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It is well-known that ‘‘smooth’’ chains of oriented
elements—contours—are more easily detected amid
background noise than more undulating (i.e., ‘‘less
smooth’’) chains. Here, we develop a Bayesian
framework for contour detection and show that it
predicts that contour detection performance should
decrease with the contour’s complexity, quantified as the
description length (DL; i.e., the negative logarithm of
probability integrated along the contour). We tested this
prediction in two experiments in which subjects were
asked to detect simple open contours amid pixel noise.
In Experiment 1, we demonstrate a consistent decline in
performance with increasingly complex contours, as
predicted by the Bayesian model. In Experiment 2, we
confirmed that this effect is due to integrated complexity
along the contour, and does not seem to depend on local
stretches of linear structure. The results corroborate the
probabilistic model of contours, and show how contour
detection can be understood as a special case of a more
general process—the identification of organized patterns
in the environment.

Introduction

The detection of coherent objects amid noisy
backgrounds is an essential function of perceptual
organization, allowing the visual system to distinguish
discrete whole forms from random clutter. Psycho-
physical experiments have been used extensively to
study this topic using contour detection tasks, in which
subjects are asked to detect coherent chains of oriented
elements amid background fields containing randomly
oriented elements (Field, Hayes, & Hess, 1993, 2000;
Geisler, Perry, Super, & Gallogly, 2001; Hess & Field,
1995, 1999; Kovacs & Julesz, 1993; Pettet, McKee, &
Grzywacz, 1998; Yuille, Fang, Schrater, & Kersten,

2004). From these studies, we now know that (a) cells in
the visual cortex are able to transmit the information
contained in natural images efficiently (Field, 1987), (b)
closed contours are more easily detected than open
contours (Kovacs & Julesz, 1993), (c) contours can be
integrated across depths (Hess & Field, 1995), (d) large
curvature discontinuities disrupt detection (Pettet et al.,
1998), (e) the tokens that are integrated do not need to
appear identical (Field et al., 2000), and (f) human
detection performance is close to ideal for contours
whose properties are similar to those found in natural
images (Yuille et al., 2004).

Despite this extensive literature, the computational
processes underlying contour detection are still poorly
understood. Field et al. (1993) showed that contours
are more difficult to detect when the turning angles, a,
between consecutive elements are large, an effect widely
interpreted as implicating lateral connections between
oriented receptive fields in visual cortex, known as the
association field. This preference for small turning
angles is sometimes expressed as a preference for
smooth curves because turning angle can be thought of
as a discretization of the curvature of an implied
underlying contour.1 The association field has proven a
useful construct in understanding contour integration,
but remains qualitative in that it suggests a simple
dichotomy between contours that are grouped and
those that are not (in its original form, the model
assumes that neighboring elements are integrated if
they are collinear to within some tolerance). A number
of recent studies have, however, demonstrated that,
broadly speaking, detection performance declines with
larger turning angles (Ernst et al., 2012; Geisler et al.,
2001; Hess, Hayes, & Field, 2003; Pettet et al., 1998).
The more the curve ‘‘zigs and zags,’’ the less detectable
it is.
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Nevertheless, neither the association field model nor
more recent models can give a principled quantitative
account of exactly how (or why) contour detectability
depends on contour geometry or, more specifically, of
how it declines with increasing turning angles. In part,
this reflects the lack of an integrated probabilistic
account of the decision problem inherent in contour
detection. Below we aim to take steps toward
developing such a model by casting contour detection
as a Bayesian decision problem, in which the observer
must decide based on a given arrangement of visual
elements whether or not a ‘‘smooth’’ contour is actually
present (Feldman, 2001). To this end, we introduce a
simple probabilistic model of smooth contours, derive a
Bayesian model for detecting them amid noisy back-
grounds, and compare the predictions of the model to
the performance of human subjects in a simple contour
detection task.

Smooth contours

To model contour detection as a decision problem,
we need an explicit probabilistic generative model of
contours; that is, a model that assigns a probability to
each potential sequence of turning angles. The associ-
ation field and similar models assume simply that
smooth contours consist of chains of small (i.e.,
relatively straight) turning angles, without any explicit
probabilistic model. In this article, we adopt a simple
probabilistic model of contours with a number of
desirable properties (Feldman, 1995, 1997; Feldman &
Singh, 2005; see also Singh & Fulvio, 2005, 2007). In
this model, turning angles along a smooth contour
(hypothesisHC) are assumed to be generated identically
and independently (i.i.d.) from a von Mises distribution
centered on straight (collinear),

pðajHCÞ� exp b cos a: ð1Þ
The von Mises distribution is similar to a Gaussian

(normal) distribution, except suited to angular mea-
surements, with the parameter b analogous to the
inverse of the variance. The i.i.d. von Mises model
makes a reasonable generic model of smooth contours,
because it satisfies basic considerations of symmetry
and smoothness in a maximally general way. Specifi-
cally, the model is the maximum entropy (least
‘‘informative’’) distribution satisfying the following
constraints. First, it is centered at 08, which is required
by basic considerations of symmetry, namely that in an
open contour (without figure/ground assigned) there is
no way to know in which direction we are traversing
the contour, so left and right turns are indistinguish-
able. Second, the turning angle has some variance
about this mean, meaning that turning angles deviate
from 08 (straight) with probability that decreases with

increasing turning angle; this is inherent in the notion
of ‘‘smoothness’’ and by definition, at a sufficiently fine
scale a smooth contour is well approximated by its
local tangent (see Singh & Feldman, 2013.) Any
reasonable model of turning angles in smooth, open
contours must satisfy these constraints, and because it
has maximum entropy given these constraints, the i.i.d.
von Mises model does so in the most general way
possible (see Jaynes, 1988). Notably, empirically
tabulated turning angle distributions drawn from
subjectively chosen contours obey these constraints,
albeit with some differences in functional form (Elder &
Goldberg, 2002; Geisler et al., 2001; Ren & Malik,
2002).2

