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Abstract

Hypoxia is a common feature of locally advanced breast cancers and is associated with increased 

metastasis and poorer survival. Stabilisation of Hypoxia-Inducible Factor-1α (HIF1α) in tumours 

causes transcriptional changes in numerous genes that function at distinct stages of the metastatic 

cascade. We demonstrate that expression of RIOK3 was increased during hypoxic exposure in a 

HIF1α-dependent manner. RIOK3 was localised to distinct cytoplasmic aggregates in normoxic 

cells and underwent redistribution to the leading edge of the cell in hypoxia with a corresponding 

change in the organisation of the actin cytoskeleton. Depletion of RIOK3 expression caused 

MDA-MB-231 to become elongated and this morphological change was due to a loss of 

protraction at the trailing edge of the cell. This phenotypic change resulted in reduced cell 

migration in 2D cultures and inhibition of cell invasion through 3D extracellular matrix. 

Proteomic analysis identified interactions of RIOK3 with actin and several actin-binding factors 

including tropomyosins (TPM3 and TPM4) and tropomodulin 3 (TMOD3). Depletion of RIOK3 

in cells resulted in fewer and less organised actin filaments. Analysis of these filaments showed 

reduced association of TPM3, particularly during hypoxia, suggesting that RIOK3 regulates actin 

filament specialisation. RIOK3 depletion reduced the dissemination of MDA-MB-231 cells in 

both a zebrafish model of systemic metastasis and a mouse model of pulmonary metastasis. These 

findings demonstrate that RIOK3 is necessary for maintaining actin cytoskeletal organisation 
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required for migration and invasion, biological processes that are necessary for hypoxia-driven 

metastasis.

Keywords

Introduction

Basal-like breast cancers are characterised by higher rates of relapse and distant metastasis 

than other breast cancer subtypes.1 Hypoxic regions (pO2 < 2.5 mmHg; equivalent to ~0.3% 

O2) are a common feature of locally advanced breast tumours but are not detected in normal 

breast tissue.2 Numerous studies have shown that the existence of intratumoural hypoxia is 

associated with poor prognosis (reviewed by Rundqvist and Johnson).3 In particular, 

hypoxia is correlated with an increased occurrence of metastasis of breast cancers.4, 5 

Stabilisation of hypoxia-inducible transcription factors (HIF1α and HIF2α) occurs in 

hypoxic cells of tumours. Transcription of HIF target genes promote diverse steps of the 

metastatic cascade including extracellular matrix remodelling (MMP, LOX and P4HA 

family members6-8), vascular intra- and extravasation (L1CAM and ANGPTL49), epithelial-

mesenchymal transition (E-cadherin and SNAIL10) and cell invasiveness (HGF/MET11).

Cell migration depends on dynamic and co-ordinated organisation of the actin cytoskeleton. 

Growing evidence suggests that protrusions at the leading edge and generation of 

actomyosin contraction forces in the cell are achieved by distinct specialised subsets of actin 

filaments (F-actin).12, 13 A number of actin filament modifying proteins are involved, 

carrying out specialised processes including nucleation, branching and severing. The 

association of tropomyosins with F-actin increases filament stability and coordinates access 

of other actin-interacting factors.14, 15 Tropomyosins are particularly important in promoting 

sustained migration of cells by increasing recruitment of myosin II to F-actin resulting in 

production of strong actomyosin-mediated contractile force.16

RIght Open reading frame (RIO) kinases are a conserved family of atypical serine/threonine 

protein kinases. The RIO kinase family consists of three members (RIOK1-3). Each member 

has been implicated in processing of the pre-40S ribosomal subunit.17-19 In addition, RIOK3 

has been implicated in cell invasion, although the mechanism has not been well defined. 20 

We observed increased RIOK3 expression in a gene expression analysis of MCF7 cells 

exposed to severe hypoxia (<0.01% O2) for 24 h.21 These observations led us to hypothesise 

that RIOK3 may be involved in hypoxic invasion and metastasis. In this report we 

demonstrate that RIOK3 expression is increased in hypoxia in a HIF1α-dependent manner. 

RIOK3 promotes reorganisation of the actin cytoskeleton increasing both cell migration and 

invasion and depletion of RIOK3 strongly reduces the metastatic potential of cells in vivo.
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Results

RIOK3 expression is increased during hypoxic exposure

Analysis of RIOK3 expression using the Metabric cohort showed that basal-like breast 

cancers have increased expression of RIOK3 compared with luminal A, luminal B, Her2 

positive and normal-like breast cancer subtypes and normal breast tissue (Fig S1A-B).22 The 

basal-like subset of breast cancers has been reported to possess high activity of the HIF1α/

ARNT pathway.23 Additional analysis of the basal-like subset (n = 331) demonstrated that 

RIOK3 expression was correlated with a validated 51-gene hypoxia signature, suggesting 

that RIOK3 expression in these breast cancers may be regulated by hypoxia (rho = 0.42; Fig 

S1C).24 In the Metabric cohort high expression of RIOK3 was associated with poorer 

overall survival prognosis (Fig S1D).

