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Abstract

Agent-based modeling has become increasingly popular in recent years, but there is still no 

codified set of recommendations or practices for how to use these models within a program of 

empirical research. This article provides ideas and practical guidelines drawn from sociology, 

biology, computer science, epidemiology, and statistics. We first discuss the motivations for using 

agent-based models in both basic science and policy-oriented social research. Next, we provide an 

overview of methods and strategies for incorporating data on behavior and populations into agent-

based models, and review techniques for validating and testing the sensitivity of agent-based 

models. We close with suggested directions for future research.

1. INTRODUCTION

Agent-based models are computer programs in which artificial agents interact based on a set 

of rules and within an environment specified by the researcher (Miller and Page 2007). 

While these rules and constraints describe predictable behavior at the micro-level, the 

interactions among agents and their environment often aggregate to create unexpected social 

patterns. It is such emergent patterns that sociologists want to understand or policy-makers 

want to change (e.g., patterns of residential segregation, the intergenerational reproduction 

of inequality, or the origin and persistence of disease epidemics). Because agent-based 

models explicitly link individuals’ characteristics and behavior with their collective 

consequences, they provide a powerful tool for exploring the social consequences of 

individual behavior.

While agent-based modeling is not new to sociology (see Macy and Willer 2002 for a 

comprehensive review of early work), these models tend to be highly stylized and—with the 

exception of Schelling’s (1971, 1978) seminal work on neighborhood tipping and Axelrod’s 

model of cooperation (Axelrod and Hamilton 1981; Axelrod and Dion 1988; Axelrod 1997) 

—have had minimal impact on mainstream sociological research. One reason for this lack of 

impact is the absence of dialogue between agent-based modeling and data-driven social 

research within the discipline.1 This is unfortunate, as agent-based models are very useful 

*Gianluca Manzo provided helpful comments on this paper. We are also grateful for the suggestions and constructive criticisms 
provided by two anonymous reviewers.

Corresponding Author: Elizabeth Bruch, Department of Sociology and Complex Systems, University of Michigan, 500 S. State Street, 
LSA Building, Ann Arbor, MI 48109, USA., ebruch@umich.edu. 
1A few notable exceptions include Hedström and Åberg’s (2005) “Empirically Calibrated Agent-Based Models” (ECA); Manzo’s 
(2007) discussion of the role of agent-based modeling in theoretically engaged, quantitative research; and Boero and Squazzoni’s 
(2005) discussion of the role of empirical data into agent-based models.

HHS Public Access
Author manuscript
Sociol Methods Res. Author manuscript; available in PMC 2015 May 13.

Published in final edited form as:
Sociol Methods Res. 2015 May ; 44(2): 186–221. doi:10.1177/0049124113506405.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for sharpening one’s thinking about an empirical problem and identifying key explanatory 

mechanisms. Agent-based models help fill the gap between formal but restrictive models 

and rich but imprecise qualitative description (Holland and Miller 1991, cited in Page 2008). 

Moreover, agent-based models are especially amenable to incorporating detailed, multi-

layered empirical data on human behavior and the social and physical environment, and can 

represent a granularity of information and faithfulness of detail that is not easily handled 

within statistical or mathematical models.

The goal of this paper is to provide a practical overview of how agent-based models can be 

used within a larger program of empirical research. We proceed as follows. First, we discuss 

reasons to use agent-based models in both basic science and more policy-driven research, 

and describe the kinds of substantive and methodological problems where agent-based 

models are particularly helpful. Next, we review the different ways in which agent-based 

models can be anchored to real-world information: “low-dimensional realism” in which 

there is empirical realism along one or two dimensions but the model remains simple and 

abstract; or “high dimensional realism” in which the goal is to accurately represent some 

phenomenon along many dimensions. We also provide concrete strategies for constructing 

agent-based models that correspond to real populations and incorporating empirical data on 

individual behavior into agent-based models. Finally, we discuss state-of-the-art techniques 

to assess both the goodness-of-fit of these models to data, and also their sensitivity to key 

assumptions. We close with some suggested directions for future research.

Modeling Interdependent Behavior

A key feature of agent-based modeling is that it explicitly links micro- and macro-levels of 

analysis. Sociology has a longstanding interest in the relationship between individuals’ 

motivations and decisions and large-scale patterns of social organization and change.2 The 

“micro-macro problem” concerns how to explicitly account for the ways in which actions of 

individuals give rise to social organization and dynamics, rather than assuming that macro-

level phenomena are simply aggregates of individual characteristics and behavior (Coleman 

1994, p.197; Granovetter 1978 p.1421; Hedström and Bearman 2009, pp. 9-14). The 

connection between individuals’ actions and their collective consequences would be 

transparent if one could simply sum over individuals’ intentions or behavior to generate 

expected population-level attributes.3 The problem is that nearly all human behavior is 

interdependent; individuals’ actions are contingent on the past, present, and predicted future 

behavior of others.4

Contingent behavior can take on a number of different forms. For example, people have 

preferences for the composition of social groups (e.g., friendship circles, neighborhoods, or 

churches), but their own characteristics also contribute to group composition. Accordingly, 

2Alexander and Giesen (1987, Chapter 1) provide a comprehensive overview of the “macro-micro” problem within sociology, from 
its early manifestations in the foundational writings of Marx, Weber, and Durkheim to more recent work. See also Sawyer’s (2001) 
historical account of the idea of emergence in sociology and philosophy.
3For example, the decision to wear purple socks on any given day is relatively independent of what other people are doing. Thus the 
expected number of people wearing purple socks is simply the sum of the probabilities for each person.
4The idea of a self-fulfilling prophecy (Merton [1948] 1968) provides a mechanism to explain how beliefs about future events can 
bring them about via interdependent behavior. See Biggs (2009) for an overview of this model.
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any decision to join or leave the group is both responding to and changing its composition. 

More generally, individuals’ actions are constrained by the social context (e.g., network 

structure, social institutions, and demographic composition) that shapes available 

opportunities for action. But this social context is produced (and reproduced) from the 

accumulation of people acting in the past. Thus, interdependent behavior implies feedback 

between micro and macro levels of analysis. In the short run, individuals respond to their 

environments; in the longer run, the accumulation of individuals’ choices or behavior 

changes the environment. This feature makes standard statistical models that assume 

independence of observations or unidirectional causality inappropriate for analyzing the 

relationship between micro- and macro levels of analysis. Feedback also often implies a 

non-linear relationship between individual behavior and its macro consequences. Models 

that seek to explain the social consequences of interdependent behavior must explicitly 

represent feedback between individuals’ actions and their decision-making environments.5

The explicit representation of how micro-level processes generate largerscale social 

dynamics is a hallmark of mechanism-based explanations (cf. Hedström and Udehn 2009; 

Elster 2007; Hedström and Ylikoski 2010). In essence, mechanisms explain some social 

phenomenon in terms of a dynamic and robust process through which individual interactions 

compose some social aggregate (Hedström and Swedberg 1998). In addition to various 

forms of feedback (e.g., tipping, contagion, diffusion, self-fulfilling prophecy, tragedy of the 

commons), other mechanisms in sociological research include selection (Hedström and 

Bearman 2009), offsetting (Bruch 2013), vacancy chains (e.g., White 1970), and network 

externalities (Dimaggio and Garip 2011). A good explanation of a social phenomenon 

specifies the conditions necessary for the social phenomenon to arise and how those 

conditions depend on both individuals’ behavior and the distribution of salient social 

attributes within the population. Agent-based models allow researchers to explicitly 

investigate how and why a given set of interactions among individuals generates some 

collective result. One can also explore how alternative assumptions regarding population 

constraints (e.g., the sex ratio of students within a classroom, or number or proportion of 

minority groups in a city) affect observed dynamics. In addition, because the models are 

usually built from the ground up, they bring into sharp relief our “implicit models,” that is, 

latent assumptions regarding individual traits and behavior, the nature of interaction among 

individuals, and the environment in which the interaction takes place.