The von Mises model defines the likelihood model for
angles under the smooth contour hypothesis (HC),
which indicates the probability that each particular
turning angle under this hypothesis holds. In practice it
is often more mathematically convenient to work with
a Gaussian distribution of turning angle,

pðajHCÞ ¼
1

r
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2p
p exp � 1
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; ð2Þ

which, for small angles, is nearly identical numerically
to the von Mises model.3 Either distribution (von Mises
or Gaussian) captures the idea that, at each point along
a smooth contour, the contour is most likely to
continue straight (zero turning angle), with larger
turning angles increasingly unlikely.

We then extend this local model to create a
likelihood model for an entire contour by assuming
that successive turning angles are i.i.d. from the same
distribution. Thus, a sequence [ai]¼ [a1, a2, . . . aN] of N
turning angles has probability given by the product of
the individual angle probabilities,

LC ¼ pð ai½ �jHCÞ ¼ pða1jHCÞpða2jHCÞ . . . pðaNjHCÞ
ð3Þ

which, under the Gaussian approximation, equals

LC ¼
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Technically, the assumption that successive turning
angles are i.i.d. means that the sequence of orientations
(local tangents) along the contour form a Markov
chain (nonadjacent orientations are independent con-
ditioned on intervening ones). Contours generated
from this model undulate smoothly but erratically,
often turning left and right equally, though always
most likely straight ahead. This generative model can
be easily augmented to incorporate cocircularity
(continuity of curvature; Feldman, 1997; Parent &
Zucker, 1989; Singh & Fulvio, 2007) as well as
smoothness. Here we focus on the simpler collinear
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model, but in the Discussion, we take up the role of
cocircularity as well.

Bayesian model

With this simple contour model in hand, we next
derive a simple model of how the observer can
distinguish samples drawn from it (i.e., smooth
contours) from noise. Note that the main focus is on
how the observer distinguishes organized patterns from
random or unordered structure in the environment; the
role of internal noise in obscuring this decision, while
certainly important, is a separate matter that we take
up in the Discussion. Our model is emphatically not an
ideal detector of contours. Indeed, as we discuss below,
an ideal observer model for our task would be rather
trivial, and would exhibit performance markedly
different from that of our subjects. Instead, our model,
being ignorant of many of the details of stimulus

construction, makes a set of simplifying assumptions
about the statistical structure of contours (some of
which happen to be wrong for these displays) but that
lead to some systematic predictions about performance,
in particular that performance will decline with contour
complexity. The goal of the analysis is not to
understand how these specific stimuli can be optimally
classified, but to understand how a broad set of
assumptions about pattern structure lead to, and thus
explain, certain striking characteristics of performance.

In the experiments below, we embed dark contours
generated via the above model in fields of random pixel
noise. Figure 1 shows a sample display at the contrast
used in the experiments. As the target contour is
somewhat difficult to find at this contrast (subjects
achieved good performance only after many trials),
Figure 2 also shows displays at enhanced contrast
(target contour set to fully black) divided into the
various conditions described below. Most studies of
contour detection starting with Field et al. (1993) have
used displays constructed from Gabor elements ar-

Figure 1. Sample target display at contrast used in the experiments. The target contour is slightly below center.
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ranged in a spatial grid, in part to avoid element density
cues, and also to optimize the response of V1 cells.
However, such displays are extremely constrained in
geometric form, and partly for this reason, several
studies have used alternative methods of display

construction. Kovács, Polat, Pennefather, Chandna,
and Norcia (2000) and Sassi, Vancleef, Machilsen,
Panis, and Wagemans (2010) randomly located the
Gabor elements with constraints to limit density cues.
Geisler et al. (2001) used simple line segments that can
be arranged more freely, and Yuille et al. (2004) used
matrices of pixels. Our aim was to achieve complete
flexibility of target contour shape, so that we could
study the effects of contour geometry as comprehen-
sively as possible. So, like Yuille et al. (2004), we
constructed each display by embedding a monochro-
matic contour (a chain of pixels of equal luminance) in
pixel noise (a grid of pixels of random luminance;
Figure 3a). This construction allows considerable
freedom in the shape of the target contour and avoids
density cues (because texture density is uniform
everywhere) while still presenting the observer with a
challenging task. Additionally, this method simplifies
the modeling of the contour detection problem,
allowing us to consider the turning angle between the
elements and avoiding the need to model the other
parameters that are known to affect contour integra-
tion, such as the orientation of the elements (Field et
al., 1993), and the relative density of the distractors and
spacing of the individual elements (Li & Gilbert, 2002).
Again, our goal was not to investigate all aspects of the
process of contour detection, but rather to understand
the influence of contour geometry in particular.

We begin by deriving a simple model of how an
observer can distinguish an image that contains a target
generated from the smooth contour model (above)
from an image that does not (pure pixel noise). The
target curve consists of a chain of dark pixels passing
through a field of pixels of random luminances.
Contours were set to 64% contrast (measured as the
luminance of the contour minus the mean luminance of
the image background, divided by the mean luminance
of the background). Within each local image patch, a
simple strategy to distinguish a target from a distractor

Figure 3. (a) Sample image, with contour target, from

experiments. (b) Blowup of a patch of the image, showing a

chain of equal luminance pixels. The observer must decide if this

path is a smooth path drawn from the von Mises model, or a

random walk resulting from the pixel noise.

