing 
that their forced expression confers resistance to lapa-
tinib in vitro and found that their mutation/overexpres-
sion is associated to poor prognosis in human breast 
tumors. Then, we successfully applied this approach to 
the identification of erlotinib resistance genes in pancre-
atic cancer, thus showing the intrinsic versatility of the 
approach. The acquired knowledge can help identifying 
combinations of targeted drugs to overcome the occur-
rence of resistance, thus opening new horizons for more 
effective treatment of tumors.
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INTRODUCTION
The analysis of recurrent genetic lesions in human tumors 
allowed the rational design of novel targeted therapies and cur-
rently assists in selecting anticancer drug regimens according to 
the mutational profile of each patient.1 However, despite provid-
ing significant rates of response, targeted therapies rarely result in 
disease eradication due to the emergence of drug-resistant clones 
that cause tumor relapse. The likelihood of response of each can-
cer to treatment with specific drugs is strongly influenced by the 

mutational landscape of its genome,2 which can render the tar-
geted protein resistant to inhibition, reactivate downstream the 
targeted pathway, or engage alternative pathways that bypass the 
blocks provided by the therapeutic compound.3 The identifica-
tion of genes and molecular networks whose deregulation causes 
unresponsiveness to therapy is urgently required for better strati-
fication of patients toward more effective personalized treatments 
and to design combinations of existing and novel drugs capable to 
overcome the resistance to a single compound.4

A number of strategies have been devised in order to identify 
the culprits of drug resistance5 including association between the 
genomic mutation landscape and the sensitivity/resistance profiles 
of clinical cases, in vivo and in vitro induction of spontaneous resis-
tance upon chronic drug administration/exposure and functional 
screens with cDNA, siRNA and shRNA libraries. The main disad-
vantages of these strategies are the difficulty to distinguish driver 
mutations among the plethora of bystander lesions and the limita-
tion of screenings for anticancer drug resistance by overexpress-
ing or knocking down only the subset of known genes included 
in the libraries. In order to identify driver genetic lesions, cancer 
genomic studies utilize statistical approaches that usually require 
large collection of human samples and sequencing efforts. On the 
other hand, insertional mutagenesis is a forward genetic approach 
that has been used for the functional identification of novel genes 
involved in the pathogenesis of human cancers.6,7 Retroviruses or 
transposons may activate cellular oncogenes or inactivate tumor 
suppressor genes near the integration site and induce cancer for-
mation in mice. Identification of genomic regions recurrently tar-
geted by integrations (Common Integration Sites (CIS)) in tumors 
induced by insertional mutagens has allowed the discovery of new 
cancer driver genes.6,7 Recently, we have developed new inser-
tional mutagens based on lentiviral vectors (LVs) and used them 
to identify novel genes involved in hepatocellular carcinogenesis.8 
LVs represent an appealing tool for forward genetic studies since 
they have high transduction efficiency, wide tissue tropism, and 
their mutagenic properties can be modified by changing the vec-
tor design.7,9,10 Since not only cell transformation, but most select-
able phenotypes can be studied with insertional mutagenesis, we 
took advantage of the recently validated LV-based insertional 
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mutagens to build up a new experimental platform to identify the 
culprits of drug resistance to targeted anti-cancer therapies in dif-
ferent tissue types.

Breast cancer is the most commonly diagnosed cancer and a 
leading cause of death in women worldwide.11 Recently, targeted 
therapies have been developed to treat different subtypes of the 
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disease characterized by specific genotypes.12 In particular, HER2-
directed monoclonal antibodies and small molecules have been used 
to treat HER2+ breast carcinomas, which represent 30% of human 
mammary tumors.13 Despite providing significant clinical responses, 
intrinsically resistant tumors exist, and even when an initial regres-
sion is observed, the incidence of tumor relapse is extremely high.14 
Therefore, we decided to apply LV-based insertional mutagenesis 
screening to identify genes whose deregulation is involved in resis-
tance to lapatinib, a HER2 and EGFR inhibitor recently approved for 
the treatment of metastatic HER2+ breast cancer.15

As targets for insertional mutagenesis, we used the BT474 and 
SKBR3 cell lines. The BT474 cell line expresses the estrogen and 
progesterone receptors (ER and PR respectively) and represents a 
luminal B subtype breast tumor, while the SKBR3 cell line is ER- 
PR- and represents the typical HER2+ subtype.16 Since both cell 
lines highly overexpress the HER2 receptor, they are commonly 
employed in research for studies on HER2-targeting agents, includ-
ing trastuzumab (a monoclonal antibody) and lapatinib (a tyrosine 
kinase inhibitor), to which they display substantial sensitivity.17

By applying LV-based insertional mutagenesis to these two 
breast cancer cell lines, we identified 62 genes putatively involved 
in lapatinib resistance. We showed that forced expression of the 
top ranking CIS genes establishes resistance to the drug and 
found that those genes are frequently mutated or overexpressed 
in human breast tumors characterized by poor prognosis. Then, 
as a proof of principle of the broad applicability of this LV-based 
platform to different types of cancers and drugs, we successfully 
applied it to another clinically relevant context, such as the resis-
tance to erlotinib in the highly lethal pancreatic adenocarcinoma. 
Our screening identified three candidate erlotinib resistance 
genes in the HPAC pancreatic cancer cell line. Overall, this study 
describes and validates an efficient and versatile strategy for the 
identification of anticancer drug resistance genes of potentially 
high clinical relevance.

RESULTS
LV-based insertional mutagenesis induces resistance 
to lapatinib in a dose-dependent fashion in breast 
cancer cell lines
In order to induce drug resistance, we designed an LV construct 
containing the strong spleen focus-forming virus (SF) enhancer/
promoter in the long terminal repeats (LTR) and no transgene 
inside (LV.SF.LTR, Figure 1a), a vector configuration simi-
lar to the one proved to be highly genotoxic in sensitive in vivo 
assays.10,18 The rationale of our in vitro screening is to infect a 

bulk population of drug-sensitive cells with LV.SF.LTR to gener-
ate drug-resistant clones by insertional mutagenesis. Upon drug 
exposure, drug-resistant clones are positively selected and expand, 
while sensitive clones die and are no more represented in the bulk 
population. After drug selection, DNA is extracted from the cell 
population enriched in LV-induced resistant cells, and LV inser-
tions are retrieved and mapped. Statistical analysis identifies CIS 
in the resistant populations that are not found in cell cultures not 
exposed to the drugs. These loci represent novel candidate anti-
cancer drug resistance genes (Figure 1a).

