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Abstract

A semicompeting risks problem involves two-types of events: a nonterminal and a terminal event 

(death). Typically, the nonterminal event is the focus of the study, but the terminal event can 

preclude the occurrence of the nonterminal event. Semicompeting risks are ubiquitous in studies 

of aging. Examples of semicompeting risk dyads include: dementia and death, frailty syndrome 

and death, disability and death, and nursing home placement and death. Semicompeting risk 

models can be divided into two broad classes: models based only on observables quantities (class 

) and those based on potential (latent) failure times (class ). The classical illness-death model 

belongs to class . This model is a special case of the multistate models, which has been an active 

area of methodology development. During the past decade and a half, there has also been a flurry 

of methodological activity on semicompeting risks based on latent failure times (  models). 

These advances notwithstanding, the semi-competing risks methodology has not penetrated 

biomedical research, in general, and gerontological research, in particular. Some possible reasons 

for this lack of uptake are: the methods are relatively new and sophisticated, conceptual problems 

associated with potential failure time models are difficult to overcome, paucity of expository 

articles aimed at educating practitioners, and non-availability of readily usable software. The main 

goals of this review article are: (i) to describe the major types of semicompeting risks problems 

arising in aging research, (ii) to provide a brief survey of the semicompeting risks methods, (iii) to 
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suggest appropriate methods for addressing the problems in aging research, (iv) to highlight areas 

where more work is needed, and (v) to suggest ways to facilitate the uptake of the semicompeting 

risks methodology by the broader biomedical research community.
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1 Introduction

A main concern of gerontological research (i.e. the study of aging) is the understanding of 

the natural history and risk factors of age-related morbidity outcomes in order to predict, 

prevent or postpone the incidence of morbid outcomes. A major goal of this enterprise is to 

find ways to promote independent and active living in old age. This was termed 

“compression of morbidity” by Fries (1980). Death is a pervasive competing risk in studies 

of aging. It terminates the aging process. The occurrence of morbidity outcomes is precluded 

by death, but death itself can always be observed with sufficiently long followup. To 

distinguish this from the classical competing risks situations, the phrase semicompeting risks 

was coined by Fine et al. (2001). A semicompeting risks problem involves a dyad of events: 

a nonterminal and a terminal event (death). Typically, the nonterminal event is the focus of 

the study, but the terminal event can preclude the occurrence of the nonterminal event (Fig. 

1). The semicompeting risks problem becomes a classical competing risks problem, if we 

restrict our focus to the first event, i.e. if we ignore the information after the nonterminal 

event. While competing risks have been extensively reviewed in statistical and biomedical 

research journals, there are no reviews on semicompeting risks models.

Semicompeting risks are ubiquitous in studies of aging. Examples of semicompeting risk 

dyads include: dementia and death, frailty syndrome and death, disability and death, and 

nursing home placement and death. In these examples, we are typically interested in making 

inferences about the morbidity process that results in the nonterminal event. However, it is 

quite likely that the morbidity process is also correlated with the terminal event. It is 

common to temporally observe markers associated with the morbidity process. Such 

markers are useful in improving our understanding of the morbidity process and can also 

help in predicting the incidence of morbid outcomes. For example, hormones such as 

insulin-like growth factor I (IGF-1) play key roles in metabolic regulation and are tightly 

regulated to ensure normal function. The fact that data from young and healthy adults show 

wide variation between individuals suggests that individual set points exist. Scientists are 

now hypothesizing that the observed age-related change in hormones exemplifies that 

resilience is a dynamic process. Therefore, individual-level trajectories of change in 

hormones, more than the absolute levels, may be clinically meaningful for predicting health, 

function, and survival in old age. Death, in addition to truncating the nonterminal event, also 

truncates the marker process. This may be called semicompeting processes.

The semicompeting risks problem is equivalent to the classical illness-death model (Fix and 

Neyman 1951). The illness-death model is a special case of the multistate models (Hougaard 
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1999), which has been an active area of methodology development. During the past decade 

and a half, there has also been a flurry of methodological activity on semicompeting risks 

based on latent failure times (Robins 1995a,b; Lin et al. 1996; Fine et al. 2001; Peng and 

Fine 2006, 2007; Ding et al. 2009; Hsieh and Huang 2012; Chen 2012). These developments 

notwithstanding, the semicompeting risks methodology has not penetrated gerontological 

research. Likely reasons include: methods are relatively new and sophisticated, paucity of 

expository articles to provide guidance for practitioners, lack of collaboration between 

medical researchers and methodologists with expertise in this niche area, and lack of 

availability of ready-to-use software. The main goals of this review article are: (i) to 

describe the major types of semicompeting risks problems arising in aging research, (ii) to 

provide a brief survey of the semicompeting risks methods, (iii) to suggest appropriate 

methods for addressing the problems in aging research, (iv) to highlight areas where more 

work is needed, and (v) to suggest ways to facilitate the uptake of the semicompeting risks 

methodology by the broader biomedical research community.

Here is an outline of the paper. In Sect. 2, we present some motivating examples of the types 

of major research problems in aging where semicompeting risks play an important role. In 

Sect. 3, we provide a review of major methodological approaches for semicompeting risks, 

distinguishing between methods based only on observable data (Sect. 3.3) and those based 

on latent failure times (Sect. 3.4). In Sect. 4, we discuss semicompeting process models, 

which are an extension of the joint survival longitudinal models that deal with single time-

to-event outcome to semicompeting risks problems. In Sect. 5, we use simulations to 

motivate the need for potential failure time models that can account for dependent 

censoring, and study one important type of model: the bivariate location-shift model. Using 

simulations, we evaluate the criticality of the assumptions made in this model and 

demonstrate that a major assumption can be relaxed. We, then, address the practical question 

of which methods are appropriate for answering different research questions in aging (Sect. 