Figure 2. Sample displays containing short contours (left) and

long contours (right), showing several levels of complexity (DL).

Complexity increases from top to bottom rows. Targets in this

figure have augmented contrast compared to the experimental

displays.
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is to consider the darkest path through the patch, and
decide whether the path is more likely to have been
generated by the smooth curve model, C, with von
Mises distributed turning angles, or is simply part of a
patch of random background pixels (Figure 3), which
we will refer to as the ‘‘null’’ model, H0. We can use
Bayes’s rule to assess the relative probability of the two
models, and then extend the decision to a series of
image patches extending the length of the potential
contour.

Under the smooth contour model, the observed
sequence of turning angles has likelihood given in
Equation 4, the product of an i.i.d. sequence of von
Mises (or normal) angles. Conversely, under the null
model, the contour actually consists of pixel noise, and
each direction is equally likely to be the continuation of
the path, yielding a uniform distribution over turning
angle, p(ajH0)¼ E. In our displays, E¼ 1/3 because the
curve could continue left (458), straight, or right (458),
all with equal probability4, but here we state the theory
in more general terms. In the null model, as in the
contour model, we assume that turning angles are all
independent conditioned on the model, so the likeli-
hood of the angle sequence [ai] is just the product of the
individual angle probabilities,

L0ð ai½ �Þ ¼ �N; ð5Þ
reflecting a sequence of N ‘‘accidental’’ turning angles
each with probability E.

By Bayes’s rule, the relative probability of the two
interpretations, HC and H0, is given by the posterior
ratio p(Cj[ai]) / p(H0j[ai]). Assuming equal priors, which
is reasonable in our experiments as targets and
distractors appear equally often, this posterior ratio is
simply the likelihood ratio, LC/L0. As is conventional,
we take the logarithm of this ratio to give an additive
measure of the evidence in favor of the contour model
relative to the null model, which is sometimes called the
weight of evidence (WOE):

lnðLC=L0Þ ¼ log LC � log L0: ð6Þ
The first term in this expression, the log likelihood

under the contour model, is familiar as the (negative of
the) description length (DL), defined in general as the
negative logarithm of the probability:

DLðMÞ ¼ �log pðMÞ ð7Þ
As Shannon (1948) showed, the DL is the length of

the representation of a message, M, having probability,
p(M), in an optimal code, making it a measure of
complexity of the message, M.5 Once the coding
language is optimized, less probable messages take
more bits to express. In our case, plugging in the
expression for the likelihood of the contour model
(Equation 4), the DL of the contour [ai] is just

DLð ai½ �Þ ¼ �ln LC ¼ N lnðr
ffiffiffiffiffiffi
2p
p
Þ þ 1

2r2

X
i

a2
i ;

ð8Þ
and the weight of evidence in favor of the contour
model is

lnðLC=L0Þ ¼ �DL�N ln �; ð9Þ
the negative of the DL minus a constant.

For a contour of a given length N, the only term in
Equation 8 that depends on the shape of the contour isP

i a
2
i ; the sum of the squared turning angles along its

length (the N ln E term is a constant that does not
depend on the observed turning angles). The larger this
sum, the more the contour undulates, and the higher its
DL. The larger the DL, the less evidence in favor of the
smooth contour model; the smaller the DL, the
smoother the contour, and the more evidence in favor
of the smooth model.

Hence, the Bayesian model leads directly to a simple
prediction about contour detection performance: it
should decline as contour DL increases. The larger the
DL, the less intrinsically detectable the contour is, and
the more the contour is intrinsically indistinguishable
from pixel noise. Because this prediction follows so
directly from a simple formulation of the decision
problem, in what follows we treat it as a central
empirical issue. In our experiments, we manipulate the
geometry of the target contour, specifically its constit-
uent turning angles, and evaluate observers’ detection
performance as a function of contour DL. More
specifically, our data can be regarded as a test of the
specific contour likelihood model we have adopted,
which quantifies the probability of each contour under
the model and thus, via Shannon’s formula, its
complexity.

As suggested by Attneave (1954), contour curvature
conveys information; the more the contour curves, the
more ‘‘surprise’’ under the smooth model, and thus the
more information required to encode it (Feldman &
Singh, 2005). But DL, Shannon’s measure of informa-
tion, is also a measure of the contour’s intrinsic
distinguishability from noise. The DL is in fact a
sufficient statistic for this decision, meaning that it
conveys all the information available to the observer
about the contour’s likelihood under the smooth
contour model.

Of course, as discussed above, it is well known that
contour curvature decreases detectability, and the
derived dependence on the summed squared turning
angles may simply be regarded as one way of
quantifying that dependence. But the above derivation
substantially broadens this argument because (a) it
shows how the specific choice of contour curvature
measure, the summed squared angle, derives from a
standard contour generating model; and (b) it shows
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how the predicted decrease in detectability relates to the
DL, which is a more fundamental relationship that
generalizes far beyond the current situation. From this
point of view, contour detection is simply a special case
of a more general problem, the detection of structure in
noise. Generalizing the argument above, whenever the
target class can be formulated as a stochastic generative
model with an associated likelihood function, detection
performance should decline as DL under the model
increases. In the experiments below, we test this
prediction for the case of open (nonclosed) contours.

Equations 8 and 9 also predict that longer contours
will be more detectable than short ones, because
detectability increases with N, the length of the contour
(note that ln E in these equations is a negative number
because E , e). By itself, this prediction is somewhat
less interesting because it would probably follow from
any reasonable model so, in what follows, we mostly
focus on the complexity effect, which is more specific to
our approach. However, it is worth noting that this
prediction falls out of our model in a natural way
without any ad hoc assumptions about the influence of
contour length.