Two HER2+ breast cancer cell lines, SKBR3 and BT474, were 
infected with the LV.SF.LTR vector at multiplicity of infection 
(MOI) 1, 10, and 100 (SKBR3 cells) or MOI 0.5, 5, and 50 (BT474 
cells). Two weeks later, both LV-infected and untransduced cells 
were seeded at a density of 107 cells/plate and supplemented with 
medium containing different concentrations of lapatinib (0.5, 
1.0, or 2.0 μmol/l) or vehicle (“dimethyl sulfoxide (DMSO)-only” 
samples).

Lapatinib treatment induced major cell death, but the 
few surviving cells grew and formed colonies (Figure 1b,c; 
Supplementary Figure S1a). Lapatinib treatment was carried 
on until counting the number of colonies becomes feasible (see 
Materials and Methods). LV transduction induced a significant 
increase in the number of resistant cells and resistant colonies 
with respect to treatment-matched untransduced cells in both cell 
lines (P value ranging from <0.001 to <0.05 by one-way analysis of 
variance with Bonferroni’s multiple comparison test correction). 
Moreover, the number of resistant cells and resistant colonies 
increased with the LV dose, at different lapatinib concentrations 
tested (Figure 1d–g; Supplementary Figure S1b–d). These data 
suggest that LV-mediated insertional mutagenesis induced lapa-
tinib resistance in a LV dose-dependent fashion.

Integration analysis reveals candidate lapatinib 
resistance genes
Lapatinib-resistant cell colonies were pooled and harvested. DNA 
was extracted and subjected to linear amplification-mediated 
PCR (LAM-PCR) in order to retrieve LV/cellular genome junc-
tions representative of the vector integration sites (Supplementary 
Figure S2a). Together with lapatinib-selected samples, we per-
formed LAM-PCR also on samples collected before lapatinib 
selection (“PRE”) and on DMSO-only samples. Altogether, we gen-
erated 36 samples that were subjected to LAM-PCR with two differ-
ent restriction enzymes (72 total LAM-PCRs, see Supplementary 
Table S1 and Supplementary Figure S2b).

Figure 1 Lentiviral vector (LV)-transduction induces resistance to different lapatinib concentrations in a LV dose-dependent fashion in two 
different breast cancer cell lines. (a) Schematic representation of the project rationale: (1) initially drug-sensitive cells are transduced with a highly 
mutagenic LV (depicted above) with strong SF enhancer/promoter elements in the LTR and no transgene inside. SA, splice acceptor; SD, splice donor; 
SF, spleen focus forming virus enhancer/promoter sequences. (2) Insertional mutagenesis induces the emergence of drug resistant clones (in red) 
with traceable mutations (the LV integrations) near or within genes whose deregulation confers resistance to a targeted anticancer drug of interest. 
(3) Upon drug selection, resistant cell clones grow and are strongly enriched in the bulk population. Following steps include (4) DNA collection 
from a bulk population of resistant clones, (5) amplification of vector-genome junctions by LAM-PCR and (6) deep sequencing of PCR products. 
(7) Bioinformatics and (8) statistical analysis finally allow mapping of the integration sites and the identification of commonly targeted genes in this 
selected population (CIS), which mark novel candidate culprits of drug resistance. (b, c) Representative ×50 magnifications at the end of selection 
for untransduced and LV-transduced (multiplicity of infection (MOI): 100) SKBR3 cells and untransduced and LV-transduced (MOI: 50) BT474 cells. 
Yellow dashed lines mark the borders of representative resistant clones. Scale is indicated in red. (d–g) Total number of colonies (d and f) and cells 
(e and g) counted at the end of selection with two different drug concentrations tested. The experimental groups are shown in the legends. The 
standard deviation is shown for each group. Asterisks indicate statistical significance by one-way Anova analysis with Bonferroni’s multiple comparison 
test correction, with one, two or three asterisks if the P value is below 0.05, 0.01, or 0.001, respectively.
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LAM-PCR products were tagged with barcoded fusion prim-
ers and sequenced in four MiSeq (Illumina) runs. Sequences 
were analyzed by a dedicated informatics pipeline and mapped 
on the human genome by the Burrows-Wheeler Aligner (BWA). 
Overall, we mapped more than 8 million LAM-PCR products, 
corresponding to 39,365 unique integration sites, of which 24,306 
were retrieved from SKBR3 samples (12,382 in lapatinib-selected 
samples and 11,924 in controls) and 15,059 from BT474 samples 
(9,007 in lapatinib-selected samples and 6,052 in controls). The 
LV integrations were broadly distributed throughout the genome 
(Supplementary Figure S3) and the deepness of integration 
retrieval allowed us to have a representative picture of the integra-
tion events in the analyzed samples (see Materials and Methods).

CIS were defined as previously described19 but applying addi-
tional cut-offs of stringency to avoid false positive CIS in large 
datasets of integrations (see Materials and Methods). Comparison 
with the list of CIS identified in PRE and DMSO-only samples 
corrected for biases due to the aberrant karyotype of the cell lines 
and LV integration site preferences, and excluded targeted genes 
promoting cell proliferation and fitness independently from drug 
exposure (Supplementary Table S2; Supplementary Figure S4a–
d). By subtracting these CIS from the CIS list found in lapatinib-
selected samples (Supplementary Table S3), we identified 27 CIS 
in SKBR3 cells and 35 CIS in BT474 cells, which represent candi-
date lapatinib resistance genes (Table 1; Supplementary Table S4; 
Supplementary Table S5; Supplementary Table S6).

The top-ranking CIS in BT474 cells was PIK3CA on chromo-
some 3, targeted by 38 independent integrations occurring in a 
65 Kb window (Figure 2a). All the integrations were located in 
the first intron of the gene, upstream of the first coding exon. 
Moreover, 36/38 integrations were orientated in sense with the 
transcription of the PIK3CA gene, which is very unlikely to hap-
pen by chance. Indeed, these findings strongly suggest active 
selection of clones carrying insertion of the SF promoter upstream 
of the PIK3CA gene, which could generate high levels of chime-
ric transcripts encoding full-length protein by promoter inser-
tion, a well-known mechanism of insertional mutagenesis.8,18 
PIK3CA encodes for the alpha isoform of the p110 catalytic sub-
unit of PI3K, and BT474 cells carry a K111N-mutated version of 
PIK3CA, which has transforming potential20 and was never asso-
ciated before to lapatinib resistance.

Notably, the top ranking CIS in SKBR3 cells was PIK3CB, 
another isoform of the p110 catalytic subunit of PI3K, targeted 
by 31 integrations clustered in a 147 Kb window upstream of 
the gene with marked orientation preference (27/31 integrations 
are in sense with PIK3CB transcription), which might again be 
indicative of a promoter insertion mechanism of mutagenesis 
(Figure  2b). PIK3CB was not previously linked to resistance to 
targeted drugs, including lapatinib.