Finally, when used iteratively within an empirical research program, an agent-based model 

can be a powerful tool to help guide specification of statistical models and data collection 

efforts. In many empirical research problems, we face one of two related dilemmas. On the 

one hand, we may have large amounts of data, but we do not know which statistical models 

to run. We make model specification decisions not knowing which decisions are truly 

consequential. On the other hand, often our ideas about human behavior are much richer 

than available data. In both instances, agent-based models can help. In the first instance, we 

can experiment with simulated data to see what difference our assumptions about individual 

5While our essay focuses on agent-based models, there are other methods for analyzing interdependent behavior, feedback effects, and 
social dynamics, namely systems dynamics and various forms of mathematical modeling. We highlight the key differences among 
these approaches in Appendix A.
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behavior make for aggregate outcomes. In the second instance, individual-level data, 

combined with alternative behavioral assumptions and aggregate data, may be used to 

simulate aggregate outcomes that can be compared to observed data.6

Feedback Effects & Public Policy

Beyond pure academic interest, there is a practical need for models that allow for contingent 

behavior of individuals and feedback between micro- and macro-levels of analysis. Within a 

number of fields, most notably epidemiology and public health, there is an increasing 

acknowledgement that our current methods of designing, evaluating, and implementing 

policy do not work and may potentially even make things worse (e.g., Fenichel et al. 2011; 

Sterman 2006; Homer and Hirsch 2006; Mabry et al. 2008; Deaton 2010). A major 

roadblock in the development of more effective policy is that most social problems exhibit a 

dynamic complexity that hinders our ability to identify underlying causal relationships. 

Dynamic complexity does not imply many moving parts so much as the interconnectedness 

among parts (Forrester 1971). This is apparent in both self-reinforcing cycles for individuals 

(e.g., perceived job insecurity is associated with poorer health, and poor health affects labor 

market performance [Burgard, Brand, and House 2009]) and in neighborhood “spillover 

effects” where disadvantage along one dimension of neighborhoods (e.g., high vacancy rates 

and low property values) exacerbates inequalities along other neighborhood dimensions 

(e.g., school funding and school quality) thus contributing to the cycle of poverty (Durlauf 

1993, 1995). Poverty traps and other self-reinforcing cycles of disadvantage can make it 

difficult to identify the most effective points of intervention.

Moreover, people may change their behavior in response to an intervention, and failure to 

anticipate this can lead to undesirable and unexpected outcomes.7 Within public health, 

there is evidence that low-fat foods may have contributed to the obesity epidemic as people 

ate larger quantities than they would have otherwise (La Berge 2008). Within criminology 

and sociology, there is some controversial evidence that Section 8 housing programs led to 

an increase in neighborhood violence in some cities, as the program moved people from 

high-poverty neighborhoods into moderately poor areas. It is in these areas where the 

number of social problems (e.g., neighborhood violence) increases nonlinearly with the 

poverty rate (Galster 2005; Rosin 2008). By keeping the total number of high-poverty 

neighborhoods fixed, but increasing the poverty rate in medium-poverty areas, the vouchers 

may have inadvertently led to a net increase in violent crime across all poor neighborhoods.

Agent-based models and other methods such as system dynamics may be able to identify 

potentially self-reinforcing behaviors or feedback loops, and suggest better designs for 

policies based on identification of major flaws in existing ones. More modestly, these 

models can allow for a relaxation of unrealistic assumptions made in more traditional 

models. For example, classical epidemiology models assume random mixing and relatively 

homogenous populations. Agent-based models allow for heterogeneous agents with more 

6See Manzo (2013) for an example of this approach with regard to the effect of unobserved social interactions on individuals’ 
educational decisions and resulting aggregate patterns of educational inequality.
7Sterman (2006: 506) discusses more examples of policies that failed or were greatly limited due to a failure to anticipate systematic 
response.
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realistic behavioral responses and varying risk profiles. A key advantage is that agent-based 

models can integrate data and theories from many different sources and at many levels of 

analysis. Finally, agent-based models can demonstrate tradeoffs, efficiencies, or links 

between policies and theoretical concepts.

The most successful policy-driven agent-based modeling projects to date have come from 

epidemiology and urban planning. Within epidemiology, the Models of Infectious Disease 

Agent Study (MIDAS) draws together multiple interdisciplinary teams of researchers at 

different sites to investigate how to use computational and mathematical models of disease 

transmission to understand infectious diseases.8 The network of researchers developed a 

number of agent-based models that incorporate detailed geographic, demographic, social, 

biological, and epidemiological information to model the spread of disease. These models 

have been particularly influential in exploring potential response scenarios for disease 

outbreaks during the H5N1 and H1N1 flu scares. For example, the Global Scale Agent 

Model developed at Brookings played a key role in analyzing both the H1N1 and avian flu 

outbreaks, modeling both the predicted spread of the disease, and also the potential costs and 

benefits of specific interventions (e.g., school closures or the allocation of scarce vaccines) 

See Epstein (2009) for more details.9

In the area of urban planning, the UrbanSim model developed by Paul Waddell and his 

collaborators (Waddell 2002) represents the state of the art in agent-based models of urban 

policy, transportation, and development. UrbanSim was designed to be an experimental 

laboratory for the analysis of policies related to city infrastructure and investment (Borning, 

Waddell, and Forster 2008). The model blends empirically grounded modules describing 

processes at the person level (e.g., individuals’ decisions regarding place of work and 

residence, job choice, and transportation), organization level (e.g., business birth and death, 

relocation, and development), infrastructure level, and housing market (e.g., real estate 

prices) with a highly realistic geographic landscape. It has been influential in guiding 

decisions regarding urban transportation investments such as light rail, freeway extension, 

and changes in land use zoning (Borning and Waddell 2006).

2. HIGH VERSUS LOW DIMENSIONAL REALISM IN AGENT-BASED 

MODELS

A key issue for the analyst is the appropriate level of model complexity and empirical 

realism. These are by no means the same; a model may be relatively simple, but its few 

dimensions can be firmly grounded in empirical data, or complex phenomena may be 

modeled with only anecdotal evidence. The appropriate levels depend on the research 

question and intended use of the model. Agent-based models range from abstract worlds 

where agents are defined by a single attribute, have simple deterministic rules for 

interaction, and exist in a highly stylized environment (e.g., a grid or torus) to simple worlds 

where agents have only one or two attributes and behaviors anchored to as many empirical 

8For more information about MIDAS, see http://www.nigms.nih.gov/Research/FeaturedPrograms/MIDAS/Background/Factsheet.htm.
9The goal of this model was not to generate a specific prediction from a given run of the model, but rather to allow the analysts to 
explore potential consequences of alternative scenarios or assumptions.
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features as possible to high dimensional worlds where agents have many attributes, the 

environment contains a great deal of information and may even have its own dynamics, and 

agents engage in a variety of different behaviors.

The degree of empirical realism desired in the model depends on its analytical and empirical 

goals. Models should be designed with a specific question in mind. At one extreme, 

empirically validated agent-based models may be used as a virtual “laboratory” to test the 

implications of a policy intervention or predict future population dynamics. For example, the 

MIDAS study enlisted a team of subject matter experts to develop an empirically rich model 

of disease spread, and this model is used to anticipate the spread of epidemics and explore 

alternative disaster response scenarios (Epstein 2009). Similarly, the Artificial Anasazi 

project marshaled substantial archeological, anthropological, and ecological data to explore 

the rise and fall of the Anasazi culture in the Long House Valley in northeastern Arizona 

between 1800 B.C. and 1300 A.D (Dean et al. 2000). Both models were subject to intensive 

validation and testing.