Experiment 1

Method

Subjects

Ten naive subjects participated in the experiment as
part of course credit for an introductory psychology
course.

Procedure and stimuli

Stimuli were displayed on a gamma-corrected iMac
computer running Mac OS X 10.4 and MATLAB 7.5
(MathWorks, Natick, MA), using the Psychophysics
toolbox (Brainard, 1997; Pelli, 1997).

The task was a two-interval forced-choice (2IFC)
task. The subjects viewed two images, one after the
other, and were asked to decide if a contour was
present in the first image or the second. Masking
images were presented prior to the first target image,
between the images, and after the second target image.
Presentation time for each stimulus image and each
mask image was 500 ms, with 100 ms blank screens in
between the first image and the mask and between the
mask and the second image. Such long presentation
times were required to allow our subjects to success-
fully carry out the task. Presentation times long
enough to allow eye movements obviously complicate
the strategies potentially available to subjects, as will
be discussed below. However note that many contour

detection studies, for example, those of Field et al.
(1993), have used long presentation times, without
unacceptable complications. All images were present-
ed at about 138 of visual angle. Each image was 15 3

15 cm on the display. The head position was not
constrained, but was initially located at 66 cm from
the display and subjects were instructed to remain as
still as possible. If necessary, during three breaks,
which were evenly spaced throughout the experiment,
the head was repositioned to be 66 cm from the
display.

The target images were created by randomly
sampling a 225 3 225 matrix of intensity values. Each
pixel intensity was drawn from a uniform distribution
between 0 and 98 cd/m2. A contour would be
embedded in one of two target images. The contour
was either a ‘‘long’’ contour (220 pixels, 5.258 if the
contour was entirely straight) or a ‘‘short’’ contour (110
pixels, 2.628 if entirely straight). The contour was
generated by sampling sequential turning angles (a)
using a discretized approximation to a von Mises
distribution. Continuing straight (a¼ 0) is more
common than a turning angle right or left (a¼ p/4 or a
¼�p/4). Once the contour was generated, it was dilated
using the dilation mask [0 1 0;1 1 0;0 0 0], chosen so
that a perfectly straight contour oriented horizontally
or vertically was detected as easily as one oriented at an
arbitrary angle in a pilot study involving author JDW
as the observer. Next, to prevent the contour from
appearing at a different scale from the random pixels in
the image, the image was increased in size to 5503 550
pixels, using nearest-neighbor interpolation so that
each pixel in the smaller image became a 2 3 2 pixel
area in the image. Finally, the contour was embedded
in one of the target images. The contour was randomly
rotated, and then placed at a random location in the
image, with the restriction that the contour could not
extend beyond the edge of the image.

The masks were random noise images consisting of
black (0 cd/m2) and white pixels (98 cd/m2). The images
were created by randomly sampling a binary matrix of
size 2253 225, and then scaling the matrix to 5503 550
using nearest-neighbor interpolation, just as in the
target images.

The contours embedded in one of the target images
were one of five different complexity levels and one of
two lengths (110 pixels or 220 pixels; see Figure 2).
Each contour was displayed at 17.5 cd/m2, or 64%
contrast. Figure 1 shows a sample stimulus at the
contrast used in the experiments; stimuli in Figure 2
show enhanced contrast. There were 40 images of each
length and each complexity, resulting in a total of 403

23 5¼ 400 trials. The luminance of the contour, image
size, and contour lengths were chosen so that, in a pilot
study, subjects performed near 75% correct.
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Results and discussion

Every subject showed some level of decrease in
detection as the complexity of the stimuli increased (see
Figure 4); we used log odds of a correct response as a
dependent measure to allow valid use of linear
regression (see Zhang & Maloney, 2012). Using linear
regression, all 20 subjects’ slopes (20 out of 20) were
negative, suggesting that complexity consistently and

significantly affected performance (sign–rank test, p ¼
1.9 3 10�6). Five of 10 subjects showed a significant
complexity effect (p , 0.05) in the short contour
condition, and five of 10 showed a significant effect in
the long contour condition. All but two of the subjects
showed a significant complexity effect in at least one of
the length conditions. In an aggregate analysis (Figure
5), there was a main effect of complexity, F(4, 89)¼
18.55, p¼ 4.073 10�11, but none of contour length and

Figure 4. Performance (log odds of a correct answer) for each subject in Experiment 1 as a function of contour complexity (DL). Red

indicates long contour trials, and blue indicates short contour trials. The dashed lines show the best fitting model. The model

contained one free parameter, the standard deviation of the normal distribution, which was sampled to add to the turning angles. For

10 of the 20 fits, the model outperforms (explains more variance than) a one-parameter linear fit.
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no interaction at the p¼ 0.05 level. Looking at contour
length in more detail, eight out of 10 subjects showed a
superiority for long contours (individually significant in
two subjects, p , .05), while two in 10 showed a very
small (nonsignificant) superiority for short contours.
These results together suggest at best a marginal trend
towards the expected effect of contour length. The
slope of the best fitting regression line to the combined
subjects’ data was�0.027 for short contours and�0.02
for long contours.

These results show that our subjects are sensitive to
the complexity of the target contour’s shape, as
expected under the Bayesian framework and the
assumed generative model. This finding gives strong
prima facie support for the Bayesian approach,
suggesting that contour detection is an approximately
optimal process, given suitable assumptions about the
stochastic structure of smooth contours.