Additionally, we identified CIS genes targeted by LV inte-
grations with a pattern of orientation and distribution that is 
suggestive of an enhancer-mediated mechanism of insertional 
mutagenesis, such as MAP4K3 and CADM2 (both with six inte-
grations occurring in antisense to gene transcription and five in 
sense, Supplementary Figure S5a,b). We also found CIS asso-
ciated to noncoding RNAs, such as LINC00308, MIR181A1, 
and LOC647107 (Figure 2c; Supplementary Figure S5c; 

Supplementary Table S4; Supplementary Table S6) and other 
CIS genes in the PI3K pathway such as INPP4B, MAP4K3, 
GAB1, and RPS6KA5 (Figure 2d; Supplementary Figure S5a; 
Supplementary Table S4; Supplementary Table S6).

Validation of PIK3CA and PIK3CB as lapatinib 
resistance genes
In order to validate the two top-ranking CIS discovered by our 
study as bona fide lapatinib resistance genes, we tested the prosur-
vival effect of their forced expression in cells cultured in the pres-
ence of lapatinib. We generated LVs with self-inactivating LTRs 
(a design associated with low risk of insertional mutagenesis)18 
in which the expression of the putative lapatinib resistance genes 
(K111N-mutant PIK3CA or wild-type PIK3CB) is driven by the 
SF enhancer/promoter in an internal position (Figure 3a), and 
used them to transduce BT474 and SKBR3 cells. The BT474 
cells transduced with K111N-mutant PIK3CA displayed a sig-
nificant survival advantage upon lapatinib treatment as compared 
to mock treated cells and wild-type PIK3CA-overexpressing 
cells (P < 0.001 at 1 week by unpaired t-test, Figure 3b,c and 
Supplementary Figure S6a,c; P < 0.01 at 24 hours, P < 0.05 at 72 
hours by unpaired t-test). Similarly, PIK3CB-transduced SKBR3 

Table 1 List of the top ranking common integration sites (CIS) 
corresponding to novel candidate lapatinib resistance genes

CIS SKBR3 CIS BT474

RefSeq Chr.
CIS 

power RefSeq Chr.
CIS 

power

PIK3CB 3 31 PIK3CA 3 38

RPS6KA5 14 15 KIFAP3 1 13

CUL1 7 14 PKIA 8 11

SEMA3E 7 13 CADM2 3 10

ZNF277 7 13 SLITRK6 13 10

WWC2 4 12 CSMD3 8 10

LOC400940 2 11 LOC643401 5 9

LINC00308 21 11 KIAA0528 12 8

HDAC9 7 11 ZNF652 17 8

MAP4K3 2 11 VAPB 20 8

PTPN21 14 11 MRPS28 8 8

GNG12 1 11 KYNU 2 8

VRK2 2 11 INPP4B 4 8

SGMS2 4 11 STK4 20 7

KCTD3 1 11 PCDH17 13 7

OPA1 3 11 MYCBP2 13 7

ETV1 7 10 BMP7 20 7

NIPBL 5 10 IRS4 X 7

GAB1 4 10 CDH7 18 7

MIR-181A1 1 10 SEMA3C 7 7

The 20 top-ranking CIS identified in lapatinib-selected SKBR3 (left) and BT474 
(right) cells are shown, after the filtering procedure. In the first column, the 
most prevalent gene within each CIS is shown. In the second and third col-
umns, the chromosome where the CIS is located and its CIS power (number 
of integrations within the genomic region that statistically defines the CIS) are 
listed. For the complete list of the 62 CIS in the lapatinib-selected dataset, see 
Supplementary Table S4 and Supplementary Table S6.
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Figure 2 Representative CIS in the lapatinib-selected dataset. The UCSC Genome Browser snapshots are shown for four representative CIS. 
(a) PIK3CA on chromosome 3 was targeted by 38 integrations in a 65 Kb window. All the integrations were located in the first intron of the gene, 
upstream of the first coding exon. Thirty-six of 38 integrations were orientated in sense with the transcription of the gene (which is shown by a black 
arrow). A green arrow sketches the marked orientation preference of integrations. (b) PIK3CB on chromosome 3 was targeted in SKBR3 cells by 31 
integrations clustered in a 147 Kb window upstream of the gene with marked orientation preference (green arrow). C) LINC00308 on chromosome 
21, identified as a CIS in SKBR3 cells, is a noncoding RNA gene targeted by integrations without orientation preference, sketched by green and red 
arrows pointing in opposite directions. (d) INPP4B on chromosome 4, identified as a CIS in BT474 cells, was targeted by intragenic insertions without 
orientation preference. In each panel, the genomic region showed in the snapshot is highlighted on top of the chromosome outline as a red vertical 
bar. Integrations are shown as colored vertical bars in each dataset (from the top: BT474 DMSO/PRE controls, BT474 lapatinb-selected cells, SKBR3 
DMSO/PRE controls and SKBR3 lapatinib-selected cells). For the integrations in selected samples, red, blue and green bars indicate that they have 
been retrieved from cell population transduced at high, intermediate and low multiplicity of infection (MOI), respectively. For SKBR3, high MOI = 
100, intermediate MOI = 10, low MOI = 1: for BT474 high MOI = 50, intermediate MOI = 5, low MOI = 0.5. A purple line underscores the dataset in 
which this CIS was identified. The succession of introns (lines) and exons (filled squares) of the gene(s) is shown in blue on the bottom of the panel.
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cells displayed a significant survival advantage upon lapatinib 
treatment compared to mock-treated cells (P < 0.001 at 2 weeks 
by unpaired t-test, Figure 3d,e; P < 0.01 at 24 and 72 hours by 
unpaired t-test, Supplementary Figure S6b). These results were 
confirmed by measuring the lapatinib dose–response curve 
of K111N PIK3CA overexpressing BT474 cells and PIK3CB-
ovrexpressing SKBR3 cells (Supplementary Figure S6d). These 
data indicate that the genes identified in our screening are bona 
fide lapatinib resistance genes.

We then performed data-mining on human breast cancer 
datasets to validate the clinical relevance of the top 2 ranking 
lapatinib resistance genes. PIK3CA is the most frequently mutated 
gene in human breast cancer together with TP53 (International 
Cancer Genome Consortium Database: http://dcc.icgc.org and 
refs. 21,22). PIK3CA activating mutations were recently found to 
be associated to a worse prognosis23 and to trastuzumab and lapa-
tinib resistance in breast cancer patients,24,25 thus validating the 
clinical relevance of our screening strategy. Since overexpression 
of wild-type PIK3CB was also able to induce lapatinib resistance in 

our study, we interrogated its expression profile in human breast 
cancers (see Materials and Methods). Remarkably, we found that 
increased expression of PIK3CB is associated to a significantly 
decreased overall survival (OS) and relapse-free survival (RFS, P 
value = 0.033 and 0.012 by Log Rank test, respectively) in patients 
affected by HER2+ breast cancer (Figure 3f,g).