At the other extreme, simple, abstract models allow for the clarification or development of 

new theories or mechanisms. Schelling’s (1978) famous tipping model, which allowed for 

two groups to sort themselves across a grid in accordance with their preferences about the 

composition of their neighborhoods, demonstrated how even seemingly tolerant agents can 

generate highly segregated neighborhoods. Axelrod’s prisoners’ dilemma tournament model 

pitted different strategies against one another to show how cooperation can emerge and even 

thrive in a world of self-interested agents (Axelrod and Hamilton 1981). More recently, the 

research program spearheaded by Michael Macy (e.g., Willer, Kuwabara, and Macy 2009; 

Centola, Willer, and Macy 2005; Centola and Macy 2007) uses simple agent-based models 

to illuminate theoretical properties of game theoretic and network models. In these 

examples, the goal is not to reproduce existing patterns or even to anchor agents’ behavior, 

characteristics, or environment in empirical knowledge. Rather, the models are generative; 

they develop new ways of thinking about a problem and provide a great deal of theoretical 

stimulation for existing empirical research.

Between these two extremes are models that incorporate one or more dimensions of realism 

but keep other aspects of the model abstract. Often these “low dimensional realism” models 

are aimed at exploring the implications of empirical research or testing the assumptions of 

formal theories. For example, Epstein et al. (2008) uses a relatively simple model to 

demonstrate that when one takes the traditional epidemic model, which assumes perfect 

mixing and fixed behavior, and adds adaptive behavior, whereby agents may hide from 

disease or flee to a safer area, this changes the dynamics in ways that more closely 

approximate the dynamics observed in the Spanish flu and other historical epidemics. Todd 

and Billari (2003) explore how empirically plausible mate-search heuristics give rise to 

population-wide patterns of age-at-marriage distributions. Hedström and Åberg (2005) take 

a somewhat empirically richer approach, in which they assign agents the social and 

demographic characteristics of Swedish youth in the Stockholm metropolitan area, and 

explore how empirically grounded rates of leaving unemployment vary under alternative 

assumptions about social interactions. The goal of in all cases, however, is not to reproduce 
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empirical patterns or incorporate all aspects of reality so much as understand the 

implications for social dynamics of one or more empirical observations or stylized facts.

Coming from a conventional social research background, the most seductive approach often 

is to create agent-based models that incorporate as much empirical data and knowledge as 

possible in an attempt to create a highly realistic laboratory in which to conduct 

experiments. However, this approach is rarely the most fruitful line of inquiry. For one 

thing, our data and knowledge of human behavior are almost never up to the task. While 

social scientists are good at collecting demographic, biological, and social characteristics of 

discrete units such as individuals, families, or other social groupings, we are often missing 

data on key mechanisms governing interaction among those units. As mentioned above, one 

advantage of agent-based modeling is that it allows researchers to hypothesize about the 

importance of mechanisms for which there are no data (and assess the potential value of 

collecting these data). Second, layering on many dimensions of realism can make the model 

cumbersome, and it can be difficult to get clear analytic results. A model’s success is 

determined not by how realistic it is but by how useful it is for helping understand the 

problem at hand.10

One useful heuristic for determine the appropriate level of model complexity and realism is 

to consider what motivated the agent-based model in the first place. Simulations are useful 

in three different circumstances. First, when some micro-level behavior is known or strongly 

assumed, and simulation explores its aggregate consequences. In this case, a simple abstract 

model or a “low-dimensional” realism model is often most effective. Second, when some 

aggregate phenomenon is observed empirically, and the simulation investigates alternative 

mechanistic explanations. In this case, a low dimensional model may be illuminating but 

cannot rule out all alternative explanations. Finally, simulations are useful when the analyst 

must explore the behavior of a social system under some hypothesized conditions for 

predictive purposes. In this case, a “high dimensional” realism model is usually necessary to 

ensure that the model predictions are not based on some reduced form account of the social 

process. In the balance of this article, we focus on empirically grounded models aimed at 

addressing questions of the second or third type.

3. EMPIRICALLY GROUNDED AGENT-BASED MODELS

Agent-based models can incorporate a wide range of empirical measures, including but not 

limited to rates such as age-specific mortality, fertility, and disease risk; population size and 

demographic composition; geographic boundaries and spatial relationships; inputs into 

dynamical processes (e.g., estimated payoffs to educational investments); granularity of time 

(e.g., how often agents make decisions, and to what extent to agents act simultaneously or 

asynchronously); individuals’ preferences, behavior, memory, and/or ability to perceive and 

detect environmental change; the organization of labor, marriage, or housing markets; and 

social network structure. Of course, some features of the model are easier to anchor in data 

10It can be useful to contrast agent-based modeling with statistical regression models. We can add as many variables as we like to a 
regression model, but we make the simplifying assumption that the errors are independent and identically distributed. Agent-based 
models allow us to relax this major assumption, but this introduces enormous model complexity with respect to social interaction that 
can make results difficult to interpret. To keep things tractable, one must simplify on some dimensions.
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than others. The primary constraint is the availability of high quality data at the appropriate 

unit of analysis. To illustrate how one might incorporate empirical data into an agent-based 

model, we focus on two features of agent-based models that have been most frequently 

grounded in past work: individual behavior and population characteristics.

Incorporating Population Characteristics

The actors that populate agent-based models are typically assigned some set of attributes 

such as a sex, age, education, income, life expectancy, disease risk, or network position. The 

analyst may assume an arbitrary distribution of agent attributes, or he or she can import the 

joint distribution of agents’ attributes from an empirical data source.11 Survey data typically 

document the characteristics and attitudes of individuals, households, or families and thus it 

is relatively straightforward to assign agents characteristics from these data. However, 

survey data are a relatively small sample; more often scholars prefer to use population 

(Census) data to initialize agents. For U.S. populations one can initialize the agents using 

data from the United States Integrated Public Use Microdata Series (IPUMS), which is a 

five percent sample of all U.S. households. For United Kingdom populations, one can use 

the UK Sample of Anonymized Records (SAR) Census data. However, while these sources 

provide Census data at the individual, household, or family level, they do not contain 

detailed geographic identifiers. The smallest geographic identifier available for United 

States Census data is IPUMS’ Public Use Microdata Area (PUMA), which contains 

approximately 100,000 people each.

A key challenge in initializing agent-based models using Census data is adapting the 

aggregated or discrete nature of these data to a more finely grained context. Individual-level 

Census data are publicly available at smaller units of geography (i.e., blocks, block groups, 

tracts) only in the form of aggregated, multi-way tables. Thus, if the researcher wants to 

initialize her agent population with more than a single attribute (e.g., race/ethnicity or 

household income), these tables typically do not contain the full joint distribution of 

household or population traits.12 Also, continuous attributes are often collapsed into discrete 

categories. The smaller the geographic unit identified, the less information is available and 

the more collapsed the variable categories are. For example, one might know the marginal 

distribution of categorical household size and the marginal distribution of categorical 

household income within identified Census tracts, but not the joint distribution of household 

size and household income.