Cocircularity

As an additional analysis, we next ask whether our
subjects’ performance shows any influence of contour
cocircularity (minimization of change in turning angle),
which has also been found to play a role in the
perception of contour smoothness (Feldman, 1997;
Motoyoshi & Kingdom, 2010; Parent & Zucker, 1989;
Pettet, 1999). As suggested in Singh & Feldman (2013),
our probabilistic contour model can easily be extended
to by adding a distribution over the ‘‘next higher

derivative’’ of the contour tangent. Turning angle a is a
discretization of the derivative of the tangent with
respect to arclength (i.e., curvature), and change in
turning angle Da is a discretization of the second
derivative of the tangent with respect to arclength (i.e.,
change in curvature). To incorporate this, we simply
assume that, Da (just like a itself) is von Mises
distributed,

pðDajHCÞ� expðbD cos DaÞ; ð10Þ
where bD is a suitably chosen spread parameter. Under
the ‘‘basic’’ von Mises model, turning angles were i.i.d.,
but under the augmented model, successive angles are
biased to have similar values, with probability de-
creasing with deviation from cocircularity, as well as
with increasing turning angle itself as before. As before,
this von Mises distribution is very closely approximated
by a Gaussian centered at 08, meaning that, in the
augmented model, the joint likelihood p(a, DajHC) is
well approximated by a bivariate Gaussian centered at
(08, 08).

With this augmented model in hand, we then
quantify the complexity of a contour [ai] exactly as
before, as�log(p([ai]) summed along the contour. The
new DL measure penalizes contours that deviate from
circularity in addition to deviation from straightness,
meaning that contours are penalized not only when
they bend but when the degree of bend changes.

Unfortunately, our study as constructed is not ideal
for evaluating the empirical effect of this DL measure
because the turning angles in the target contours were
generated i.i.d. (levels of cocircularity are random, so
very cocircular contours are relatively rare). Moreover,
a and Da are not independent (r¼ .83), meaning that
the influence of DL due to change in turning angle is
confounded with the DL due to turning angle itself.
Nevertheless, as a reasonable post hoc analysis, we can
compare the DL due to the original model with the
augmented DL incorporating the cocircularity bias.
This analysis yields mixed results. Using a linear
regression onto log odds, we find that the added factor
of Da DL provides a significantly better fit to the data
than the turning angle DL by itself (by a chi-square test
of fit with nested models) in the case of short contours
(p¼ 0.033), but only marginally significant in the case
of long contours (p¼ 0.084). This suggests, consistent
with previous literature, that contour cocircularity
plays a measurable role in the detection of smooth
contours, albeit a smaller one than collinearity itself.
We emphasize, however, that this result should be
interpreted with caution because of the high correlation
between smoothness factors inherent in the design of
the experiment.

We were concerned with several potential con-
founds. First, one might wonder if lower-complexity
contours occupy larger visual areas, because, by

Figure 5. Performance (log odds of a correct answer) in

Experiment 1 is shown as a function of the contour complexity

(DL) for all of the subjects’ data combined. The red points show

the detection when subjects’ were shown a long contour (220

pixels) and the blue points show a short contour (110 pixels).

Error bars show one standard error. For both contour lengths

there is a decrease in performance with increasing complexity.

Journal of Vision (2015) 15(5):6, 1–16 Wilder, Feldman, & Singh 8



definition, they follow straighter paths. If so, an
observer searching through the image (either atten-
tionally or via overt eye movements, which our
presentation times are long enough to allow) would be
more likely to happen upon lower-complexity contours
than higher complexity ones. However, a simple
analysis shows that this concern is unfounded. We
computed the spatial density of target contour pixels in
the stimuli, which indicates where in the displays a
search strategy would be more likely to encounter a
target. Figure 6 shows target pixel density in the
stimulus displays as a function of eccentricity, sepa-
rately for all levels of contour complexity and contour
length. Because targets were not allowed to fall off the
edge of the display, necessitating some concentration
near the center, target pixel density decreases with
eccentricity in all the plots, meaning that targets were
generally located near fixation. Critically, however, the
fall-off with eccentricity is approximately the same for
all levels of complexity (columns in the figure). That is,
the spatial distribution of targets is unrelated to
contour complexity, so such a search strategy cannot
explain the complexity effect we found.

Conversely, one might wonder if our effect could be
explained by a strategy of searching for regions of
distinct luminance because, by design, target contours
have a different mean luminance than background
textures. However, if high-complexity contours are
more tightly ‘‘curled’’ than low-complexity contours,
they would correspond to more concentrated regions of
distinct luminance. Of course, the complexity effect
goes in the other direction, with lower-complexity
contours being easier on average to find so, again, this
tendency (which is apparently negligible in any case,

given Figure 6) could not explain the observed
complexity effect.

Finally, we were concerned that a strategy of simply
searching for long, straight segments might explain our
subjects’ performance. If so, our complexity measure,
which reflects the geometry of the entire contour, would
be unwarranted. We designed Experiment 2 to check
this possibility.