LV-based insertional mutagenesis identifies erlotinib 
resistance genes in pancreatic cancer cell line
In order to demonstrate the broad applicability of the LV plat-
form for insertional mutagenesis studies aimed at identifying 
novel drug resistance genes, we performed a screening in a dif-
ferent tumor type and with a different drug. HPAC, a well-charac-
terized pancreatic adenocarcinoma cell line, was used to identify 
the culprits of resistance to erlotinib, an EGFR inhibitor used in 
the clinical practice for pancreatic cancer.26,27 HPAC cells were 
infected at MOI 75 with the LV.SF.LTR vector. Two weeks later, 
both LV-infected and untransduced cells were seeded at a density 
of 4 × 106 cells/plate and supplemented with medium containing 

Figure 3 Validation of K111N-mutant PIK3CA and wild-type PIK3CB as novel lapatinib resistance genes. (a) The structure of the SIN lentiviral 
vector (LV) used for validation experiments is shown. Acronyms as in Figure 1a legends. (b–e) The fold change difference toward initially plated cells 
is plotted in the graph for BT474 cells (b, c) and SKBR3 cells (d, e) transduced at two different vector doses (multiplicity of infection (MOI): 1 and 
MOI: 10) in order to overexpress the K111N-mutant PIK3CA gene (b, c) or the wild-type PIK3CB gene (d, e), and cultured for 1 week at 0.25 and 
0.5 μmol/l lapatinib (b, c) or for 2 weeks at 0.5 and 1.0 μmol/l lapatinib (d, e) together with untransduced cells (UNTR). The standard deviation is 
shown for each group. Asterisks indicate statistical significance by unpaired t-test, with one, two, or three asterisks if the P value is below 0.05, 0.01, 
or 0.001, respectively. (f, g) The relapse-free survival (RFS) and overall survival (OS) Kaplan–Meier plots are shown for human HER2+ breast cancer 
patients taken from http://kmplot.com, split in two cohorts according to PIK3CB expression (red and black lines corresponding to high- and low-
expressers, respectively). The logrank P values is shown.
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different concentrations of erlotinib (50 or 100 μmol/l) or vehicle 
(“DMSO-only”). The treatment with the vector induced a signifi-
cant increase in the total number of resistant cells and resistant 
colonies (P value ranging from <0.01 to <0.05 by unpaired t-test, 
Figure 4a,b; Supplementary Figure S7a). Resistant colonies 
were pooled and harvested, and their genomic DNA subjected to 
LAM-PCR in order to retrieve vector integration sites. A MiSeq 
sequencing run was performed on a library of 16 LAM-PCR prod-
ucts from 8 samples (see Supplementary Table S1). We mapped 
around 1.25 million LAM-PCR products, corresponding to 2,610 
unique integration sites, of which 1,733 in erlotinib-selected sam-
ples and 877 in DMSO-only/PRE controls.

The CIS were defined and filtered as described above. We 
retrieved from the erlotinib-selected dataset 3 CIS, which represent 
candidate erlotinib resistance genes (Figure 4c; Supplementary 
Figure S7b–d). Among them, SOS1 on chromosome 2 carried 

11 integrations in a 12 Kb window within intron 8 (Figure 4d). 
Moreover, 11/11 integrations were orientated in sense with the 
transcription of the gene, suggesting that promoter insertion 
inducing overexpression of a truncated hyperactive protein may 
be the result of LV integration8 and be the culprit of erlotinib 
resistance.

DISCUSSION
Targeted therapies represent a new frontier of cancer treatment, 
but their specificity is offset by the occurrence of pre-existing or 
acquired resistance. Understanding the mechanisms that dictate 
anticancer drug resistance is currently an unmet need that can 
have a significant impact on the clinics. Previous forward genet-
ics studies aimed at unraveling the molecular bases of antican-
cer drug resistance have used γ-retroviruses or transposons to 
identify genes potentially endowing resistance towards cytotoxic 

Figure 4 Lentiviral vector (LV)-based insertional mutagenesis unravelled erlotinib resistance genes in the HPAC pancreatic cancer cell line. 
(a) Total number of cells counted at the end of selection at each drug concentration tested. The experimental groups are shown in the legends. 
The standard deviation is shown for each group. Asterisks indicate statistical significance by unpaired t-test, with one, two, or three asterisks if the P 
value is below 0.05, 0.01, or 0.001, respectively. (b) Representative ×50 magnifications at the end of selection for untransduced and LV-transduced 
(MOI: 75) HPAC cells. Yellow dashed lines marks the borders of a representative resistant clone. Scale is indicated in red. (c) The three CIS identified 
in erlotinib-selected HPAC cells are shown, after the filtering procedure. In the first column, the most prevalent gene within each CIS is shown. In the 
second and third columns, the chromosome where the CIS is located and its CIS power (number of integrations within the fixed genomic region 
which statistically defines the CIS) are listed. (d) SOS1 on chromosome 2 was targeted in erlotinib-selected HPAC cells by 11 integrations clustered in 
a 12 Kb window upstream of the gene and all of them were orientated in sense with the transcription of the gene (which is shown by a black arrow). 
A green arrow pointing in the direction of gene transcription outlines the marked orientation preference of integrations.
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chemotherapy or hormonal antagonists.28–30 However, when 
studying cancer cells, the low in vitro efficiency of transposon-
based insertional mutagenesis systems strongly limited the dis-
covery of novel culprits that induce resistance to anticancer drugs. 
In this study, we developed and validated a new screening strat-
egy based on LV insertional mutagenesis that allows identifying 
genes conferring resistance to targeted anticancer drugs with high 
efficiency.

This LV-based platform offers several advantages. Differently 
from low-throughput single-cell-derived clonal studies, by work-
ing with bulk cultures exposed to increasing LV loads, we could 
screen a large number (5 × 106–109) of insertional mutagenesis 
events per Petri dish, which allowed identifying 65 candidate drug 
resistance genes. The finding that the yield of resistant cells and 
resistant clones significantly increases upon incrementing the LV 
dose further confirms that we are mainly scoring vector-induced 
events of drug resistance. All the identified CIS are constituted by 
integrations retrieved by at least two biological replicates of trans-
duction and at least two different experimental conditions (MOI 
of infection and/or different drug concentration for the selection, 
Supplementary Table S6), thus strengthening the solidity of our 
findings.