6). In Sect. 7, we discuss the open methodological problems in semicompeting risks and 

identify some areas where work is needed. In particular, we emphasize causal inference in 

semicompeting risks as an under-studied area and suggest some interesting ideas for further 

exploration. We also suggest some practical strategies for faciltating the uptake of 

semicompeting risks methodology by practitioners in biomedical research.

2 Some motivating problems in aging research

2.1 Risk factor etiology in older adults

With the fast growing older population, there is great interest in identifying risk factors for 

diseases and conditions and their related morbidity outcomes such as frailty and disability. 

Information on risk factor-outcome association is critical for optimal risk management and 

diagnosis. Compared to younger adults, studying risk factor-outcome association in older 

adults faces unique challenges including competing risks, age-related physiological changes, 

imperfect measurement of risk factors and outcomes, selective survival, confounding by 

comorbidity, shifting attitudes and changing perceptions of outcomes, and altered disease 

manifestations and/or presentations affecting diagnosis and detection of outcomes (Kaplan 

et al. 1999). There is mounting evidence that many if not all the complexities mentioned 
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above may have contributed to the reports of weakened risk factor-outcome associations 

with advancing age (Kaplan et al. 1999). For example, a systematic review found that the 

effect of cigarette smoking on the risk of Alzheimer disease (AD) and dementia varies 

dramatically across studies with relative hazard ranging from 0.27 to 2.72 for AD and from 

0.38 to 1.42 for dementia (Hernan et al. 2008). It turns out that this heterogeneity could be 

largely accounted for by the between-study differences in the minimum age at study entry. 

The effect of cigarette smoking on the risk of dementia is modified by age: smoking was 

harmful at younger ages, but beneficial at older ages. One explanation is selection bias due 

to age-dependent change in smokers’ susceptibility to AD and dementia. Alternatively, the 

selection bias could be the result of censoring by death, i.e., selective dropout of susceptible 

smokers due to death prior to onset or clinical diagnosis of AD. While factors such as age-

related alteration in physiology, manifestations, and presentations of diseases or conditions 

may be real biological phenomena driving the change in risk factor-outcome association, 

other challenges including competing risks (e.g., AD-free death) should be and can be dealt 

with analytically such that scientific discovery is not impeded by our failure to account for 

the clinical complexity and population heterogeneity.

2.2 Studying association of marker processes with morbidity outcomes

Risk factor-outcome association studies in gerontology have primarily focused on risk 

factors measured at a single time point. For many physiologic measures (e.g., anabolic 

hormones), variation in levels between people greatly exceeds the changes within a single 

person, even among healthy younger adults. This suggests that individual set-points exist 

(Cappola et al. 2009). From a single measurement, an individual's usual normal level or 

setpoint cannot be determined nor whether the set-point is being successfully maintained. 

Repeated measurements from the same person taken over time can overcome these 

limitations. A major advantage of longitudinal trajectory analysis is the capacity to separate 

change over time within individuals (i.e., aging effect) from differences among people with 

different ages in their baseline levels (i.e., cohort effect), thus providing better control for 

unmeasured confounding. Moreover, studying the association of risk factor (or marker) 

processes and outcomes may provide a unique opportunity to understand the natural history 

of risk factors as time-evolving processes and their relationships with outcomes. For 

example, muscle weakness defined based on a single measurement of handgrip strength 

correlates well with subsequent adverse health outcomes, even when measured in mid-life to 

predict physical disability decades later (Rantanen et al. 1999). Recently, studies have 

shown that a decline in grip strength over time is a stronger predictor than a single 

observation of grip strength of a variety of subsequent adverse outcomes including falls, 

disability and death, suggesting that “becoming weaker” is important in addition to “being 

weak” (Xue et al. 2010, 2011). Studies like this and others have contributed to the growing 

interest in relating longitudinal processes of biomarkers or risk factors to health outcomes in 

older adults. It is important to note that the concept of semicompeting risk equally applies to 

this setting with added complexity that the terminal event not only precludes the primary 

event of interest but it also censors the marker process, leading to biased inference of the 

relationship between covariates, marker process, and the nonterminal event.
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2.3 Multimorbidity in older adults

A hallmark of geriatric medicine is that chronic conditions rarely occur in isolation in older 

adults. The co-occurrence of two or more chronic conditions, or “multimorbidity,” is 

thought to heighten the risk of adverse outcomes beyond that associated with the individual 

conditions (Boyd and Fortin 2010). For example, among the older women participating in 

the United States nationally representative survey NHANES, examining five major chronic 

diseases—coronary heart disease, stroke, diabetes, arthritis or chronic respiratory disease, 

fewer than 20% who had any one of these diseases had it in isolation (except arthritis which 

had an isolated prevalence of 47%) (Boyd and Fortin 2010). Among the pressing issues for 

gerontological research is to elucidate shared etiology underlying such multimorbidity as 

well as sentinel clusters and combinations of multimorbid disease (Marengoni et al. 2011). 

Statistically, the first issue is informed by—and the second issue requires—the study of 

association among multiple dependent failure times, each subject to the substantial semi-

competing risk of death. Of additional interest is clustered occurrence of an index chronic 

disease among multiple related individuals, so that heritability and other sources of shared 

risk can be studied. The study of time to onset of dementia in families is a well-known 

example in the statistical literature on multivariate failure times subject to competing risks. 

Collectively these examples highlight multivariate failure-time analysis accounting for 

competing risks as a potentially important tool in gerontological research.

2.4 Assessing the impact of interventions in older adults

Randomized controlled trials (RCTs) can provide valid estimates of treatment efficacy. 

Efficacy measures the ideal, biological effect of a treatment. In contrast, the effectiveness of 

an intervention is measured in terms of the actual benefit obtained in the real world, where 

complications including competing risks, adverse events related to treatment, and non-

adherence to treatment are present. An effective intervention should reduce the absolute risk 

of the nonterminal event of interest, as well as not exceed acceptable levels of harm. When 

the risk of terminal event is high, even an efficacious intervention may not substantially 

reduce the absolute risk of the nonterminal event. An intervention that is efficacious in 

relatively healthy older adults may not be effective in the larger at-risk population of older 

adults with two or more coexisting conditions (multimorbidity) because of the greater risk of 

competing terminal events and increased susceptibility to treatment related adverse events 

(Welch et al. 1996). Therefore, it is important to consider competing risks and risk of 

adverse events when applying trial evidence to older adults with multimorbidity (Weiss et 

al. 2012).