Fortunately, there are well-developed methods for converting a set of incomplete marginal 

tables into a full table when the joint distribution of variables is known from a separate 

source. The most common method for generating individual-level data from incomplete 

tables on populations is table standardization using iterative proportional fitting (e.g., 

11Note that multiple agent types may be present within the same model. In addition to representing individuals, families, or 
households, agents can also represent institutions and other more aggregated social structures. For example, one can specify a 
“school” agent that has a set of characteristics as well as a list of associated pupils, all agents themselves. National Center for 
Educational Statistics (NCES) data on school attributes may be used to assign the simulated schools initial distributions of resources, 
safety levels, and student-teacher ratios corresponding to the schools in a given district.
12In the United States, the Summary Tape Files (STF) contains selected 2- and 3-way tables of attributes describing housing units, 
households, populations, and families. Similarly, the Small Area Statistics (SAS) for the United Kingdom have limited one- two-way 
and three-way tables.
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Agresti 2002: 345-6; Deming and Stephan 1940; Fienberg 1970; Ireland and Kullback 1968; 

Beckman, Baggerly, and McKay 1996). This approach was used in the NIH funded Models 

of Infectious Disease Agent Study (MIDAS) to generate an agent-based model with a 

population that included every household and individual in the U.S. population in 2000, as 

well as schools and workplaces generated to match counts at the Census block level area of 

geography (Wheaton et al. 2009; Wheaton 2009).13 The MIDAS micro- population data are 

available by request from RTI International. However, the data were constructed using 

specific criteria to assign households to block groups, and thus the fit is optimal for only a 

narrow subset of Census variables (Wheaton et al. 2009:7).

Finally, agents can be assigned social networks that correspond to some data source; for 

example the sexual or friendship networks collected in the National Longitudinal Study of 

Adolescent Health (Add Health). This network information may be read into the agent-based 

model the same way that population characteristics are initialized. While networks may 

correspond to some empirical social structure at the beginning of the model, they can also 

evolve over time based on subsequent agent interactions. Realistic data on social networks 

have been used in policy-driven agent-based models of disease transmission and epidemics 

(e.g., Ferguson et al.2005; Eubank et al. 2004; Cauchemez et al. 2011; Germann et al. 

2006), and this represents a potentially fruitful direction for future work.

Specifying Agent Behavior

Another rich area of investigation within agent-based modeling research is to explore the 

population dynamics implied by a given set of empirical preferences or behaviors (e.g., 

Schelling 1978; Bruch and Mare 2006, 2009; Benenson and Torrens 2004). Thus a key 

challenge is specifying appropriate activities for the individual actor. If the goal of the 

modeling exercise is to explore the macro-level consequences of some theorized preference 

or behavior, the analyst may prefer to assume a set of behaviors that correspond to the 

underlying theory. However, if the goal is to understand the aggregate consequences of real 

world phenomena, it is critical to specify agents’ actions in a way that is empirically 

defensible (Hedström andÅberg 2005: 118-199). Agents typically gather information about 

their environment, assess that information according to some set of criteria or ranking 

system, and then make decisions based on their assessment. They may also learn from past 

experiences and update their behavior. Empirical information can potentially enter into each 

stage of this process.

One useful strategy is to assume that agents’ preferences, strategies, or likelihood of making 

a particular choice or state transition are based on a statistical model. If the agent-based 

model is aimed at modeling discrete changes in agents’ attributes—for example entering or 

exiting a state of unemployment, getting married or divorced, or having a child—these state 

transitions can be defined based on coefficients from a discrete-time event history model 

(Allison 1982; see also Hedström and Åberg 2005). If the agent-based model is aimed at 

capturing agents’ decision-making process, discrete choice models provide one flexible 

framework for estimating the parameters of choice behavior (McFadden 1973; Louviere, 

13These data will eventually be updated using the demographic data from the American Community Survey.
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Hensher, and Swait 2000; Train 2009).These models have become increasingly 

sophisticated in recent years, and can allow for variation in individuals knowledge of 

available options, strategies for learning about or evaluating available options; reactions to 

change in environmental conditions; reactions to past experiences; and susceptibility to 

social influence. Estimation of relevant coefficients requires information on either on 

revealed preferences (observed choices) or stated preferences (survey responses to 

hypothetical choice scenarios) for some population of interest. These data may be obtained 

from surveys, observational data, or administrative records. Multiple sources of data on 

behavior or preferences may be combined in specifying agents’ behavior.

Given some defined set of alternatives, discrete choice models specify a ranked ordering of 

these choice outcomes, which can be converted into predicted probabilities. However, in 

order for agents to make a realized choice, these probabilities must be transformed into 

actual decisions. One method of doing this is to sample from a multinomial distribution with 

probabilities given by those computed by the agent. Sampling from predicted probabilities 

incorporates a random component into the choice process, consistent with the specification 

of discrete choice models. The random component maybe interpreted as the fact that agents 

may make mistakes or that the choice model does not reflect all dimensions of a choice that 

affect its desirability. Alternatively, one can assume that the probabilities computed from the 

choice model accurately reflect the underlying desirability of alternatives, and agents make 

decisions without error. In this case, one might specify that agents always “take the best” 

outcome, that is, they choose the outcome with the highest calculated utility.

A different strategy for modeling decision-making is to specify that agents’ behavior follow 

some set of rules, for example heuristics that update behavioral rules according to the 

accumulation of experience (Todd, Billari, and Simao 2005). Heuristics are “rules of thumb” 

for making decisions under conditions of uncertainty (Kahneman, Tversky, and Slovic 

1982). Heuristics are used both in the information-gathering stage of decision-making, and 

also when making the final choice. Typically heuristic decision-making strategies must be 

used in conjunction with a set of assumed or revealed preferences for agents to rank order-

outcomes by desirability. For example, in marriage market models one concern is how to 

best choose a marriage partner when potential mates can only be explored one at a time, and 

there is uncertainty about whether the next person down the pipeline will be better than what 

is currently available. One strategy is to use a “satisficing” heuristic; give agents only a 

preference for members of the opposite sex, and then let the initial period of interaction be 

one of learning about the market (e.g., treat the first dozen or so encounters or “dates” agents 

have with the opposite sex as a learning experience). Agents pick the next agent who comes 

along whose quality is equal to the best agent observed during the learning period (Todd 

1997; Todd and Miller 1999).

Finally, agents may also be assigned beliefs, values, or world-views that correspond to 

observations from ethnographic or participant observation, or in accordance with 

stakeholders’ assessments. For example, agents in a model of the intergenerational 

reproduction of inequality may vary in their beliefs about the degree to which education can 

lead to social mobility, or their understanding of how to go about getting a job. In practice, 

these beliefs or worldviews would be programmed as a set of rules governing action. For 
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example, an agent who believes that networks are most important for job seekers may spend 

its time attempting to develop ties with other agents whereas an agent that believes 

credentials are key to success may focus on education. Unlike in the statistical model of 

behavior based on quantitative data, the qualitative data is incorporated into the agent-based 

model loosely as a set of rules governing behavior, or alternatively as a set of rules for 

interpreting information. However, agent beliefs, world-views, or values may be coupled 

with a statistical or heuristic model of decision-making. For example, if qualitative data 

were available on how the time horizon an individual uses to make a decision varies with 

their degree of uncertainty about outcomes and perception that things are improving or 

deteriorating, the appropriate time horizon could be used to adjust the inputs to a statistical 

model of behavior. See Yang and Gilbert (2008) for more on qualitative data and agent-

based models and Geller and Moss (2008) for an example of agent behavior that is 

empirically grounded using a stakeholder approach.

4. ASSESSING MODEL OUTPUT: UNCERTAINTY, VARIABILITY, & 

SENSITIVITY

After specifying an agent-based model and providing inputs, one needs to produce and make 

sense of the model outputs. At the lowest level of granularity, agent-based models can 

output the distribution of agents and their associated states at every time point. This is often 

an unwieldy amount of data and its granularity can outstrip the theoretical and empirical 

knowledge that was used to create the model.14 It is often more useful to summarize output 

as population level or sub-group statistics or as a modal experimental trajectory taken by an 

agent who fits a given profile. For example, the spatial distribution of agents can be 

summarized into a single measure of segregation (e.g., the index of dissimilarity) or a set of 

local neighborhood composition measures. Alternatively one could track the trajectory of 

neighborhoods a typical agent experiences over the duration of the model. In applications of 

crime dynamics, one might capture overall crime rates within a stylized city, or look at 

neighborhood specific rates. At the micro level, one might examine the modal criminal 

career for an agent. Regardless of what types of output one chooses, variability in those 

measures needs to be considered in light of uncertainty about model inputs. Empirical 

measures and knowledge of key parameters or processes are often vaguely defined, 

measured with error, or completely unknown. This uncertainty generates statistical 

variability in model outputs. In the remainder of the section, we discuss different forms of 

uncertainty in agent-based models, and how to assess them via uncertainty and sensitivity 

analyses.