LVs are able to transduce at high level a vast number of cell 
types9 and have a broad integration pattern throughout the 
genome (Supplementary Figure S3), with a bias toward gene 
dense regions and for expressed genes,31 two features which may 
facilitate the mechanisms of mutagenesis underlying the develop-
ment of drug resistance. Preferential integration of LVs within 
transcriptional units can allow different mechanisms of gene 
deregulation such as enhancer insertion, promoter insertion, 
aberrant splicing, and loss of function.7,10 The platform is appli-
cable to different clinically relevant contexts. Indeed, as a proof-
of-concept study, we investigated the mechanisms of resistance to 
a clinically relevant drug, lapatinib, in a highly frequent and lethal 
cancer, i.e., HER2+ breast cancer. Then, we successfully applied 
the screen to a different tumor model (pancreatic adenocarci-
noma cells) and drug (erlotinib). The versatility and scalability of 
the platform could make it suitable to generate comparative data 
by studying the genes that confer resistance to the same drug in 
different cell lines, or the genes that confer resistance to different 
drugs in the same cell line. Moreover, it could also be deployed to 
study mechanisms of resistance to different drug combinations in 
order to provide further steps of therapy optimization. There are 
also some limitations to be recognized in our strategy, such as the 
possibility to screen only cell-autonomous mechanisms in the in 
vitro setting, and the bias toward gain-of-function mutations typi-
cal of different insertional mutagens.6,7 Additionally, the analysis 
of bulk populations of resistant clones does not allow measuring 
quantitative deregulation of RNA and protein in specific resis-
tant clones that may require a postscreening validation. By deep 
sequencing of LAM-PCR products from selected samples as well 
as from control samples collected before the occurring of selection 
(“PRE”) or cultured in parallel without the drug (“DMSO-only”), 
we could eliminate the effect of some biases that could hamper 
our analysis. By filtering out CIS detected in control samples, we 
eliminated the effect of LV integration site preferences and the 
false positive CIS due to the aberrant karyotype of the cell lines. 

Indeed, several of the filtered CIS map on chromosomal regions 
known to be amplified in SKBR3 and BT474 cells and thus result-
ing overtargeted when compared to the nonamplified genome 
(Supplementary Table S3; Supplementary Figure S4a).32 
Moreover, by the DMSO-only controls we could also discard 
those genes that may provide a proliferative advantage both in the 
absence and presence of the drug (such as the well-known onco-
genes MET, MYC, and MECOM Supplementary Figure S4b–d). 
Although we recognize that these genes may also be relevant for 
inducing drug resistance and warrant further investigation, here 
we conservatively preferred to focus on genes that were selected 
exclusively due to lapatinib selective pressure.

Remarkably, the top-ranking CIS in both cell lines are two 
closely related genes, PIK3CA and PIK3CB, which encode for two 
isoforms (α and β) of the p110 catalytic subunit of PI3K. Forced 
expression of these genes in cell lines validated them as lapatinib 
resistance genes. Moreover, our integration dataset is strongly 
enriched in genes from the PI3K cascade. The PIK3CA oncogene is 
the most frequently mutated gene in human breast cancer together 
with TP53 (International Cancer Genome Consortium Database: 
http://dcc.icgc.org and Refs [21,22]). Remarkably, recent studies 
have shown that PIK3CA mutations are significantly associated 
to resistance to lapatinib or trastuzumab (a monoclonal antibody 
targeting HER2).23–25,33 These data validate the clinical relevance of 
the findings obtained by our experimental platform.

In our screening, PIK3CA and PIK3CB were cell line-specific 
and mutually exclusive CIS in BT474 and SKBR3 cells, respec-
tively. PIK3CA is the strongest CIS in BT474 cells, which har-
bor a K111N mutation in the N-terminal domain of the protein 
not previously associated to resistance. This mutation has been 
classified at intermediate level for its overall capacity to promote 
cell proliferation, growth factor independency, morphogenesis 
potential, focus formation and invasivity.20 We demonstrated that 
overexpression of the K111N-mutated PIK3CA is able to confer 
resistance to lapatinib in vitro, while overexpression of wild-type 
PIK3CA is not. Accordingly, PIK3CA was not found as a CIS in 
SKBR3 cells that carry wild-type alleles of the gene, highlight-
ing how the pre-existing mutational landscape of the selected 
cell model can dictate the culprits of drug resistance after inser-
tional mutagenesis. Collectively, in our study, only the concur-
rent mutation and overexpression of PIK3CA is able to provide 
resistance to lapatinib. On the other hand, we retrieved a SKBR3 
cell-specific CIS in proximity of PIK3CB, a gene which has never 
been linked to lapatinib resistance before but which is emerg-
ing as an important player in breast cancer and a novel thera-
peutic target.34,35 PIK3CB overexpression was associated with 
worse breast tumor prognosis, higher grade and distant metas-
tasis.36 Moreover, it was correlated to HER2 positivity and ER/
PR negativity, in agreement with SKBR3 receptor status. It has 
been shown that differently from p110α, p110β is oncogenic 
when overexpressed in the wild-type state.37 Furthermore, when 
PTEN expression among different HER2-amplified cell lines 
was assessed, SKBR3 cells showed a low level of PTEN protein 
compared to other cell lines (e.g., BT474).38 Recently, it has been 
demonstrated that PTEN-deficient tumors rely on p110β signal-
ing for growth in both cell-based and in vivo settings.35,39 Our 
data may thus uncover a relevant role for PIK3CB in inducing 
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lapatinib resistance in this specific molecular subtype of breast 
cancer. Importantly, by mining gene expression and clinical data, 
we found that patients carrying HER2+ breast cancer character-
ized by high PIK3CB expression have a decreased RFS and OS 
compared to patients with low PIK3CB expression. These findings 
show that our screening was able to identify novel lapatinib resis-
tance genes with potentially high clinical relevance. Moreover, 
given the relevance of p110β activity in PTEN-null tumors, we 
may speculate that its classification as a drug resistance gene may 
extend beyond the tissues and drugs that we have investigated. 
Overall, our findings indicate that hyperactivation of PI3K rep-
resents a converging node of lapatinib resistance. These results 
may corroborate the rationale of combining administration of 
lapatinib and PI3K inhibitors, which is currently being tested 
in a phase I/II clinical trial (PIKHER2) (http://clinicaltrials.gov/
show/NCT01589861). Moreover, our findings prompt to explore 
the use of inhibitors specific for the alpha or beta subunits in 
tumors carrying the specific mutations or upregulation.

Regarding candidate erlotinib resistance genes identified in 
HPAC cells, one of the most intriguing finding was the presence of 
a CIS within SOS1, which encodes a guanine nucleotide exchange 
factor for RAS (whose mutations are detected in more than 90% 
of human pancreatic cancers).40 Interestingly, as we previously 
reported for LV-induced murine hepatocellular carcinomas,8 
integrations in SOS1 were all in intron 8 and in the same orienta-
tion of gene transcription (Figure 4d). Since we showed that the 
LV-truncated SOS1 protein was responsible for hepatocarcino-
genesis, we can speculate that also the observed drug resistance 
may be mediated by overexpression of a truncated and hyperac-
tive SOS1 protein.