2.5 Routine screening in older adults

A main goal of routine, population-wide screening is to detect asymptomatic disease at a 

stage where the disease can be detected reliably (i.e. with minimal false positives) and once 

detected it can be treated effectively. For middle-aged adults, the starting age and frequency 

of screening are the important issues. In older adults, however, there has been a lot of debate 

about when to stop screening, i.e. when it is not beneficial to screen. For example, most 

screening guidelines do not recommend prostate-specific antigen (PSA) screening in older 

men with limited remaining life expectancy because the potential benefits, which are not 
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expected to occur until several years in the future, are thought to be outweighed by the 

potential harms of screening, which occur immediately (Walter et al. 2006). For cancer 

screening in older adults, Walter and Covinsky (2001) present a framework for making 

individualized decisions. They consider the baseline risk of dying of a screen-detectable 

cancer, the length of time that must elapse for screening to yield a survival benefit, and the 

probability of dying from causes unrelated to the cancer. They argue that cancer screening 

will be ineffective for older adults with severe disabilities due to their limited remaining life 

expectancy (less than 10-years). For example, the American Cancer Society and the 

American Urological Association recommend annual PSA screening for average-risk men 

over 50 years of age, if they have greater than 10-year remaining life expectancy. The US 

Preventive Services Task Force (USPSTF) concluded that evidence is insufficient (“Grade 

I”) to recommend routine PSA screening, and men with a low probability of surviving 10 

years are unlikely to benefit from screening even under favorable assumptions (Walter et al. 

2006). Similar finding of reduced effectiveness has also been reported for colorectal cancer 

screening in adults older than 80 years of age (Lin et al. 2006).

3 A brief review of existing modeling approaches

3.1 Notation and terminology for semicompeting risks

A main goal in semicompeting risks problems is to make inference on the distribution of the 

failure time of the nonterminal event, T1. Ideally, we would like to observe {T1i} for each 

individual i = 1, · · · , n. Then, we can readily make inferences on T1. In reality, however, we 

only get to observe n i.i.d. copies of {Y1i, Y2i, δ1i, δ2i, Xi, Vi(t)}. See Fig. 2 for a 

representation of the semicompeting risks data. Subject A experienced the nonterminal event 

and later died, so we observe both T1 and T2. Subject B had the nonterminal event, but did 

not die before end of study, so we observe T1 and censoring time C. The potential 

unobserved death time T2 is given by point B′. Subject C died, but did not experience the 

nonterminal event, so we only observe T2. The potential unobserved nonterminal event time 

T1 is denoted by point C′. Finally, subject D experienced neither event, so both T1 and T2 are 

unobserved, but depicted as point D′.

3.2 Two types of semicompeting risks models

Semicompeting risk models can be divided into two broad classes: models based only on 

observables quantities and those based on potential (latent) failure times. Observables 

models are based on the observed data: O = {Y1i, Y2i, δ1i, δ2i, Xi, Vi(t); i = 1, . . . , N}. 

Models for the cause-specific hazards (CSH) and the cumulative incidence functions (CIF) 

are identifiable with observed data, O (Prentice et al. 1978). We might call such models as 

forming the class . Models for potential (or latent) failure times go beyond the observable 

data and attempt to model the joint distribution of {T1, T2} or the marginal distributions of 

T1 and T2. We might call such models as forming the class .
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3.3 Models based on observables (  models)

3.3.1 Cause-specific models—One approach to treating the semicompeting risks 

problem is to ignore the information available after the nonterminal event by only 

considering the time and type of the first event that occurs to an individual. This becomes a 

classical competing risks problem. The two main quantities in classical competing risks are: 

cause-specific hazard (CSH) and the cumulative incidence function (CIF). The CSH and CIF 

for the non-terminal (k = 1) and terminal (k = 2) cause of failure are defined as:

(1)

(2)

where Y is time elapsed since a well-defined origin, ε ∈ {1, 2} indicates the cause of failure, 

and dt denotes an infinitesimal increment of time. These functions can depend on covariates. 

While it is easy to evaluate the impact of a covariate X on the CSH of event k, it is more 

difficult to evaluate the effect of X on the corresponding CIF, Fk. This is because the 

cumulative incidence Fk(t) depends on λk, as well as λj , j ≠ k. Therefore, regression methods 

that directly estimate the impact of X on Fk have been developed. The subdistribution hazard 

model (Fine and Gray 1999) is becoming increasingly popular in biomedical research. 

Flexible regression modeling techniques, which can incorporate various transformations of 

CIF and accommodate time-varying effects, have been developed recently (Scheike and 

Zhang 2008). These models assume the form:

(3)

where h and g are specifed link functions and β(t) and γ are vector of time-varying and fixed 

coefficents, respectively. The model (3) includes the subdistribution hazard model and 

several other models as special cases.

An important issue is determining which estimand to use, CSH or CIF, for the competing 

risks problem at hand. This was addressed by Varadhan et al. (2010).

3.3.2 Shared frailty models—A major difference between classical competing and 

semicompeting risks is that in semicompeting risks problems we can estimate the 

association parameter that represents the dependence between the nonterminal and terminal 

event times (Fine et al. 2001). Xu et al. (2010) developed an extension of the classical 

illness-death model for semicompeting risks. They defined the hazards as follows (Fig. 1):

(4)

(5)
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(6)

where 0 < t1 < t2. Equations 4 and 5 are the usual CSH functions for the competing risks 

part of the model in which either the terminal or nonterminal event occurs first. The hazard 

(6) is special to the semicompeting risks situation. It is the rate of the terminal event 

following the occurrence of the nonterminal event at time T1 = t1. Generally, λ12 can depend 

on both t1 and t2, but in a Markov model, it only depends on t2, and in a semi-Markov model 

it depends only on t2 − t1. With a Markov model, the ratio λ12(t)/λ2(t) is known as the 

explanatory or predictive hazard ratio, and it characterizes the dependence between T1 and 

T2. When this ratio is equal to 1, the occurrence of nonterminal event at time t1 has no 

impact on the rate of occurrence of terminal event after that. Xu et al. (2010) modeled the 

dependence structure between T1 and T2 using a Markov shared frailty model as follows:

(7)

where γ is a positive random variable denoting frailty or random effect with E(γ) = 1. 