Experiment 2

The complexity measure used in Experiment 1
assumes integration along the entire contour, but it is
possible that the detectability of a contour is only
based on the local complexity at an individual
contour point. That is, the results from the first
experiment might be explained by a model of
detection that simply looks for straight segments,
rather than evaluating the geometry of the entire
contour. If so, the complexity effect could be due
simply to the fact that simple (low DL) contours tend
to have long straight segments. To evaluate this
alternative hypothesis, in Experiment 2 we manipu-
lated the spatial distribution of the complexity,
concentrating a large majority (90%) of the curvature
in either the second eleventh (the tip), fourth eleventh
(between the tip and the middle), or sixth eleventh (the
middle) of the contour. This manipulation effectively
modulates the length of the longest straight segment
while holding complexity (DL) approximately con-
stant. Contours with the bending concentrated at the
tip, for example, will have relatively long straight

Figure 6. Density of target contour pixels, plotted for short and long contours (top and bottom rows, respectively) and all levels of

contour complexity (columns, increasing in complexity from left to right). Target density decreases sigmoidally with eccentricity, but

does so approximately equivalently for all conditions, meaning that complexity is not confounded with target complexity. That is,

although searching near fixation was an effective strategy (subjects were asked to fixate but eye movements were not controlled),

such a strategy was no more or less likely to be effective at low levels of contour complexity than at high levels.
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segments, while having on average no higher or lower
complexity than those with the bend concentrated in
the middle. The aim of the experiment is to determine
whether this factor, rather than DL itself, modulates
performance.

Method

Subjects

Ten naive subjects participated for course credit as
part of an introductory psychology course. The data
of two subjects were excluded because they were at
chance performance for all conditions. Exit interviews
suggested that these subjects did not understand the
task.

Procedure and stimuli

Each trial was conducted in the same manner as
Experiment 1. The only difference in the stimulus was

that the location of 90% of the surprisal was controlled
to be at the second eleventh of the contour (the tip), the
fourth eleventh of the contour (between the tip and the
middle, or the sixth eleventh of the contour (the
middle). There were 396 trials (four different surprisals
and three locations, with 33 trials per crossed
conditions).

Results and discussion

Complexity decreased detectability, just as in Ex-
periment 1, in all conditions for all but one subject
(Figure 7). Combining subject data (Figure 8) shows a
significant main effect of complexity, F(3, 42)¼ 18.99, p
¼ 6.183 10�8, and no main effect of bend location, F(2,
42)¼ 0.94, p¼ 0.397.

The manipulation of the location of the complexity
in the contour can be seen to have had no consistent
effect for the individual subjects when looking at
percent correct versus the bend location (Figure 9).

Figure 7. Performance (log odds of a correct answer) of each subject in Experiment 2 as a function of the contour complexity (DL). The

colors denote the different bend location conditions: blue for bend at the tip, red for bend between the middle and the tip, green for

the bend at the middle of the contour, and black for average across conditions. Dashed lines show the best fitting models for each

condition, and the solid line is the fit for the model fit with the constraint that the model parameter must be the same for all three

locations. The decrease in detectability as complexity increased found in Experiment 1 was found in all conditions.
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Combining subjects’ data (Figure 10) also shows no
trend. That is, the failure of the ANOVA to find a
significant main effect of bend location was not a result
of finding a weak trend in the correct direction with too
little data to find significance, but rather reflects the

absence of a trend in the direction predicted by an
account based only on straight segment detection.

These data suggest that the effect of complexity
found in Experiment 1, and replicated in Experiment 2,
is not due solely to the spatial distribution of the

Figure 8. Performance (log odds of a correct answer) in Experiment 2 as a function of the contour complexity (DL) for the subjects’

combined data. As seen in Experiment 1, performance decreases with complexity (DL). There is no apparent difference between the

different bend locations.

Figure 9. For each subject, the performance (log odds of a correct answer) in Experiment 2 is shown as a function of the bend location

(location of the majority of the curvature). The different bend locations are denoted by ‘‘T’’ (tip), ‘‘B’’ (between the tip and middle),

and ‘‘M’’ (middle). There was no consistent decrease in detectability as the location was varied.
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complexity throughout the contour. Humans are not
simply straight segment detectors; the complexity of the
entire contour, as reflected in its integrated description
length, influences the detectability of the contour. This
finding is consistent with previous work arguing for the
importance of nonlocal information in shape and
contour representation (Feldman et al., 2013; Singh, in
press; Wilder, Feldman, & Singh, 2011).

General discussion

Contour curvature is well known to influence human
detection of contours (Field et al., 1993; Field et al.,
2000; Geisler et al., 2001; Hess & Field, 1995, 1999;
Pettet et al., 1998; Yuille et al., 2004). Exactly why
curvature has this effect is still poorly understood,
however, as reflected in the lack of mathematical
models that can adequately capture it. In this paper we
have modeled contour detection as a statistical decision
problem, showing that a few simple assumptions about
the statistical properties of smooth contours make
fairly strong predictions about the performance of a
rational contour detection mechanism, specifically that
its performance will be impaired by contour complex-
ity. Contour complexity, in turn, involves contour
curvature as a critical term (the only term that reflects
the shape of the contour), thus giving a concrete
quantification of the effects of contour curvature on
detection performance. The data strongly corroborate
the effect of complexity on contour detection, showing
strong complexity effects in almost every subject.
Moreover, the spatial distribution of the complexity
does not seem to determine performance, suggesting
that a purely local complexity measure (such as the
information/complexity defined at each contour point)

will not suffice to explain performance, and a holistic
measure of contour complexity (such as contour
description length) is required.

Our results are not predicted by many of the
standard object detection algorithms used in computer
vision; indeed, many of these models are unable to
locate the objects in our displays at all. Many of the
standard edge detection algorithms rely on finding
strong luminance discontinuities in the image. For
example, the Marr-Hildreth algorithm uses Laplacian
of Gaussian (LOG) filters, due to their similarity to
response properties of cells in lateral geniculate nucleus
(LGN) (Marr & Hildreth, 1980). These filters fail to
increase their responses near the contours in both
experiments because the filters need a difference
between the luminance in the center from the lumi-
nance in the surround. In our stimuli there is noise
everywhere and our contours have the same luminance
as many pixels that are actually part of the noise. Other
edge detection algorithms, such as the Canny edge
detector, the Hough Transform, and the Burns line
finder also look for high magnitude image gradients,
which are not present in our images (Burns, Hanson, &
Riseman, 1986; Canny, 1986; Duda & Hart, 1972;
Hough, 1962). Also, these methods frequently smooth
the input image prior to detecting edges, which, with
our images, would simply cause the contour to blend
further into the noise and thus substantially weaken
image gradients.