Several newly identified candidate lapatinib and erlotinib resis-
tance genes are intertwined in cellular pathways that converge to 
transduce HER2/EGFR signaling (Figure 5). Among them, CUL1 
(CIS power 14), a novel marker of poor prognosis and a potential 
therapeutic target in human breast cancer,41 is a core component 
of multiple E3 ubiquitin-protein ligase complexes, which medi-
ate the ubiquitination of proteins involved in cell cycle progres-
sion, signal transduction and transcription. IRS4 (CIS power 7) 
was shown to potentiate PI3K activity.42 INPP4B (CIS power 8) is 
a tumor suppressor gene that inhibits PI3K signaling and whose 
loss of heterozygosity in breast cancer patients is correlated with 
lower overall survival.43 RPS6KA5 (CIS power 15, also known as 
MSK1) is a serine-threonine kinase that was previously reported 
to be involved in drug resistance in mouse models of breast can-
cer.44 Upon phosphorylation by ERK, MSK1 activates different 
transcription factors, among which ETV1 (CIS power 10), one of 
the major effectors of HER2-driven mammary tumorigenesis.45–47 
This convergence may indicate that the selected tumor cells are 
still dependent on the pathways inhibited by the drug and that 
drug resistance occurs by downstream or parallel activation of the 
same signaling axis.

An advantage of insertional mutagenesis over other functional 
studies, such as shRNA and siRNA screens, is that the genome 
wide distribution of LVs and other mutagens allow them to hit 
even noncanonical or nonannotated genes, which are not usually 
included in library-based approaches.7 Intriguingly, we identified 
not only protein-coding genes as culprits of drug resistance, but 
also microRNAs (miRNAs) and long noncoding RNAs (Figure 2c; 
Supplementary Figure S5c and Supplementary Table S4). For 
example, we found that the gene encoding for miR-181a1 is a CIS 

Figure 5 Several newly identified lapatinib/erlotinib resistance genes are intertwined in the transduction pathway of HER2/EGFR. In the 
graph, the HER2/EGFR transduction pathway is outlined. Black arrows and red lines indicate positive and negative regulation, respectively. Within 
pink boxes, monoclonal antibodies and small molecule tyrosine kinase inhibitors used in the clinics to treat patients with aberrant activation of the 
HER2/EGFR pathway are shown. A yellow star marks genes that have been identified as novel lapatinib/erlotinib resistance genes in our screening.
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in BT474 cells. Notably, miR-181a1 was previously linked to drug 
resistance in HER2+ breast cancers, and corresponding anti-miRs 
are under development for therapeutic purposes.48

In summary, by LV-based insertional mutagenesis in breast 
and pancreatic cancer cell lines, we identified 65 candidate drug 
resistance genes whose deregulation confers resistance to lapa-
tinib or erlotinib, respectively. Among them, we identified previ-
ously known anticancer drug resistance genes that validated our 
approach and new candidate drug resistance genes that include 
protein-coding and noncoding RNAs. Importantly, we found that 
our mutagenesis platform allowed the identification of lapatinib 
resistance genes whose mutation or expression impact the sur-
vival of breast cancer patients, thus indicating that our approach 
discovered clinically relevant genes.

Given the wide cell tropism of LVs, we envision, as future pros-
pect, an expansion of this insertional mutagenesis screenings to a 
variety of primary and metastatic tumors, and also in the in vivo 
setting. Besides LVs that offer some advantages, other insertional 
mutagens could be exploited for this type of study, especially γ- or 
α-retroviruses that, with their different integration site preferences 
could provide complementary results for drug resistance genes 
identification. Integration of “omics” and insertional mutagenesis 
data could unravel novel interactions between the pre-existing 
mutational landscape of tumor cells and specific genes whose 
alteration is required to establish resistance to a given anticancer 
drug. These data may help designing new drug combinations that 
target both the mutated/amplified oncogenes and the drug resis-
tance genes, potentially leading to sustained therapeutic responses.

MATERIALS AND METHODS
Cell lines and chemicals. The BT474 and SKBR3 human breast cancer cell 
lines and the HPAC pancreatic adenocarcinoma cell line were purchased 
from the American Type Culture Collection (ATCC). They were cultured 
in RPMI-1640 medium supplemented with fetal bovine serum (10%), 
glutamine, and antibiotics (penicillin/streptomycin) at 37 °C with 5% 
CO2 in a humidified incubator. Lapatinib and erlotinib were purchased 
from Sequoia Biosciences (St Louis, MO) and were dissolved in DMSO 
to obtain 200 mmol/l stock solutions, which were then diluted 1:100 in 
phosphate buffer to obtain working solutions to be added to the cell media 
at different concentrations.

Vector production. The transfer plasmid for the production of LV.SF.LTR 
was cloned as follows. The GFP.PRE cassette was eliminated from the 
LV.SF.LTR.GFP.PRE plasmid18 by removing a 1269 bp KpnI-AgeI frag-
ment encoding GFP.PRE. Then, DNA ends were blunted and intramo-
lecular religation was performed. The transfer plasmids for the production 
of validation vectors were cloned as follows. The GFP.PRE cassette was 
eliminated from the backbone of SIN.LV.SF.GFP.PRE plasmid18 by remov-
ing a 736 bp AgeI-SalI fragment encoding GFP.PRE. The K111N-mutant 
and wild-type PIK3CA cDNAs were obtained by PCR (with DNA from 
BT474 and SKBR3 cells, respectively) using oligos that added at the two 
ends of the ORF the required restriction enzyme target sequences. The 
PIK3CB cDNA was obtained by PCR with DNA from SKBR3 cells. Then, 
PCR products were AgeI-SalI double-digested and ligated within the back-
bone construct. We produced concentrated LV stocks, pseudotyped with 
the VSV-G envelope, by transient co-transfection of four plasmids in 293T 
cells and titering on 293T cells as described.49

Selection protocol. 107 BT474 and SKBR3 cells were transduced with LV.SF.
LTR in a 150 mm diameter Petri dish (volume of infection 20 ml, polybrene 8 
μg/ml) at different vector doses (MOI: 0.5, 5, and 50 for BT474 cells and MOI: 