Conditional on γ , this is a standard Markov illness-death model. The assumption=that 

λ03(t2) = λ02(t2) is of special interest. Under this assumption,the shared frailty model can be 

shown to be the same as the semicompeting risks models of class  discussed in Sect. 3.4.2. 

In this restricted model, the dependence between T1 and T2 is fully captured by γ . Xu et al. 

(2010) assumed that the frailty variable γ has a gamma distribution with mean 1 and 

variance θ. They showed how to estimate the two baseline hazard functions and the frailty 

parameter using the maximum likelihood approach. They also showed how to incorporate 

covariates into the model (7). Other distributions than gamma may also be used for the 

frailty variable such as log-normal or positive stable distributions. A limitation of the shared 

frailty models is that they can only capture the positive correlation between T1 and T2.

3.4 Models for potential failure times (  models)

Cause-specific models of class  are straightforward to model and do not invoke untestable 

assumptions. However,  models are not satisfactory from a causal perspective. They do not 

target the distribution of marginal failure times, unless when nonterminal and terminal 

failure times are assumed to be independent. Furthermore, CSH are conditional quantities 

(i.e. hazard of failure at a particular instant of time having survived up to that time), and 

hence susceptible to survival bias due to dependent censoring (as demonstrated in Sect. 5.1). 

Therefore, it is of interest to consider  models and estimate the marginal distribution of 

nonterminal event time and its dependence on covariates.

3.4.1 Bounds for marginal distribution of nonterminal event—The joint 

distribution of potential failure times cannot be identified nonparametrically (Tsiatis 1975). 

Identifiable bounds (i.e., bounds in terms of observable quantities) can be derived for FT1, 

the marginal distribution of nonterminal event (Peterson 1976).

(8)
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In other words, the distribution of nonterminal event is bounded from below by the CIF of 

nonterminal event and from above by the distribution of first event (including censoring). 

The Petersen bounds on FT1 apply without any restrictions, but they are too wide, even in 

the presence of moderate censoring, to be practically useful. Sharper bounds are possible for 

FT1, but with additional stipulations on the joint distribution of T1 and T2. For example, Slud 

and Rubinstein (1983) derive sharper bounds by postulating a simple, yet general, 

quantification of the degree of dependence between T1 and T2. They define the ratio of the 

conditional hazard function for T1 at time t, given T2 < t to the conditional hazard function 

for T1 at time t given T2 ≥ t (“the rho-function”). They produce bounds for FT1 by assuming 

reasonable bounds on the unknowable rho function.

3.4.2 One sample estimation of the joint distribution—The semicompeting risks 

data is denoted by: O = {Y1i, Y2i, δ1i, δ2i; i 1, . . . , N}. The joint distribution of T1 and T2 can 

be estimated by postulating parametric or semiparametric models for how the unobserved 

failure times, T1 and T2 are related to observed data O. The joint distribution (T1, T2) is 

identifiable in the upper wedge where T1 < T2, but the marginal distribution of the 

nonterminal event T1 is not identifiable. The joint distribution can be modeled as:

(9)

where S1 and S2 are the marginal survival functions for the nonterminal and terminal events, 

respectively, and Cθ is a copula representing the dependence between T1 and T2, and θ is the 

indexing parameter for the copula family that characterizes the dependency between the two 

failure times. Day et al. (1997) and Fine et al. (2001) proposed the Clayton copula for 

modeling the dependence:

(10)

for θ ≥ 1. This model for S(t1, t2) does not hold on the lower wedge T1 > T2, which is why 

the function S(t1) cannot be interpreted as the marginal survival function for the nonterminal 

event. Fine et al. (2001) proposed an estimator for θ based on a concordance estimating 

function, and a plug-in estimator for S(t1). Wang (2003) used a more general Archimedean 

copula for Cθ to represent the joint distribution (T1, T2):

(11)

where φθ is a decreasing convex function defined on (0, 1] with φθ(0) = 1. Wang proposed 

two types of estimating functions for the dependence parameter θ, which, under the 

Archimedean copula, can vary over time, in contrast to the Clayton copula model where it is 

constant. Lakhal et al. (2008) presented a general approach for estimating the dependency 

parameter θ in the Archimedean copula.

3.4.3 Bivariate location-shift models for marginal distributions—For estimating 

the effect of treatment on the failure time of nonterminal events, in the presence of 

dependent censoring, in two-arm RCTs, Robins (1987) showed that treatment group specific 

marginal distribution of time to nonterminal event is identified if (i) data are available on a 
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time-varying marker process, and (ii) the CSH of terminal event does not depend on the 

potential time to nonterminal event conditional on the history of marker process. When data 

on such a marker process is not available, Robins (1995a,b) and Lin et al. (1996) (hereafter 

referred to as LRW) developed a semipara-metric bivariate location shift model to describe 

the joint effect of a binary treatment variable on nonterminal event and death in two-arm 

RCTs. They used a bivariate accelerated failure time (AFT) regression model for the effect 

of a binary treatment group indicator X on T1 and T2, when T1 and T2 are not necessarily 

independent, given X:

(12)

LRW first estimate parameter η for the terminal event T2 using standard rank procedures, 

and then use an artificial censoring technique for constructing unbiased rank-based 

estimation of parameters θ of nonterminal event T1. They transform the observed variables 

Y1 and δ1 to new variables Ỹ1 and  and base their estimation on these transformed 

variables. Under this transformation, some of the uncensored observations may become 

censored, which is denoted as articificial censoring. The articifical censoring occurs in only 

one of the two groups of X, and which group it occurs depends on the ordering of parameters 

θ and η. It is not required that T1 and T2 be independent conditional on X. The error ε = {ε1, 

ε2} is left unspecified, but a key assumption is that does not depend on X. Robins (1995a) 

called this the “non-interaction” assumption.