Edges in images result in a strong component in the
power spectrum perpendicular to the edge in the image.
One possible explanation for our effect is that the
power spectrum of images containing straighter con-
tours is more distinguishable from the power spectrum
of noise images than the power spectrum in images with
curved contours. This turns out not to be the case. The
power spectrum of the images used in the experiments
reveals that there is energy at all frequencies, not just
predominantly at low spatial frequencies as is common
in natural images. This suggests that the reason
standard edge-detection algorithms are unable to detect
the contours is because our images are of a different
structure than that present in the natural images for
which these algorithms were developed. However, our
subjects were able to accurately detect the contours,
suggesting that the human visual system is doing
something different than these algorithms.

If standard computer vision algorithms fail to detect
contours, perhaps a more optimal observer, with full
access to the pixel content of the image, would be able
to detect the contours and better explain our subjects’
behavior. A more detailed consideration of the
statistical decision problem suggests that our observers
are far from optimal. To see why, consider the contour
detection problem reduced to a simple Bernoulli
problem. The target contour consists of a series of turns

Figure 10. Performance (log odds of a correct answer) as a

function of the location of contour complexity (DL) for all of the

subjects’ data from Experiment 2 combined. There appears to

be no effect of the location of the complexity.
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through the pixel grid, each of which can be classified
as either a straight continuation (a success or ‘‘head’’)
or a nonstraight turn (a failure or ‘‘tail’’). Smooth
contours have a strong bias toward straight continu-
ations (successes), translating to a high success
probability, the exact value of which depends on the
spread parameter b in the von Mises distribution that
generates the turning angles (see Equation 10), which in
turn depends on the condition. In contrast, each
distractor path consists of a series of random turns in
which the probability of straight continuation is E (1/3,
as explained above; see Figure 3). The observer’s goal is
to determine, based on the sample of turns observed,
whether the sample was generated from the smooth
process (i.e., a target display) or the null process
(distractor display). Because successive turning angles
are assumed independent, this means that a smooth
curve consists, in effect, of a sample of N (219 or 109 on
long and short trials, respectively) draws from a
Bernoulli process with high success probability (which
varies by condition but is often very high, . 0.9), while
noise consists of a sample with success probability 1/3.

To make a decision in these experiments, the
observer must consider the number of straight contin-
uations observed in the smoothest contour in each
display, and decide which stimulus interval was more
likely to contain a sample generated by a process with
high success probability (again, with the level depen-
dent on condition). This is a standard Bernoulli
Bayesian decision problem, specifically a forced choice
version (see for example, Lee, 2004). Because the two
success probabilities (0.9 vs. 0.33) are so different and
the sample size is so large (209 or 109), this is actually
an easy decision; an optimal observer with full
information about the pixel content of the images in
both intervals is at ceiling in all conditions, since in
even the highest DL conditions the success probability
is much higher than 1/3. In other words, if the observer
had access to the full pixel content of each image it
would integrate the contour on every trial. A decision
procedure that simply chooses the image containing the
longest of the candidate contours would perform
perfectly, with no effect of complexity.

Obviously, our observers do not have full access to the
pixel content of both images, which contain far more
information than can be fully acquired under our speeded
and masked experimental conditions. A variety of simple
assumptions canbemade about how image information is
limited or degraded, but most give predictions that differ
in various ways from what we observed. For example,
one might assume that subjects only apprehend a part
of the target contour, rather than the contour in its
entirety; this predicts subceiling performance, but also
predicts a much smaller complexity effect than is
actually observed. In any case, the results of Experi-
ment 2 strongly suggest that observers are sensitive to

the complexity of the entire contour, not just to short
segments of it. Similarly, one can imagine various
search strategies that observers might adopt, which
would modulate the probability that the target contour
is encountered, but as explained above, such strategies
cannot explain the effect of contour complexity.

We did, however, find one simple set of assumptions
about information degradation that fit our data well. It
is reasonable to assume that turning angles, rather than
being encoded perfectly as the ideal model assumes, are
degraded via the addition of angular noise. We
constructed a model in which turning angles, instead of
being 0 or 6458 (as they are in the displays) were
respectively 0þN(0,r2) or 6458þ 0þN(0,r2) where the
standard deviation r is a parameter fit to each observer.
This simple one-parameter model provides a good fit our
subjects’ data (Figure 4), including both the absolute
level of performance and the magnitude of the
complexity effect. All subjects’ model fits were fairly
similar, with a mean r ¼ 24.458 and standard deviation
of 0.358 in the short contour condition, and a mean r¼
25.068 and standard deviation of 0.418 in the long
contour condition. This model accommodates the
complexity effect predicted by the original classification
model, while also reflecting, in a particularly simple way,
the stimulus uncertainty present in the real visual system.