There are two sources of uncertainty and variability in agent-based models: input 

uncertainty and model uncertainty (McKay, Morrison, and Upton 1999). Input uncertainty—

also known as epistemic uncertainty (see Helton et al. 2006)—arises due to incomplete 

knowledge of model input parameters; for example, the parameter estimates from a 

14Less aggregated measures are often more sensitive to path dependence; for example, overall levels of residential or school 
segregation, patterns of assortative mating, or incidence of disease may be constant from run to run but the actual distribution of 
agents in space may vary widely due to random variation in initial distributions of agents or a sequence of decisions that unfolded 
within the model.
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behavioral model estimated from survey data will represent point estimates with associated 

standard errors. Alternatively, the data used to initialize the model may have some 

uncertainty due to sampling variability. Model uncertainty arises because the model 

typically requires some set of unverifiable assumptions about key parameters, processes, or 

social interactions. Thus, this source of uncertainty is associated with the architecture of the 

model. Model uncertainty and input uncertainty imply that there are a number of alternative 

specifications of the model possible, and these alternatives may generate variability in the 

outcome of interest (which may be one or more of the outputs discussed in the previous 

section). Agent-based models also have a third source of variability due to the stochastic 

elements of the model. Stochastic variability refers to the variation in model estimates that 

occurs from randomness within the model. For example, if agents’ choices are realized from 

probabilities, there will be fluctuation from model run to model run due to random sampling.

Input Uncertainty

There is a well-developed literature aimed at assessing the implications of input uncertainty 

(see Helton et al. 2006; Saltelli et al. 2004; Saltelli et al. 2008; Marino et al. 2008). The 

overarching goal is to assess what inputs and initial conditions are critical for the model 

results. This approach breaks down into two types of analyses. Uncertainty analyses 

examine the total variability in the model output that can be attributed to uncertainty in 

model inputs. Sensitivity analyses explore how uncertainty in the output of a model can be 

allocated across different sources of model input (Saltelli et al. 2004, 2008). The setup is the 

same for both and typically one first does an overall uncertainty analysis and then focuses on 

key parameters via sensitivity analyses.

Input uncertainty is most commonly assessed via Monte Carlo sampling procedures whereby 

the analyst varies input values systematically, re-runs the model, and then examines how the 

distribution of model outputs vary with model inputs. The first step is to specify the known 

or assumed joint distribution of parameters of interest. If nothing is known about the 

distribution, it is best to assume that each parameter follows a uniform distribution. If the 

analyst believes a parameter tends to take on a specific value, a normal distribution may be 

more appropriate (Marino et al. 2008). The actual sampling may be done via random 

sampling, importance sampling, or—as is most common—Latin Hypercube sampling 

(Helton and Davis 2003; Saltelli et al. 2008:76-78; Mease and Bingham 2006). Latin 

Hypercube sampling allows for an unbiased estimate of model output uncertainty, and 

requires fewer samples to accomplish this task than random sampling of input parameters 

(McKay, Beckman, and Conover 1979). Latin Hypercube sampling first requires the analyst 

to partition the distributions of relevant model parameters into s > 2 non-overlapping regions 

(where each region has the same density), and then sample one value from within each 

region without replacement. If k is the number of parameters, than s should be of value at 

least k + 1, but generally is much larger to allow the analyst to examine the influence of each 

parameter separately. Typically this method assumes that sampling is performed 

independently for each parameter, although there are methods for imposing correlations 

across the sampled values (Iman and Conover 1982; Iman and Davenport 1982, cited in 

Marino et al. 2008).
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An illustrative example is interest shown in Figure 1. Let us say that we have three input 

parameters of interest, where a~N (μa, σa) and b~N (μb, σb) are parameter estimates from a 

discrete choice model, and c~Unif (cmin, cmax) is the assumed distribution of agents’ 

consumption thresholds. Let y be some model outcome of interest. Figure 1 shows the 

partitioning of the parameters into s = 5 regions, and we randomly sample a value from 

within each region. We then combine randomly sampled values to generate our s by k (in 

this example, a 5 × 3) input matrix X, where. Xj = {aj,bj, cj}. We then run the agent-based 

model for j = 1,2, … 5, each time using a set of parameters Xj. We record the model outputs 

yj for each of the five runs to generate y = {y1, y2, y3, y4, y5}. This distribution of outputs 

reveals the impact of input uncertainty on model estimates because variation in the yi‘s 

shows the model to be sensitive to which parameter combinations we are starting with. The 

simplest way to examine the distribution of output values is via a histogram, which provides 

an overall measure of model uncertainty, or scatterplots where the distribution of model 

output is plotted against the distributions for each of the input variables (which provides a 

qualitative assessment of model sensitivity to a particular input value). For a more rigorous 

quantitative assessment, a variety of statistical techniques can be used, including correlation 

coefficients and decomposition of model output variance. Details and discussion of these 

techniques can be found in Saltelli (2002); Saltelli et al. (2004, 2008); and Marino et al. 

(2008).

Model Uncertainty

If the goal is to assess the degree to which uncertainty in the architecture of the model (e.g., 

assumptions about functional forms, sequencing of events, and definition of units of analysis 

like neighbors) generates uncertainty in model output, model uncertainty can be handled in 

ways similar to input uncertainty. However, rather than simply sampling values from a 

known or assumed distribution, the analyst will run the model under alternative assumptions 

about model architecture. For example, the analyst can run the model under varying 

assumptions about population size or the shape of neighborhoods to assess the extent to 

which these factors affect conclusions about residential segregation (Fossett and Dietrich 

2009; Laurie and Jaggi 2003). An alternative approach is to use Bayesian model averaging 

(Raftery 1995; Hoeting et al. 1999) to average over all possible values of parameters and 

model specifications based on their likelihood of generating the data. Bayesian model 

averaging was originally developed as a method of accounting for uncertainty in statistical 

models, but it could be adapted to agent-based models by replacing the likelihood function 

with a comparison between simulated and observed data. This procedure is called 

approximate Bayesian computation. The technical details are beyond the scope of this essay, 

but more information can be found in Toni et al. (2009); also see Sisson, Fan, and Tanaka. 

(2007).

Stochastic Variability

Most uncertainty and sensitivity analysis techniques were developed for deterministic 

models. Because agent-based models often contain a stochastic element—for example, the 

initial distribution of agents across the landscape may vary over model runs, or probabilities 

may be sampled randomly from a multinomial distribution—there is often fluctuation in 

model output across model runs. Sometimes this fluctuation is a property of the 
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phenomenon being studied; path dependence within the model may result in meaningful 

output variability and is interesting in its own right. In other instances, fluctuation is not 

meaningful and merely the result of stochastic elements of the model. In our experience, this 

fluctuation will be less apparent if the agent population size is sufficiently large and if the 

model output is summarized into aggregate summary measures. However, if the population 

is small or the analyst is interested in individual- or locally-based measures, this stochastic 

variation will lead to a distribution of output measures even with the same input values. The 

simplest way to account for this is to run each model setting multiple times and then analyze 

the resulting model trajectories. To reduce variability from random fluctuation, one can 

average over the distribution of estimated output values for a given set of input values 

(Marino et al. 2008).While it is common for agent-based modelers to explore how model 

output changes under a few alternative assumptions about key model inputs, only a handful 

of researchers have done rigorous sensitivity analyses. All of these are biological or 

epidemiological models. See Marino et al. (2008), Segovia-Juarez et al. (2004), Dancik, 

Jones, and Dorman (2010), and Riggs et al. (2008) for details.