Peng and Fine (2006) (hereafter referred to as PF) extended the two-sample bivariate 

location shift model to regression settings, and also improved upon the artificial censoring 

idea of LRW by using pairwise ranking to obtain a rank-based estimator that achieves large 

reductions in artificial censoring compared to LRW. The PF estimator also provides large 

efficiency gains over LRW and it even evinced moderate efficiency gains, under 

independent censoring, over a rank estimator that is semipara-metric efficient. PF method is 

also broadly applicable for estimation in regression settings, whereas LRW is limited to two-

sample comparisons. The bivariate location-shift regression model considered by PF is:

(13)

where X′ denotes the transpose of the design matrix X of baseline covariates. The error ε = 

{ε1, ε2} is left unspecified, but a key assumption, as in LRW, is the “non interaction” 

assumption that ε does not depend on X. The PF method represents an important 

development in semicompeting risks methodology.

3.4.4 Recent developments—Ding et al. (2009) extended the bivariate AFT location-

shift models where the transformation of failure time for nonterminal event can be different 

from that of the terminal event. Note that the LRW, PF and Ding et al. (2009) model only 

the marginal distributions. They do not provide any information on the dependence between 

nonterminal and terminal events. If dependence itself is of interest (which is not common), 

either copulas or shared frailty models can be used. Peng and Fine (2007) and Hsieh and 

Huang (2012) developed copula-based models for time-varying effects of a treatment on the 

marginal distribution of nonterminal event. In Peng and Fine (2007), the copula parameter is 
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allowed to be time-varying. In Hsieh and Huang (2012), the copula parameter is constant 

over time, but it can depend on discrete covariates. Chen (2012) provided a nonparametric 

maximum likelihood estimation (NPMLE) approach for the semiparametric transformational 

models for marginal regressions, where dependence between nonterminal and terminal 

events is modeled using a copula. These recent developments extend the seminal works of 

LRW and PF, and, together, provide a wide array of class  methods for semicompeting 

risks.

4 Semicompeting process models

We define semicompeting process model as a joint model of a marker, V , assessed 

repeatedly over time (termed “marker process V (t) henceforth) and a possibly censored 

time-to-event outcome comprised of a dyad of a nonterminal and a terminal event such as 

death as in the semicompeting risks model setting. The primary interest here is in evaluating 

the relation between the marker process and the non-terminal event. When the non-terminal 

event (e.g., dementia) is subject to censoring by the terminal event (e.g., dementia-related 

dropout), both characterization of the marker process and the assessment of the association 

between the marker process and the non- terminal event are known to be biased if the 

conventional joint model of Henderson et al. (2000) is applied (Elashoff et al. 2007). To 

address this, Elashoff et al. has extended the joint model of Henderson et al. (2000) to 

handle competing risks data (Elashoff et al. 2007, 2008). By defining non-terminal event 

and terminal event in the absence of non-terminal event as mutually exclusive competing 

events, the model of Elashoff et al. can be applied to semicompeting process data. To 

illustrate, following the same notation as in Sect. 3.1, let (Y1i, Y2i, δ1i, δ2i, Xi, Vi(t)) be the 

competing risks data on subject i, where Xi = (X1i, X2i, X3i, X4i) represents a collection of 

covariate vectors with non-overlapping or overlapping components. The joint model consists 

of two submodels:

Longitudinal submodel for marker process V (t):

(14)

where β are population mean effects (i.e., fixed effects);  are subject-specific deviations 

from the mean effects (i.e., random effects) withU mean zero and variance-covariance 

matrix of D. The submodel (14) is the classical linear random effects model, which assumes 

that  is independent of εi and Vi = (Vi(t), t = 1, . . . , ni) are independent conditioned on .

Survival submodel for (Y1i , Y2i, δ1i, δ2i):

(15)

(16)

Model (15) is logistic regression relating the marginal probability of subject i experiencing 

the primary event of interest (i.e., nonterminal event). Model (16) defines the conditional 

CSH λk for event type k (k=1 if non-terminal event, and 2 if terminal event; Larson and 

Varadhan et al. Page 11

Lifetime Data Anal. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Dinse 1985; Ng and McLachlan 2003), with λ0k(t) being the baseline hazard function for 

event type k. X3i and X4i are vectors of covariates associated with π1 and λk(t), respectively; 

and α and γ are corresponding regression coefficients (Elashoff et al. 2007).  and  are 

random effects that are typically linked to  by either assuming a multivariate normal 

distribution for  (Elashoff et al. 2008) or using linear models such as 

and  (Elashoff et al. 2007). In the former case, exp(θ then can be interpreted as the 

odds ratio of experiencing the non-terminal event versus terminal event in the absence of 

non-terminal event associated with one unit change in , and exp(ζk) the hazard ratio of 

experiencing event type k associated with one unit change in . Model (16) can be 

alternatively formulated as a mixture model of event-type-specific parametric survival 

function (e.g., Weibull model) with π1 and (1 − π1) being the mixing parameters (Yu and 

Ghosh 2010). The joint model assumes that the marker process is independent of the 

competing risks failure time data, conditional on all the covariates and random effects. The 

survival submodel can be seen as an extension of Larson and Dinse and Ng and McLachlans 

mixture model for competing risks data by incorporating the random effects (Larson and 

Dinse 1985; Ng and McLachlan 2003). Elashoff et al. used an EM-based algorithm to 

estimate model parameters, with their standard errors estimated via a profile likelihood 

approach (Elashoff et al. 2007). A Bayesian method was also proposed for parameter 

estimation that has been shown to be computationally more tractable for high-dimensional 

random effects (Hu et al. 2009). In cases where the effects of covariates on the marginal 

probabilities of occurrence of competing events are not of explicit interest, a simpler model 

can be formulated by removing model (15) and replacing the conditional CSH in model (16) 

with the standard CSH (Elashoff et al. 2008). For risk factor markers measured on an ordinal 

scale, Li et al. (2010) recently proposed a partial proportional odds model for the 

longitudinal submodel, which is an extension of the partial proportional odds model 

proposed by Peterson and Harrell (1990) by incorporating random effects to account for the 

within-person correlation of the longitudinal outcome.