Additionally, we found further support, using the
data in Experiment 2, that the total complexity of each
contour is more important than the way it is spatially
subdivided within each contour. We fit the noise model
to our subjects’ data and either let the r parameter vary
separately for the three conditions (tip, between, or
middle) or we constrained r to be the same in all of
these conditions. Using the likelihood ratio test we
found that the additional model complexity involved in
letting r vary for each condition was not justified for
any of our subjects, suggesting that subjects were
sensitive to contour complexity in approximately the
same way throughout the entire contour. The likeli-
hood ratio test compares the likelihood of a model with
with multiple parameters to a nested model with fewer
parameters to see if the inclusion of these additional
parameters is justified. Specifically it computes

WðC;UÞ ¼ �2 ln
KðCÞ
KðWÞ

� �
ð11Þ

where C is the constrained version of the model (in our
case, a one-parameter model), U is the unconstrained
model (in our case, the three-parameter model in which
each bend location has its own angle noise parameter),
and K is

KðMÞ ¼
Yn
t¼1

1ffiffiffiffiffiffiffiffi
2pr
p exp

� Pm � Ps½ �2

2r2
ð12Þ

and
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r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
t¼1

ðPm � PsÞ2

n� 1

vuuut
ð13Þ

where M is a model (either constrained or uncon-
strained), n ¼ 12 is the number of conditions (one for
each contour complexity crossed with each bend
location) Pm is the proportion correct for a condition,
and Ps is the subject performance in that condition.

The constrained model can explain then subject
performance in the different conditions as well as a
model that allows for each bend location to be fit
separately. The likelihood-ratio test statistics ranged
from 0–0.54, with a mean of 0.36 and standard
deviation of 0.19. The likelihood-ratio test statistics are
distributed as a v2 distribution with degrees of freedom
equal to the difference in the number of parameters of
the models (in our case 2). This results in p values
ranging from 0.76–1, with a mean of 0.84 and standard
deviation of 0.08. The quality of the fits in the
constrained model were not significantly worse than the
fits in the unconstrained model, so we are not justified
in using a model that treats the bend locations
differently. The constrained model had similar param-
eters to the fits in Experiment 1, a mean r¼ 24.888, and
standard deviation of 0.338.

In summary, our subjects’ performance can be
accounted by a Bayesian observer model that assumes
turning angles are noisily encoded by the visual system.
This model encodes the complexity of the contour as a
whole, and the spatial distribution of the complexity
does not affect performance.

Conclusion

Here we have framed the contour detection problem
as a Bayesian inference problem. We defined a simple
generative model for contours, in which successive
turning angles are generated from a straight-centered
distribution. The observer’s task then reduces to a
probabilistic inference problem in which the goal is to
decide which of the two stimulus images was more
likely to contain a contour sample drawn from this
generative model. This framing of the problem
accounts for key aspects of the empirical results, in
particular the influence of contour complexity on
detection. Although our subjects may well have carried
out search strategy of some kind (as in any difficult
detection task with long presentation times), such a
strategy cannot explain the effect of contour complex-
ity. We also found that the spatial distribution of
complexity appears not to matter substantially; the
deciding factor is the smoothness of the entire target
taken as a whole. Both of these results go beyond

standard accounts of contour integration (Field et al.,
1993; Geisler et al., 2001; Geisler & Super, 2000),
especially in the quantitative precision with which they
can account for the influence of contour structure.
Additionally, our modeling suggests that subjects’
encoding of stimulus turning angles is noisy, depressing
their performance relative to an ideal observer in
possession of perfect image data.

Fundamentally, the Bayesian model described here
makes it clear why a diminution in performance as
curvature increases ‘‘makes sense’’—it is a direct
consequence of a very general contour model and a
rational contour classification mechanism. As argued in
the Introduction, the problem of contour detection is
really just a special case of the more general problem of
the detection of pattern structure in noise. As shown
above, a very general model of the probabilistic
detection of regular structure in noise entails an
influence of target complexity, defined from an infor-
mation-theoretic point of view as the negative log of the
stimulus probability under the generative model, that is
the Shannon complexity or description length (DL) of
the pattern. The ubiquitous influence of simplicity biases
and complexity effects in perception and cognition more
generally can be seen as a consequence of the general
tendency for simple patterns to be more readily
distinguishable from noise (Chater, 2000; Feldman,
2000) than complex ones (Feldman, 2004). In past
studies, contour detection has usually been studied as a
special problem unto itself whose properties derived
from characteristics of visual cortex. Instead, we hope
that in the future the problem of contour detection can
be treated as a special case of a broader class of pattern
detection problems, all of which can be studied in a
common mathematical framework in which they differ
only in details of the relevant generative models (Feld-
man, Singh, & Froyen, in press). This observation opens
the door to a much broader investigation of perceptual
detection problems encompassing detection of patterns
and processes well beyond simple contours, such as
closed contours and whole objects.

Keywords: contour detection, Bayesian inference,
information theory, pattern detection
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Footnotes

1 Curvature is the derivative of the tangent~t with
respect to arclength s. Turning angle a is the angle by
which the tangent changes between samples separated
by Ds, i.e., a ’ Ds~t, and thus can be thought of as a
discretization of curvature.

2 Note also that these differences would result in only
minor differences in the predictions that follow. For
example, the more peaked turning-angle distribution
observed in Geisler et al. (2001) and Ren and Malik
(2002) would predict a slightly weaker complexity effect
than the von Mises model, but would not qualitatively
alter the results.

3 The two distributions’ Taylor series are the same up
to the first two first terms (see Feldman & Singh, 2005).

4 We did not use turning angles larger than 458
because this would result in many contours crossing
themselves.

5 Note that the length of a representation of the
contour in an optimal code, the DL, is not the same as
the physical length of the contour. Short contours can
have high DL and vice versa. Note, however, that DL is
most useful for comparing complexities of contours of
equal physical length.
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