To understand the influence of hypoxia on RIOK3 expression MDA-MB-231 cells were 

exposed to 0.1% O2 for 0-72 h (Fig 1A). A time dependent increase in RIOK3 mRNA was 

observed following hypoxic exposure, with levels increasing 2.9 ± 0.62-fold after 72 h 

exposure (mean ± SEM, n = 3). The magnitude of RIOK3 hypoxic up-regulation was lower 

than that observed for characterised HIF target genes CA9 and ADM but similar to the fold 

change observed for SERPINE1 (Fig S2A-C). RIOK3 protein levels were also modestly 

increased in hypoxia peaking at 24 h before falling back to basal levels by 72 h (Fig 1B). 

This hypoxic increase in RIOK3 expression was also observed in MCF7, HCT 116 and U-87 

MG cells, although the kinetics and amplitude of induction were variable between cell lines 

(Fig S3A-C).

To investigate the role of HIF in this hypoxic induction, knockdown of either HIF1α, HIF2α 

or HIF1α and HIF2α were undertaken using siRNA (Fig 1C-D). Knockdown of HIF1α, but 

not HIF2α, suppressed the hypoxic up-regulation of RIOK3 at both mRNA and protein 

level. Minimal additional effect was observed when both HIF1α and HIF2α were co-

depleted suggesting that HIF1α is predominantly responsible for the hypoxic induction of 

RIOK3. Control hypoxic genes responded as reported with CA9 displaying exclusive HIF1α 

regulation whereas ADM and SERPINE1 demonstrated greater dependence on HIF2α (Fig 

S2D-F).25-27 In addition, pharmacological stabilisation of HIF using a prolyl hydroxylase 

inhibitor, dimethyloxalylglycine (DMOG), increased expression of RIOK3, further 

supporting the hypothesis that RIOK3 is a HIF1α target gene (Fig S3D).

RIOK3 undergoes relocalisation in hypoxic cells

We hypothesized that the minor up-regulation that occurs in hypoxia is unlikely to result in 

increased overall activity but rather suggests a necessary function for RIOK3 during hypoxic 

conditions. To test this hypothesis, confocal microscopy of RIOK3 stained cells was 

performed (Fig 2A). Immunofluorescent staining of RIOK3 in cells demonstrated 

cytoplasmic localisation, consistent with published observations.17 Cells in normoxic culture 

displayed prominent spherical RIOK3 stained aggregates at the cell periphery (arrowheads) 

with less intense, grainy staining in the remaining cytoplasm. When exposed to hypoxia for 

24 h these aggregates disappeared and the RIOK3 stain became more diffuse throughout the 
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cytoplasm with some cells displaying a band of intense staining adjacent to the leading edge 

(arrowheads).

RIOK3 expression is required for cell migration and invasion

To understand the function of RIOK3, MDA-MB-231 cells were transduced with lentivirus 

expressing shRNA to RIOK3 (shRIOK3). This resulted in approximately 65% knockdown 

of RIOK3 protein expression (Fig 2B). Dishes seeded with a low density of shCon-

expressing cells formed a scattered homogeneous pattern of growth after 1 week in culture 

consistent with the migratory nature of these cells (Fig 2C). In contrast, most shRIOK3 cells 

formed tight colonies (arrowheads), suggesting a defect in cell migration. When observed at 

higher magnification cells expressing shCon were smaller and rounder compared to the 

elongated phenotype observed for shRIOK3 cells (Fig S4A). To confirm these observations 

MDA-MB-231 cells were transfected with siRNA targeting RIOK3, resulting in 

approximately 90% knockdown (Fig 2D). Cells transfected with control siRNA (siCon) 

were small, rounded and many were observed as individual cells not in contact with others 

suggestive of active migration (arrowheads; Fig 2E). In contrast, cells transfected with 

siRIOK3 were elongated and prone to clumping with few individual cells observed away 

from cell clusters (arrowheads).

The modified scratch wound assay was used to determine whether the changes in cell 

morphology observed with knockdown of RIOK3 had an effect on cell migration (Fig 3A). 