5 Simulations for bivariate location shift models

As discussed in Sect. 3.2, semicompeting risks data can be analyzed using the CSH or using 

models for the potential failure times of nonterminal and terminal events. The two 

approaches can produce different results if the nonterminal event times are dependently 

censored by the terminal event. This becomes intuitively clear when we note that the CSH is 

a conditional quantity where the conditioning event, the set of units at risk for the terminal 

event at a given time, changes over time in a selective manner due to the terminal event. 

This is well known as survival bias or selection bias (Vaupel and Yashin 1985; Aalen 1994; 

Hernan 2010). Thus, CSH models can be misleading for assessing treatment effects or risk 

factor associations in the presence of dependent censoring that is quite likely in studies of 

aging. Analysis of potential failure times can be useful for assessing the impact of the 

treatment or a risk factor.

In all the following simulation studies, we use the Cox PH model for estimating the impact 

of a binary covariate (e.g., treatment) on the CSH for nonterminal and terminal events, and 
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the PF method for estimating the impact of treatment on the marginal distribution of 

potential failure times.

5.1 Simulation I: impact of dependent censoring

We consider a single binary covariate, treatment group indicator, which affects the time to 

death, but has no impact on the time to nonterminal event. We conduct simulations for the 

standard CSH models and the semicompeting risk model, Eq. 12 or 13. The CSH model 

does not account for dependent censoring, wheras the semicompeting risk model does. We 

considered the following simulations parameters: N = 1000, X1 ~ Binomial(N, prob = 0.5), θ 

= 0 and η = −0.8. This means that the treatment has effect on the nonterminal event, but 

increases the rate of terminal event. The error distribution was assumed to be normal: ε = 

N(0, Σ), where .

We considered 3 different correlations between death and nonterminal event times, ρ = 

{−0.5, 0, 0.5} . There was no censoring. We ran 1000 simulations. Results are show in Table 

1. For ρ = −0.5 and 0.5, the CSH model estimated log(hazard ratio) of −0.22 and 0.32, 

respectively. This means that the treatment decreases or increases the hazard of the 

nonterminal event, depending on whether the death and nonterminal events are negatively or 

positively correlated, respectively. When the events are independent (ρ = 0), there is no 

effect of treatment on CSH of the nonterminal event. The PF semicompeting risks model 

correctly estimates that the treatment does not have any impact on the nonterminal event 

regardless of the nature of the correlation between the events. This simple simulation shows 

why the standard CSH analysis cannot be used to estimate the effects when there is the 

possibility of dependent censoring due to death.

5.2 Simulation II: impact of the non-interaction assumption

Here we demonstrate the impact of the non-interaction modeling assumption of the LRW/PF 

model (13), i.e. the error is independent of covariates X. In particular, we examine the bias 

in the treatment effect when the error distribution depends on covariates. We consider two 

situations:

1. Simulation II.1. There is a single covariate: a treatment group indicator, X1. The 

error depends on X1.

2. Simulation II.2. There are two binary covariates: a treatment group indicator, X1, 

and a prognostic variable, X2. The error is marginally dependent on X1, but 

conditionally independent of X1 given X2.

For simulation II.1, we had the following settings: N = 1000, X1 ~ Binomial(N, prob = 0.5), 

η = −0.1, θ = 0.5. The error ε = N(0, (X1)) where . Correlation 

was fixed in the untreated group, ρ(0) = ρ0 = 0.5, but was varied in the treated group: ρ(1) ρ1 

{−0.5, −0.3, −0.1, 0.1, 0.3, 0.5}. There was no censoring. We ran 1,000 simulations. Results 

are shown in Table 2.
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The true θ is 0.5. The bias in  increases as the difference in the error distribution between 

two treatment groups becomes larger. Thus, the “non-interaction” assumption is critical in 

the bivariate location-shift model of LRW and PF.

In simulation II.2, we demonstrate that the “non-interaction” condition can be relaxed. 

Suppose that we are only interested in estimating the treatment effect θ. We demonstrate that 

we can get an unbiased estimate for treatment X1 under the weaker assumption that is 

independent of X1 conditional on X2. We call this “conditional non-interaction” assumption. 

We used the following settings:

N = 1000, X1 ~ Binomial(N, prob = 0.5), X2 ~ Binomial(N, prob = p(X1)), θ = (0.5, −0.2) and 

η = (0, −0.2). The first components of θ and η are the effect of X1 on the nonterminal and 

terminal events, respectively, and the second components are the effect of X2 on the terminal 

and nonterminal events. The error was assumed to be normal, ε = N(0, Σ(X2)), where 

. Correlation between the 2 failure times in the control group 

was fixed at ρ(0) = ρ0 = 0.5, but in the treated group the correlation ρ(1) = ρ1 took on 3 

different values: −0.5, 0, and 0.5. We chose p(X1)= Prob(X2 = 1|X1) = logit−1(α0 + α1X1) 

such that the correlation between X1 and X2 was close to 0.5. This construction ensures that 

ε is conditionally independent of X1 given X2, but depends on X1 marginally. Approximately 

400 nontermminal events were observed on average with these setitngs. Death was 

uncensored. We ran 1,000 simulations. Results are shown in Table 3.