6. MODEL VALIDATION IN HIGH AND LOW DIMENSIONAL AGENT-BASED 

MODELS

Agent-based models, like laboratory experiments, have strong internal validity. Since the 

modeler is aware of all aspects of model design, and since agent-based models make it easy 

to manipulate different parameters of the model, one can usually trace the causes of some 

observed aggregate process to one or more specific assumptions within the model. Insofar as 

one or more model parameters are grounded in empirical knowledge, this means that the 

analyst can rigorously explore how realistic assumptions about behavior, populations, or 

their environment affect an outcome of interest under highly controlled conditions. 

However, all these inferences are made internal to the model. External validity—the ability 

to generalize conclusions from the model to real- world processes—requires substantially 

more effort.

Of course, many agent-based models are not designed to reproduce real-world patterns. 

Indeed, in a world where theories are poorly developed and at best only weakly linked to 

empirical results and statistical models often stand in for analytic modeling, simple low-

dimensional agent-based models can have substantial payoffs. However, if the aim of the 

agent-based model is to make some policy recommendation—even if the goal is just to 

identify one or two potentially useful mechanisms for manipulation and not make 

predictions—researchers need to trust that the inferences made from the model reflect actual 

mechanisms operating in the world. In the case of low dimensional, more abstract models, 

this may require conducting an analysis external to the agent-based model to assess whether 

there is empirical evidence for the mechanisms observed within the model. In the case of 

highly realistic models, the goal is typically to compare output from the model with 

empirical data to evaluate overall goodness of fit.
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Evaluating Highly Realistic Models

A few requirements must be in place for an agent-based model to be feasibly evaluated by 

comparing model output to real world data. First, the model must be initialized with a 

population of agents that correspond to some known population. Second, the model output 

must be able to be mapped into real units of time. If spatial comparisons are desired, then the 

model environment must be linked to real space (e.g., using GIS data as discussed earlier). 

Finally, of course, the analyst must have access to field data at the appropriate level with 

which to do the evaluation. Typically some statistic is computed from the model and 

compared with its real world analogue. Highly aggregated summary statistics are the lowest 

bar of validation criteria. Because of the high level of data aggregation, a wide range of local 

conditions may give rise to the same aggregate statistic. One can compare either the final 

statistic after some specified time span or the evolution of that statistic over some time 

period. For validation at the micro level, the observed behavior of individual agents in the 

model can be compared with the behavior of individuals drawn from a comparable 

population. For example, if the researcher initialized the agents using a discrete choice 

model to describe their behavior, he could re-estimate this model from the agent decisions, 

and see if the coefficient estimates line up. Alternatively, one can look at trajectories for 

different types of agents to see if their average trajectory corresponds with observed human 

behavior.

Between the micro and macro levels of analysis, one can also compare information about 

local area statistics; for example, the proportion poor in a neighborhood or the average test 

scores in a school. The less stringent test would be to compare distributions from the agent-

based model with data; for example, the number of high-poverty neighborhoods estimated in 

the model and the number of high-poverty neighborhoods observed in the data. 

Unfortunately, this ignores the spatial distribution of outcomes. The more stringent criterion 

would be to go area-by-area and compare the degree to which the agent-based model 

predicted outcomes consistent with the attributes of real places. Again, one can compare the 

trajectories of units over time, or merely record their start and end points. Maps may be 

useful to show geographic areas where the model did and did not perform well.15

Over the past five years, a number of simulation researchers have offered detailed, 

programmatic recommendations for data-based model evaluation (Richiardi et al. 2006; 

Troitzsch 2004; Windrum, Fagiolo, and Moneta 2007; an older discussion is available in 

Carley 1996). However, there is a fairly well developed methodology in the atmospheric and 

physical sciences aimed at evaluating the results of computer experiments (e.g., Sacks et al. 

1989; Bayarri et al. 2007a, Bayarri et al. 2007b). This approach has been suggested for 

agent-based research (see Berk 2008), but is not widely known or utilized within the agent-

based modeling community. It provides a solid statistical foundation for the validation 

exercise and represents the state of the art (Berk 2008: 294). We briefly summarize their 

suggested method below, and provide relevant references for readers who want to pursue 

15Keep in mind that the process may be path dependent. Small differences in initial conditions or seemingly trivial decisions at one 
point in the model may propagate into substantive divergence in results later on. This one reason to study trajectories: if the model 
departs from reality, one would like to know whether at what point in time it departed and what accounted for this departure.
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more technical details. See Bayarri et al. (2007) and especially Berk (2008) for more details. 

Figure 2 provides a summary of the steps involved.

The first step of model evaluation is to specify model inputs and parameters with associated 

uncertainties or ranges. Ideally the modeler has already done a sensitivity analysis (see 

Section 7), so she is aware of how the model responds to fluctuations in key parameters. In 

particular, she knows the distribution of model results given the degree of empirical 

uncertainty in model inputs. (Note that model inputs can include parameter estimates as well 

as any key modeling decisions [for example, assumptions about the structure of the housing 

or labor markets or the extent to which an agent has incomplete information about its 

environment]). The sensitivity analysis will help determine which modeling decisions are 

most critical in explaining variation in model results. The model evaluation then takes into 

account uncertainty in inputs, and compares the distribution of model output to the observed 

data.

The second step is to determine the evaluation criteria. Researchers will generally want to 

include multiple measures of fit at multiple levels of granularity, and these measures will 

likely be adapted and refined as the evaluation process proceeds (Bayarri et al. 2007: 143). 

At least one measure will likely include an overall goodness-of-fit between the model and 

the data. Mean-squared error is one possible statistic, although it is sensitive to outliers 

(Berk 2008: 296). Summary measures are useful for assessing overall fit, but they do not 

provide detailed diagnostic information. For this, more detailed measures are useful. For 

example, residuals can be constructed from differences in expected versus observed 

characteristics of local areas, specific agents, or agent types. Note that these statistics may 

display substantial spatial or temporal autocorrelation, which can be handled via standard 

statistical techniques (Cressie 1991).

The third step is to identify real-world data suitable for the model evaluation. The data will 

preferably be at the same geographic level and time scale of the model output. Decennial 

Census data are one likely candidate for comparing populations, though these are only 

available at ten-year intervals. School enrollment data are available annually, but provide 

information only on children’s characteristics. However, these might be used to get some 

sense of population distributions within school districts. Other possible data sources include 

police reports and other crime data, hospital admissions records, births and deaths, and of 

course surveys on relevant populations. Ideally the data used to assess the model are not the 

same as those used to initialize it, but that is not always possible.

The fourth step is to generate the agent-based modeling estimates for comparison with real-

world data. If the analyst has done a sensitivity analysis, he should already have collected 

data on how the distribution of model outcomes varies with uncertainty in model inputs. 

Note that obtaining this distribution of model outcomes may require a substantial number of 

model runs. When model runs are computationally expensive and the researcher lacks access 

to high performance computing, this approach may not be feasible. One option is to estimate 

Statistically Equivalent Models (SEMs) using nonparametric statistical techniques that reply 

on algorithms designed to link model inputs to model outputs without trying to represent the 

underlying causal mechanisms (Brieman 2001; see also Berk 2008: 304-5).Finally, the 
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researcher compares the distribution of model output to the real world data. Of course, we 

would expect the model to do an imperfect job of predicting real world outcomes. However, 

the ways in which the model estimates depart from real world processes may be highly 

informative and useful for highlighting parts of the model that might be usefully revised, or 

point to data required to improve model fidelity. The process is iterative. The agent-based 

model and any associated empirical estimates may be refined based on conclusions from the 

evaluation, and the whole process repeats again.