1, 10, and 100 for SKBR3 cells). Three biological replicates of infection were 
performed. Two weeks after transduction, after the collection of a cell pellet 
for DNA extraction (“PRE” samples), 107 transduced and untransduced cells 
were seeded in 150 mm diameter Petri dishes. The following day, lapatinib 
selection was started by supplementing growth medium with different con-
centrations of lapatinib (0.5, 1, or 2 μmol/l) or vehicle only (“DMSO-only”) 
and renewing the treatment two to three times a week for 30 days (SKBR3 
cells) or 60 days (BT474 cells). DMSO-only controls were kept in culture for 
the same period of time, and passaged with low passage ratios (1:3) upon 
reaching confluence. At the end of selection protocol, a cell pellet was col-
lected from the whole dish where resistant clones have emerged upon lapa-
tinib treatment, and from DMSO-only controls. To evaluate the development 
of lapatinib resistance, two counts were performed at the end of selection: 
total cell count and colony count. Total count of viable cells was performed 
with the aid of both Bürker chamber and the Countess automated cell coun-
ter (Life Technologies, Paisley, UK) upon Trypan Blue staining. Colony 
count was performed with the microscope at ×5 magnification: clones were 
counted on 10 nonconsecutive 4 cm2 areas across each plate (overall corre-
sponding to around one fourth of the total surface), and these data were used 
to estimate the total number of colonies within the whole plate.

For erlotinib selection, 4 × 106 HPAC cells were initially transduced 
at MOI 75 with LV.SF.LTR in a 100 mm diameter Petri dish (volume of 
infection 10 ml, polybrene 8 µg/ml). Three biological replicates of infection 
were performed. Two weeks after transduction, after the collection of a 
cell pellet for DNA extraction, 4 × 106 transduced and untransduced cells 
were seeded in 100 mm diameter Petri dishes. The following day, erlotinib 
selection was started by supplementing growth medium with different 
concentrations of erlotinib (50 or 100 μmol/l) or vehicle only (“DMSO-
only”) and renewing the treatment two to three times a week for 60 days. 
Samples at the end of the selection were collected as described above.

Vector copy number (VCN) analysis. Genomic DNA was extracted in a 
PCR-dedicated room from frozen cell pellets using the Qiagen blood and 
cell culture DNA Kits (Qiagen, Germantown, MD). Q-PCR analysis was 
performed as described50 with probes complementary to human genomic 
telomerase and a common LV sequence in the ψ-signal region. VCN was 
determined as the ratio between the relative amounts of LV versus total 
DNA (number of diploid genomes) evaluated by telomerase. A standard 
curve was made using dilutions from a clone of the cell line CEM (human 
T-cell lymphoblastic-like cell line) with a known LV VCN. Reactions 
were carried out according to manufacturer’s instructions and analyzed 
using the ABI Prism 7900 HT Sequence Detection System (Applera, Life 
Technologies). Sequences of primers and probes are available upon request.

LAM-PCR procedure. LAM-PCR was performed on all drug-selected 
samples, DMSO-treated cells and PRE-selection samples as described.51 
A clone of the cell line CEM (human T-cell lymphoblastic-like cell line) 
whose integrations are known was used as positive control for the reaction. 
Briefly, 200 ng was used as template for LAM-PCR for every sample, irre-
spective of the integration load. LAM-PCR was initiated with two rounds 
of 50-cycle linear PCR and overnight magnetic beads capture. Then, after 
second-strand synthesis, restriction digestions using the enzymes Tsp509 I 
or HpyCH4 IV were performed. Following steps included enzyme-specific 
linker-cassette ligation, denaturation and nested exponential PCR. LAM-
PCR primers for LV were previously described.51 LAM-PCR amplicons 
were separated on Spreadex gels (Elchrom Scientific, Cham, Switzerland) 
to evaluate PCR efficiency and the bands pattern for each sample. Products 
of the second exponential amplification were tagged with barcoded primers 
specific for the Illumina platform, and were then pooled for MiSeq sequenc-
ing. See Supplementary Figure S2a for a general outline of the procedure.

Bioinformatics analysis of vector integrations. The output of MiSeq runs 
was analyzed by a bioinformatic pipeline developed within our laboratory, 
based on the BWA. CIS were defined according to the statistical definition 
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of CIS developed by other studies19 and additionally we applied a stringent 
statistical cut-off that accounts for the increased size of the integration 
datasets in order to avoid false-positive CIS. In detail, a frequency distri-
bution was built by ranking all the genomic regions recurrently targeted 
at least two times in 30 Kb, three times in 50 Kb, four times in 100 Kb, and 
five times in 200 Kb, according to their CIS power (number of integra-
tions within the fixed genomic region). Then, the lower 75% of recurrently 
targeted regions was discarded and the upper quartile was considered to 
be composed of bona fide CIS. This was done separately for the lapatinib 
selected dataset and the control dataset, composed of DMSO-only and 
PRE samples. The stringency of these criteria is comparable to different 
approaches used in previous studies that analyzed a similar number of 
integrations. The closest gene to each CIS integration was annotated as 
a CIS-associated gene, and the most prevalent gene within each CIS is 
indicated in Table 1 and Supplementary Table S4. To filter the CIS gener-
ated by vector integration biases or those conferring an advantage inde-
pendently from lapatinib selective pressure, we removed the CIS from 
the lapatinib-selected dataset with a matching CIS in the control dataset 
(DMSO-only and PRE datasets).

Validation experiments. We transduced 106 SKBR3 and BT474 cells with 
SIN LV vectors encoding PIK3CB, K111N-mutated PIK3CA, and wild-
type PIK3CA, in a 100 mm diameter Petri dish (volume of infection 10 ml, 
polybrene 8 μg/ml) at two vector doses (MOI: 1 and MOI: 10). Then, for 
“long-term” validation experiments (1–2 weeks) we plated 2.5 × 105 trans-
duced and untransduced cells in six-well plates and supplemented them 
with 0.5 or 1 μmol/l lapatinib for 2 weeks and 0.25 or 0.5 μmol/l lapatinib 
for 1 week, for SKBR3 and BT474 cells respectively. Three biological repli-
cates of treatment were performed. At the end of treatment, total cells were 
counted with the Countess automated cell counter (Life Technologies) 
upon Trypan Blue staining. We then normalized the total number of cells 
at the end of treatment for the total number of cells plated at the beginning 
of the experiment, in order to plot the cell viability. For “short-term” exper-
iments (24–72 hours), we plated 2 × 104 transduced and untransduced cells 
in 96-well plates and supplemented them with 1 μmol/l lapatinib for 24 and 
72 hours. For each time point, three biological replicates of treatment were 
performed. At the end of treatment, cells were counted with the CellTiter 
96 AQueous One Solution Cell Proliferation Assay (Promega, Madison, 
WI) protocol, in which the quantity of formazan product (as measured by 
the absorbance at 490 nm) is directly proportional to the number of living 
cells in culture. Briefly, at each time point 20 μl of the CellTiter reagent 
were added to each well of the assay and the plate was incubated at 37 °C 
for 2 hours before recording the absorbance at 490 nm using a 96-well plate 
reader (Victor X4; PerkinElmer, Waltham, MA). A time-zero reading was 
performed 6 hours after plating in order to normalize the absorbance levels 
at the end of treatment for the real starting absorbance. The ratio between 
the signal at the defined timepoint and the signal at 6 hours is indicated in 
the graphs and represent the cell viability.