We observe that the estimate  is unbiased even when the error distribution depends 

marginally on X1, because it is conditionally independent of X1 given X2, i.e. we have 

conditional non-interaction. However, the estimate  is biased, as expected. When ρ0 = ρ1 = 

0.5, we have non-interaction and hence, both  and  are unbiased. While this is not a 

mathematical proof, these simulation studies suggest that the noninteraction condition may 

be relaxed in favor of conditional non-interaction.

6 Appropriate semicompeting risks methods for aging research questions

In Sect. 2, we discussed some of the major research problems in aging where semi-

competing risks play a role. In Sects. 3.3 and 3.4, we reviewed the statistical methods for 

semicompeting risks. Now, we return to the examples in Sect. 2 to illustrate how the 

different methods discussed so far can be used for addressing different questions. More 

general recommendations are summarized in Table 4.

6.1 Smoking as a risk factor for Alzheimer's disease (AD)

To evaluate whether smoking increases the risk of AD, both CSH and CIF can be used. 

Although the CSH analysis ignores the dependent censoring of AD by death, the resulting 

estimate of the effect of smoking can be validly interpreted as the ratio of instantaneous rate 

of developing AD among smokers compared to that of non-smokers at time t conditonal 

upon being alive at time t. It may, however, be argued that CSH, being instantaneous risk, 

does not quantify the cumulative impact of a risk factor on the population as a whole. The 
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proportion of smokers who would develop AD by time t (i.e., CIF) cannot be estimated from 

the CSH without also estimating the CSH of AD-free mortality. The effect of smoking on 

the CIF of AD can be estimated using the methods of Fine and Gray (1999) or Scheike and 

Zhang (2008). The CIF is easier to interpret and may also be more relevant to policy 

decisions. However, CIF is not appropriate for studying the etiology of AD since it 

integrates the effects of smoking on both AD and mortality (Varadhan et al. 2010). Smoking 

could have a statistically significant effect on the CIF of AD even though it has no 

biological effect on AD, provided that smoking is a risk factor for mortality. To address this, 

the latent failure time models (i.e.,  models) of semicompeting risks data can be used to 

directly model the marginal survival distribution of AD as well as the dependence structure 

between AD and death via a copula. Although  models have the advantage of directly 

informing the net risk for developing AD that would accrue if the possibility of AD-free 

death were removed, their usage in practice is still being debated because the estimation of 

net risk requires the conceptualization of latent failure times beyond observed data and, in 

turn unverifiable statistical assumptions about their distribution.

6.2 Aging-related change in muscle strength and mobility disability

The analysis of the impact of aging-related change in muscle strength on the development of 

mobility disability has to address two challenges: (1) non-ignorable missing data on strength 

due to disability-related informative dropout or mortality censoring and (2) dependent 

censoring of disability onset by death. To address both, the model of Elashoff in Sect. 4 can 

be applied. By modeling the random effects of  and  in Eqs. 15 and 16 as a linear 

function of the random effects  from the longitudinal model (e.g., individual-specific rate 

of decline in strength), i.e.,  and , we could assess the relative impact of 

change in strength on the marginal probabilities of disability onset and disability-free death 

based on exp(θ), e.g., the odds ratio of experiencing mobility disability versus death 

associated with one unit decrease in the rate of decline in strength. The effects of change in 

strength on the risk of mobility disability, given that disability is destined to occur in ones 

lifetime, can be assessed by exp(ζk), the hazard ratio of experiencing event type k (i.e., 

mobility disability) associated with one unit decrease in the rate of decline in strength.

6.3 Multimorbidity in older adults

Whether considering clustering of multimorbid diseases within individuals or multiple 

occurrences of a single index disease among family members, multivariate failure time 

analysis with accounting for competing risks can be useful as an analytic tool. The 

associated literature offers a number of measures by which to describe disease-onset-time 

associations. One such measure is the cause-specific conditional hazard ratio which is 

interpreted as the factor of increase in one's hazard for (say) dementia onset at time s if one's 

relative has been diagnosed at time t as compared to one's relative remaining alive and 

dementia-free at t (Bandeen-Roche and Liang 2002; Cheng and Fine 2008; Shih and Albert 

2010). Alternatively, Cheng et al. (2007) proposed measures comparing bivariate cumulative 

CSH to the product of the marginal counterparts, or doing likewise for the bivariate and 

marginal cumulative incidence functions. Methods accommodating regression of the 

component disease onset time distribution on covariates also have been proposed (e.g. 
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Scheike et al. 2010). However, these methods have only been used to study index chronic 

disease in familial setting. The methods have not been targeted to the issue of 

multimorbidity in individuals, and regression models to describe the strength of association 

for multivariate failure times subject to competing risks are largely lacking. Thus, there 

remain fertile areas of inquiry on how best to analyze times to onset of multimorbid 

conditions in older adults.

6.4 Assessing the impact of interventions in older adults

The impact of an intervention can be assessed in two ways: its efficacy and its effectiveness 

(Sect. 2.4). Efficacy measures the ideal, biological effect of a treatment. To estimate 

treatment efficacy, it seems that we would want to isolate the effect of treatment on the 

nonterminal event of interest by hypothesizing in an ideal world where competing risks have 

been eliminated and where adherence to treatment is perfect. In other words, we would like 

to estimate the effect of the treatment on the marginal distribution of potential failure time of 

nonterminal event. The methods discussed in Sect. 3.4 can be useful here. However, we 

need to think carefully about the conceptual problems raised by Prentice et al. (1978) in the 

use of potential failure times. We consider this in more detail in Sect. 7.

The“real-world” effectiveness of interventions should be assessed in terms of their impact 

on the CIF. In other words, does the intervention reduce the absolute risk of the nonterminal 

event? Furthermore, an effective intervention should have a favorable benefit versus harm 

trade-off. It should not increase the rate of competing events. Therefore, it is also important 

to consider the impact of the intervention on all the CSH (Varadhan et al. 2010).