Evaluating Low-Dimensional or Abstract Agent-based Models

While highly realistic models have been widely used in urban studies, epidemiology, and 

public health, this approach is less common in sociological research. Most agent-based 

models aimed at solving concrete empirical problems in sociology are not designed to 

replicate real-world situations, or predict expected outcomes under alternative policy 

scenarios. Rather, the goal is to explore the systems implications of behavioral mechanisms 

and the robustness of those mechanisms to changes in the key parameters. Even when much 

of the agent-based modeling architecture is informed by empirics, the purpose of the 

analysis is not to recreate the process of interest so much as identify key relationships among 

the parameters. In this case, one should resist the temptation to “validate” the model by 

comparing its output to empirical, aggregate patterns. Since multiple assumptions at the 

individual level can give rise to the same aggregate social dynamics, an agent-based model 

has not “explained” some process of interest merely by reproducing it (Grimm et al. 2005; 

Jones 2007).16 However, the model can show what might be expected under a set of 

empirically plausible assumptions. Rather than directly comparing model output to empirical 

data, researchers should try to determine whether the key relationships or mechanisms 

highlighted in the agent-based model seem to be plausible explanations of real-world 

phenomena. This often involves an analysis of empirical data that is completely separate 

from the agent-based model. In this case, the agent-based model is more of a theoretical tool 

used for the generation of hypotheses.

The trick is to figure out what empirical patterns would be consistent with a given 

mechanism. This is especially difficult when the focal mechanism is unobserved. For 

example, network externalities are rarely observed explicitly (e.g., Hedström and Åberg 

2005; DiMaggio and Garip 2011). However, one can still specify hypotheses about what 

empirical relationships would be consistent with the observed mechanism. In quantitative 

models, fixed effects or statistical controls can help rule out alternative explanations. This 

strategy of model validation is useful in situations in which there is good aggregate data to 

test the theoretical relationships implied by the agent-based model. For example, Bruch 

(2013) uses both abstract and empirically grounded agent-based models to explore how 

between- and within-race income inequality shapes racial segregation dynamics. She finds 

that when there is a sufficiently high level of within-race income inequality, an increase in 

between-race income inequality has offsetting effects at the high and low ends of the income 

distribution. These offsetting effects attenuate the total change in segregation resulting from 

16For example, two very different assumptions about mate preferences—that people desire a mate with the highest mate value (e.g., 
as measured by attractiveness or income) or that people desire a mate with a mate value most similar to their own—will generate the 
same patterns of assortative mating.
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a decrease in between-race income inequality. To evaluate whether such offsetting effects 

are operating in real world settings, she uses fixed-effects models applied to three decades of 

decennial Census data to estimate the relationships among between-race income inequality, 

within-race income inequality, and the relative size of minority groups. While this approach 

shares the same drawbacks as any observational study, it does establish some empirical 

support for the underlying relationships observed in the agent-based model.

An alternative approach for testing the validity of mechanisms identified in the agent-based 

model is to design an experiment aimed at capturing the mechanism of interest. This is the 

strategy used by Todd and colleagues (Todd and Miller 1999; Lenton, Fasolo, and Todd 

2009; Todd 2007) in their analyses of mate search strategies and marriage market outcomes. 

They first use an agent-based model to simulate outcomes under alternative assumptions 

about the degree of competition. They assume individuals update beliefs about their own 

marketability after sequential encounters with potential mates. They find that when there is 

greater indirect competition among same sex mate-seekers, individuals are quicker to make 

their choice, and shorten the initial learning period. To test whether this same result holds in 

the real world, they organize a series of speed-dating experiments to see how differences in 

levels of competition (e.g., the sex ratio and total number of participants) affects individuals’ 

mate choice behavior.

7. FUTURE DIRECTIONS AND CHALLENGES

Agent-based models are increasingly recognized as valuable tools within an empirical 

research program. However, there is no codified set of recommendations for or practices for 

using these models in empirical research programs. This paper offers a set of suggestions 

and practical guidelines for how to conceptualize, develop, and evaluate empirically 

grounded agent-based models. Our goal is to bring together literature across a wide range of 

fields—including transportation research, epidemiology, biology, atmospheric sciences, and 

statistics—representing “best practices” in this line of work.

There are several promising directions for future research. One is to make use of the 

emerging insights from behavioral economics and cognitive science on how people make 

collect, analyze, and act upon information to develop agents with more plausible and 

nuanced human behavior (c.f. Payne, Bettman, and Johnson 1993). Much of our work in 

sociology has focused solely on the role of preferences in individual choices and assumed 

people have infinite cognitive resources; we have not paid much attention to how people 

actually gather information and make decisions. For example, how do systematic biases in 

perception of things with near versus far time horizons affect choice behavior and to what 

extent do individuals learn from experience or past mistakes? One might specify agents that 

not only have tastes but also strategies for action under limited information or learning 

mechanisms, and then exploring how these features of human decision- making matter for 

social dynamics. Allowing for a more empirical realism in individual behavior would open 

up a whole set of interesting theoretical questions concerning how individuals’ cognitive 

biases and heuristic strategies for gathering information and making decisions shapes 

opportunity structure and the social environment. This topic is especially well suited to 
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agent-based modeling given its natural ability to model the co-evolution of individual 

behavior and social environments.

Another promising application of empirical agent-based models is in studies aimed at 

understanding the development and evolution of social networks. Structural sociologists 

argue that the social environment formalized as networks constrains individual actions and 

defines the implications of those actions. Accordingly the majority of research treats an 

existing network as an independent variable, rather than an endogenous outcome of social 

interaction. However, agent-based models can be used to specify dynamic networks that 

explore how social outcomes and structure evolve given agents’ preferences and 

opportunities to create ties.17 To date, the most systematic and ambitious treatment of 

network change is work by Padgett and Powell (2012) that uses a simple agent-based model 

of autocatalysis and a multiple networks perspective to make sense of emergent phenomena 

ranging from partnership systems to high-tech clusters.

Another potential research direction is to couple detailed geographic data with quantitative 

and qualitative accounts of how people interact with space to better understand how physical 

proximity and the layout of cities and other social environments hinder or facilitate 

interaction and interdependence among individuals and groups, and how this process 

aggregates up to result in cooperation or conflict among communities. Space remains an 

under theorized aspect of social life: we often take spatial relationships as proxies for social 

relationships but we know very little about how individuals’ orientation to their physical 

environment affects social life. Geography may be especially relevant in applications where 

agents’ opportunities are constrained or defined by geography. This includes studies of 

residential mobility, but also marriage markets, employment opportunities, and school 

choice. Moreover there is evidence that geographic barriers such as freeways, train tracks, 

busy intersections, and other features play important roles in neighboring relationships, 

social networks, and community dynamics (e.g., Noonan 2005; Grannis 2009). Agent-based 

models historically have represented the agents’ environment as abstract and aspatial; a 

continuous space or a discrete space composed of cells arrayed on a grid. However, 

modelers are increasingly using explicit geography for a specific city or region (e.g., Crooks, 

Castle, and Batty 2008; Robinson et al.2007). In addition, detailed sensor data available 

from cell phones provides rich information on individuals’ movement in space, which can 

be also be incorporated into agent-based models (Osgood and Stanley 2012). Capturing how 

geographic barriers constrain or enhance interaction patterns may shed further light on how 

space conditions social life.