The experiment described in Supplementary Figure S6d was 
performed as it follows. BT474 cells were transduced with the LV 
encoding for K111N-PIK3CA (MOI: 10) or GFP (MOI: 10) or mock-
transduced and SKBR3 cells with two different doses on the LV encoding 
PIK3CB (MOI: 10 and 50) or mock-transduced. 200,000 cells were seeded 
in Multiwell 6 plates in biological triplicate. The day after seeding, the cells 
were treated with media containing 10, 40, and 160 nmol/l of lapatinib 
or matched-doses of vehicle (DMSO). Three days after the treatment, the 
media was replaced with new media containing the same dose of drug. At 
day 6, each cell population was counted. The survival was calculated as the 
ratio between each drug treated population and the average of the survival 
of the vehicle treated population. To design the survival curve, lapatinib 
nmol/l doses were converted in LOG10 scale and plotted with the above 
mentioned survival on the y-axis.

Overall survival and relapse-free survival analyses in breast cancer 
patients. For Kaplan–Meier plots, we used the Kaplan–Meier plotter 

(http://kmplot.com), an online tool capable to assess the effect of 22,277 
genes on survival of 2,977 breast cancer patients.52 The analysis was 
restricted to HER2+ subtypes and excluded gene-biased arrays. For the 
survival analysis, we considered the expression level provided by the JetSet 
best probeset.53 Using the selected parameters, the analysis ran on 207 and 
88 patients for RFS and OS, respectively. To analyze the prognostic value of 
PIK3CB overexpression, the patients were split into two groups according 
to PIK3CB expression selecting the “auto select best cutoff ” option. The 
two patient cohorts were compared by a Kaplan–Meier survival plot and 
logrank P values was calculated.

Saturation and estimation of IS sampling. We can think at an amplicon 
library as a pool of individuals, grouped in species according to the dif-
ferent integration sites they represent. The sequencer draws amplicons 
from the library, without reintroduction, providing reads in 1 to 1 cor-
respondence with the subsampled fraction of the library that experienced 
the sequencing process. To estimate if the sequencing efforts provide an 
exhaustive representation of the amplicon library and our integration 
site richness used the methods devised by Anne Chao et al. in “Sufficient 
Sampling for Asymptotic Minimum Species Richness Estimators” (2009, 
http://www.esajournals.org/doi/abs/10.1890/07-2147.1). The first step is 
the introduction of a non-parametric estimator for the number of classes 
in a population (A Chao – “Nonparametric Estimation of the Number of 
Classes in a Population” – 1984), referred as Chao1:

S
S f f f
S f f f fest

obs

obs


 
  

( ) / ( )
( ) /[ ( )],
1

2
2 2

1 1 2 2
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1 1

,      
       f2 0







Here Sest and Sobs are the number of different species estimated for the 
environment and observed in the sample respectively while fr is the count 
of species represented by r individuals in the sample.

Under the hypotheses that the sample is large, the sampling is unbiased 
and the species have the same “catchability”, it should be considered as a 
universal law, valid under all types of species abundance distribution. We 
exploited this formula to estimate the total number of ISs in the amplicon 
library and thus the percentage of ISs detected by sequencing.

The second step is the derivation of a relationship between the 
increasing of sampling efforts and the additional species richness achieved 
in the sample, which comes from the estimated relative abundance (or 
discovery probability) of any species in the frequency class r, given by IJ 
Good as

( ) / ( )r f nfr r+ +1 1

where n is the number of individuals in the original sample.
As a consequence of the special case r = 0 (relative abundance of/

probability to encountering each of the undetected species), the total 
relative abundance of the undetected species can be estimated by:

q f f nf f n0 0 1 0 1= ⋅ =( / ) /
A probabilistic approach then lead to an estimate for m, the additional 
number of individuals to be taken required to reach the asymptotic 
richness:

m nx= *
where x* is the solution of the folowing equation:

2 1
2

1
2
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


which always exists unique for x > 0.
To be clearer, it is expected that a sample of size n + m contains all 

species.
Conversely, letting g to be the desired percentage of Sest that someone 

may like to observe (gSest = Sobs desired), the required size of the sample can 
be estimated as n + mg, where
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Exploiting (1), (2), and (3) on our data, we produced the following the 
table of results:

Sample ID
Actual 
#reads

Estimated 
%ISs 

detected

#Reads 
estimated to 
detect 95% 

of ISs

#Reads 
estimated 
to detect 

100% of ISs 
(asymptote)

BT474_
DMSOPRE

2,753,996 89% 5,258,244 32,637,304

HPAC 
DMSOPRE

586,655 93% 800,229 4,687,940

SKBR3 
DMSOPRE

2,245,575 91% 3,581,147 25,674,142

Roughly speaking, a double depth would be required to switch from 
89–93% to 95% of ISs detected in each sample and over 10-fold to reach 
the asymptote (100% of ISs detected).

For the purpose of our work, we consider that the observation of 89–
93% of ISs per sample is sufficient, not significantly different from 95% 
and that an increase of sequencing effort will not have a significant impact 
on the results presented in the manuscript.

SUPPLEMENTARY MATERIAL
Figure  S1.  LV-based insertional mutagenesis induces resistance to 
different doses of lapatinib.
Figure  S2.  LAM-PCR for the retrieval of LV integration sites.
Figure  S3.  Genome-wide distribution of LV integrations in the 
different experimental datasets compared to gene density.
Figure  S4.  Integrations from control samples are enriched in 
chromosomal amplified regions and clustered at genes that may 
induce drug-independent proliferative advantage.
Figure  S5.  Representative CIS identified exclusively in lapatinib-
selected cells.
Figure  S6.  Overexpression of K111N-mutated PIK3CA and wild type 
PIK3CB promote the survival of breast cancer cell lines.
Figure  S7.  LV-based insertional mutagenesis induces erlotinib 
resistance in a pancreatic cell line and allows the identification of 
erlotinib resistance genes.
Table  S1.  DNA samples that have undergone LV integration analysis.
Table  S2.  CIS genes identified in control samples.
Table  S3.  CIS genes identified in lapatinib-selected samples before 
filtering the control CIS.
Table  S4.  CIS genes identified in lapatinib-selected cells and filtered 
for the CIS identified in control samples.
Table  S5.  Percentage of integration within CIS.
Table  S6.  Details of the integrations falling within CIS.
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