6.5 Routine screening in older adults

In Sect. 2.5, we briefly discussed a decision-making framework proposed by Walter and 

Covinsky (2001) to evaluate whether it is appropriate to screen an older adult for cancer. 

Their approach considers the baseline risk of dying of a screen-detectable cancer, the length 

of time that must elapse for screening to yield a survival benefit, and the probability of dying 

from causes unrelated to the cancer before realizing the intended benefit of screening. They 

suggest that older adults with severe disabilities due to their limited remaining life 

expectancy (less than 10-years) should not be screened for cancer. This framework has some 

shortcomings. First, it is based on the incorrect reasoning that the individual is highly 

unlikely to benefit if the remaining life expectancy is smaller than average time to benefit 

from screening. Second, it is predicated on the assumptions that the time to benefit from 

screening and the remaining life expectancy can be reliably estimated for the individual. 

Valid individual-level prediction models for the CIF of specific cancers (e.g., prostate 

cancer, colorectal cancer) need to be developed, with and without screening (Gulati 2011). 

The model predictions can then be incorporated into a decision-making framework to 

compare the expected utility of screening and not screening. There is plenty of scope for 

more work on this challenging problem.
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7 Discussion

We highlight some of the important methodological needs and then suggest some strategies 

to facilitate the uptake of semicompeting risks methods by practitioners.

1. Causal interpretation of potential failure time models (class  models) deserves 

more attention. Robins (1995a) addressed this for the bivariate location-shift model 

of LRW. He discussed two sufficient, but untestable, conditions required for the 

identification and causal interpretation of the treatment effect on the marginal 

distribution of nonterminal event. He called these conditions non-interaction and 

rank preservation assumptions. The non-interaction assumption is that the error 

distribution is the same across treatment groups; the rank preservation assumption 

is that for any two individuals i and j, if i dies before j under treatment A then i also 

dies before j under treatment B. Since Robins’ seminal paper, little attention has 

been paid to this conceptual issue. There are many interesting questions here. For 

instance, how biologically plausible is the rank preservation condition? Are there 

examples or situations where this assumption is not reasonable? Are there other, 

possibly less stringent, conditions than rank preservation that can provide a causal 

interpretation for the effect on the marginal distribution of nonterminal event?

2. When can a treatment effect on the potential nonterminal event time be 

meaningfully defined in the presence of death? Is it meaningful to consider 

nonterminal event time after death? Considering different potential outcomes under 

different treatments might help clarify this (see Fig. 3). Suppose that a treatment 

(binary) has an effect on both nonterminal (T1) and terminal (T2) event times, with 

effects being θ and η, respectively. We assume that T2 can always be observed 

under the actual treatment received by an individual. We define 4 types of 

individuals on the basis of their potential failure times under two different values of 

treatment variable: type A individual who will experience the nonterminal event 

under both treatments (i.e. T1(X = j) ≤ T2(X = j), j = 0, 1); type B individual who 

will experience the nonterminal event only under treatment X = 0; type C individual 

who will experience the nonterminal event only under treatment X 1; and, type D 

individual who will not experience the nonterminal event under= either treatment 

(i.e. T1(X = j) > T2(X = j), j = 0, 1). It may be argued that treatment effect is 

meaningfully defined only for type A individuals, since it is impossible to observe 

the potential outcome T1(X = 1) for type B and type D individuals, and T1(X = 0) 

for type C individuals. There is some initial work on this general topic (Zhang and 

Rubin 2003; Frangakis et al. 2007). More theoretical work as well as demonstration 

in real applications is warranted.

3. Critical reviews evaluating the strengths and limitations of various  and 

models can be useful. Comparative evaluations of different modeling approaches 

can be useful to practitioners in highlighting the relative strengths and weaknesses 

of the methods. Methods that attempt to answer the same scientific question can be 

compared and evaluated. The summary in Table 4 may be a useful starting point.
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4. Tutorials demonstrating applications of semicompeting risks models (both  and 

 models) would also be valuable to practitioners.

5. Finally, we encourage the developers of competing risks methodology to write 

usable software. This would accelerate the translation and uptake of the novel 

methods by practitioners. A good model of such translation is the recent special 

issue on competing risks in the Journal of Statistical Software (Putter 2011).
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Fig. 1. 
A semicompeting risks model of aging
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Fig. 2. 
Basic semicompeting risks data structure
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Fig. 3. 
Treatment effects in semicompeting risks
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Table 1

Simulation I: Impact of dependent censoring on the effect of treatment on the nonterminal event

ρ CSH log(HR) (se) PF θ̂(se)

–0.5 –0.22 (0.10) 0.00 (0.09)

0 0.00 (0.11) 0.00 (0.09)

0.5 0.32 (0.11) 0.00 (0.9)

Mean and standard error of the estimates from 1,000 simulations, where the truth was θ = 0(and n = –0.8)
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Table 2

Simulation II.1. Impact of non-interaction assumption on the estimate of treatment effect on the nonterminal 

event in the bivariate location-shift model, Eq. 12

ρ1 (ρ0 = 0.5) PF θ̂(se)

–0.5 0.13 (0.067)

–0.3 0.18 (0.070)

–0.l 0.24 (0.075)

0.1 0.30 (0.078)

0.3 0.40 (0.079)

0.5 0.50 (0.082)

Mean and standard error of the estimates from 1,000 simulations, where the truth was θ = 0.5 (and η = –0.1)
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Table 3

Simulation II.2. Impact of conditional non-interaction assumption on the estimate of treatment effect on the 

nonterminal event in the bivariate location-shift model with 2 covariates, Eq. 13

ρ1 (ρ0 = 0.5) PF

θ̂1
(se) θ̂2

(se)

–0.5 0.52 (0.096) –0.58 (0.10)

0.0 0.51 (0.097) –0.41 (0.10)

0.5 0.50 (0.094) –0.20 (0.097)

Mean and standard error of the estimates from 1,000 simulations, where the truth was θ1 = 0.5, θ2 = –0.2) (and η1 = 0, η2 = –0.2)
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