We close with a few words about software, documentation and replicable science. There are 

many software platforms and programming languages that support the construction of agent-

based models. Well established platforms like Repast, Netlogo, MASON, and Swarm speed 

up development time by taking care of messy background details, but it is also relatively 

easy it is to construct a model in environments like R or Matlab. For empirically grounded 

models, especially those that realistic geography and populations, languages Python and R 

17Snijders, van de Bunt, and Steglich (2010) introduce a useful computational model employing a Markov process, howevr decisions 
are by definition “memoryless” and there is limited opportunity to include environmental constraints and heterogeneity among agents.
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can make the handling and analysis of data easier. Regardless of what language one chooses, 

there are several practical introductions to the modeling process to consult before you begin 

(cf. Macal and North 2010, Railsback and Grimm 2011).

A key part of model development is documenting the code. Good documentation abstracts 

away from the code and makes the model’s structure and assumptions apparent. There have 

been calls for standardization of documentation (cf. Grimm et al. 2006, Richiardi et el. 

2006), and one promising candidate is the Unified Model Language (UML). UML lays out a 

series of well-defined and standardized schematics—independent of any specific 

programming language—for representing the underlying logic of the model. This technique 

has become the gold standard for describing object oriented programming code (Fowler 

2003), and agent-based modelers have begun to incorporate these diagrams into 

documentation and publications (Bersini 2012). In addition, the OpenABM repository is an 

excellent vehicle for sharing code and supporting documents.18 However, the adoption of 

these “best practices” has been slow and there remains great variation in how models are 

documented and shared. All methods would benefit from more peer validation of data and 

coding, but because agent-based models have more opportunities for coding error it is all the 

more important to allow others to explore and test models.19 Good practices around 

documenting and sharing models will help broaden the appeal and acceptance of agent-

based models.

APPENDIX A

AGGREGATE VERSUS INDIVIDUAL-LEVEL MODELS

In this appendix, we provide an overview of how agent-based modeling compares to other 

methods for analyzing interdependent behavior, feedback effects, and social dynamics. 

These include systems dynamics and various forms of mathematical modeling. A full 

discussion of the relative advantages of these approaches is beyond the scope of this 

appendix (see Osgood 2008 for detailed discussions of model tradeoffs), but it is important 

to highlight the key methodological distinction between dynamic models that represent 

aggregated or expected behavior (e.g., general equilibrium models, interactive Markov 

models and other forms of population projection, and systems of differential equations) and 

models specified at the individual level, where each agent represents an autonomous actor 

(Osgood 2008; Bruch and Mare 2012; section 8).20 In sociology, nearly all individual-based 

models are agent-based models, so we use the terms interchangeably.

Aggregate models typically represent the distribution of a population across some discrete 

set of “states” at time t, where states denote the proportion of the population with a given 

value of an attribute at a given time point. For example, in the classic “SIR” epidemiologic 

model, states reflect the number or proportion of people who are susceptible to, infected by, 

18See http://www.openabm.org/models.
19One promising tool for replicating scientific computing is the IPython notebook. It embeds live code (written in Python, R, Java and 
C++ [both via extensions] and many other languages) alongside documentation such as written descriptions, graphs and other figures. 
The end result is a portable “notebook” document that can be easily run on a local machine or a server. An introduction to this 
continually improving project can be found at www.ipython.org
20“Actor” usually means an individual but can also be schools, households, and other units.
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or recovered from some disease (Brauer,van den Driessche and Wu 2008). In a 

neighborhood dynamics model, states may reflect the population distribution across specific 

neighborhoods or areas (e.g. Mare and Bruch 2003). A matrix of transition values describes 

the probability of transitioning from one state to another, either as constants or as a function 

of the population distribution at time t, so that the probabilities are endogenous to the 

underlying population dynamics (Conlisk 1976). The observed dynamics or expected 

equilibrium can be computed by iteratively multiplying over matrices, or the system may be 

solved analytically.21

There are two key differences between aggregate and individual-level models: (1) their 

ability to handle population heterogeneity (which includes not just variation in individual 

attributes but also local interactions and network topology); and (2) whether decisions are 

represented as discrete choices or continuous transition probabilities or realized decisions. 

The former difference is due to the computational limits of aggregate models and the latter is 

the chief methodological innovation of agent-based modeling. First, agent-based models 

allow for a significantly more robust representation of population heterogeneity than do 

aggregate models because, as the analyst subdivides the population into detailed categories 

based on one or more key attributes, the complexity of the aggregate model grows 

geometrically whereas the complexity of the agent-based model grow only linearly (Osgood 

2008). Thus, typically the number of subgroups represented in aggregate models is small 

even while there may still be considerable heterogeneity within subgroup categories. 

Furthermore, if there is heterogeneity within the population subgroups defined by the 

aggregate model, and those heterogeneous individuals have different transition probabilities, 

this can lead to a biased set of inferences regarding population dynamics due to selection 

effects (Vaupel and Yashin 1985)22

The second difference between models at the aggregate and individual levels is that 

aggregate models simulate dynamics based on continuous or “smoothed” probabilities while 

agent-based models simulate the dynamics of realized decisions (that may be generated 

probabilistically). Simulating based on smoothed probabilities is tantamount to assuming an 

infinitely large population, as it implies that people can be subdivided into arbitrarily 

fractional units without changing the underlying dynamics. When the population under 

investigation is small or the units in which individuals influence one another is small (e.g., 

networks, neighborhoods, contact areas for disease), individual and aggregate models can 

generate different observed macro dynamics (Green, Kiss, and Kao 2006). For example, in 

residential mobility models an agent’s decision to move or stay will change neighborhood 

composition by 1 unit. Contrast this with an aggregate model of neighborhood change, in 

which probabilities may take on any value between 0 and 1. When neighborhoods are small, 

21See Otto and Day (2007) for a more detailed discussion of analytical solutions and Bruch and Mare (2012, pp.142-45) for a 
discussion of computational solutions.
22Consider, for example, residential mobility based on the racial composition of neighborhoods, where states denote the proportion 
black within the jth neighborhood category at time t. Within race groups some people are more tolerant of members of other races than 
others. The calculated transition probability represents the average tolerance of this non-homogenous population. As less tolerant 
people move away from areas with substantial black populations first, the underlying transition probabilities associated with each 
neighborhood will change, as selection leads to a population in black neighborhoods composed of more tolerant or diversity-seeking 
individuals. However, this will not be reflected in the observed dynamics based on the initial calculated average probability ( Xie and 
Zhou 2012; Rahmandad and Sterman 2009; Brown and Robinson 2006). See Osgood (2008) for a more detailed discussion of 
representing heterogeneity in aggregate versus individual-based models
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a 1-unit change may have very different implications for neighborhood desirability than a 

unit change for a given individual response behavior. Similarly, if total population size is 

small, agent-based models may generate different predictions about the emergence of 

pandemics than a model that assumes an infinite population (Keeling and Grenfell 2000).

In spite of these limitations, aggregate models do have certain advantages over agent-based 

models. They are more straightforward to construct and understand, they take less time and 

computational power to run,23 and it may be easier to find empirical data for anchoring 

them. Also, if one wants to simulate the dynamics of a very large population (e.g., the 

population of the United States), agent- based models may become unwieldy. Accordingly, 

researchers have to weigh the tradeoffs. Both aggregate and individual models can 

incorporate feedback, stocks and flows, and other properties of dynamic systems. A few 

factors that can motivate using an agent-based model include the amount of individual 

heterogeneity desired in the model, the size of the population and relevant units, and the 

extent to which the problem at hand has the features outlined in the section below.
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Figure 1. Latin Hypercube Sampling for Uniform and Normal PDFs*
* Note: This figure is adapted from Marino et al. (2008).
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Figure 2. Process of Model Evaluation
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