Normoxic cells transfected with siCon migrated into the wound and closed 35 ± 2.0% of the 

wound area at 16 h (mean ± SEM, n = 4). Knockdown of RIOK3 reduced normoxic cell 

migration resulting in 19 ± 5.0% wound closure. Hypoxic treatment modestly stimulated cell 

migration producing 42 ± 5.9% wound closure. Knockdown of RIOK3 resulted in a 

statistically significant reduction of hypoxic cell migration with 17 ± 3.0% of the wound 

closed (P < 0.05 vs. siCon normoxia and P < 0.01 vs. siCon hypoxia; one-way ANOVA).

To further characterise this defect in cell migration, analysis of single cell migration was 

carried out in low density cell cultures (Fig 3B). Cells transfected with siCon migrated in a 

non-directional manner with velocity of 0.95 ± 0.012 μm/min (mean ± SEM, n = 3), in 

agreement with recent findings.28 In contrast, migration of siRIOK3 cells was significantly 

slower at a rate of 0.43 ± 0.014 μm/min (P < 0.001; t test). RIOK3 knockdown also reduced 

the maximum distance travelled from the origin from 82 ± 6.9 μm to 59 ± 4.0 μm during the 

5 h observation period (Fig 3C, mean ± SEM, n = 3, P < 0.05; t test).

A series of timelapse images of a single cell demonstrated the stepwise mode of cell 

migration utilised by these cells (Fig 3D). The siCon transfected cell formed a protrusion at 

the leading edge of the cell (arrowhead) and this was followed by translocation of the cell 

body and retraction of the trailing edge. This pattern was repeated approximately every 

20-30 min producing active migration. In contrast, the siRIOK3 cell demonstrated a defect 

in its ability to retract the trailing edge leading to the formation of a long tail. These cells 

appeared to protrude a normal lamellipodium at the leading edge. Timelapse videos 

supported this phenotype with all siRIOK3 cells developing long projections at the trailing 

edge at some point during the observation period (Video S1).
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The effect of RIOK3 on 3D invasion was investigated using the Boyden chamber assay (Fig 

3E-F). Invasion of siRIOK3-transfected MDA-MB-231 cells through Matrigel was reduced 

to 9.3 ± 3.5% of siCon invasion in normoxia (mean ± SEM, n = 3). Hypoxia significantly 

increased cell invasion by 540 ± 190% (P < 0.05; one way ANOVA). This effect was 

significantly suppressed by siRIOK3 to 22 ± 11% of siCon normoxic invasion (P < 0.05 vs. 

siCon hypoxia). This data both confirms the observed deficiency in 2D migration and 

suggests a more specific role for RIOK3 in 3D cell invasion. RIOK3 depletion had no effect 

on proliferation of MDA-MB-231 cells (Fig S5). Similar defects in cell migration and 

invasion were observed in SK-OV-3 ovarian adenocarcinoma cells following RIOK3 

knockdown (Fig S6).

RIOK3 is required for organisation of the actin cytoskeleton

Rio kinases from yeast and Archaeoglobus fulgidus are capable of serine 

(auto)phosphorylation in vitro, however, the existence/identity of substrates is currently 

unknown.29 We utilised the analogue sensitive kinase assay to search for RIOK3 

substrates.30 We were unable to identify novel sites of thiophosphorylation using this 

method suggesting that RIOK3 is not amenable to analysis using this strategy (Fig S7). 

RIOK3 levels were reduced in the digitonin-permeabilised cells used in the analogue 

sensitive kinase assay suggesting that much of the RIOK3 has diffused out of the cell. 

Consistently, fluorescence recovery after photobleaching (FRAP) analysis demonstrated that 

GFP-RIOK3 was highly diffusible in the cytoplasm, with the exception of a few focal 

aggregates (Fig S8).

As an alternative approach to understand the basis of RIOK3 function in regulating cell 

migration, we carried out co-immunoprecipitation studies using FLAG-tagged RIOK3 

coupled with tandem mass spectrometry to identify interacting species (Fig 4A). We 

identified a number of interacting proteins including components of the actin cytoskeleton 

including actins (ACTG1, ACTA2), tropomyosins (TPM3, TPM4) and tropomodulin 3 

(TMOD3). Ribosomal subunits (RPS3, RPS14, RPS16, RPS18, RPS20, RPL27A, RPL30) 

were also identified, consistent with the reported role of RIOK3 in ribosomal biogenesis.17

To further investigate the role of RIOK3 in cytoskeletal regulation we used confocal 

microscopy to examine the localisation of RIOK3 and TPM3 in MDA-MB-231 cells (Fig 

4B). In normoxia, TPM3 was detected in the same large cytoplasmic aggregates that contain 

increased levels of RIOK3 (arrowheads). During hypoxia RIOK3 redistributed away from 

the cell edge with a corresponding loss of visible aggregates. TPM3 followed a similar 

pattern of redistribution but was also observed to associate with stress fibers both through 

the centre of the cell (below the nucleus) and at the cell edges.

Similar studies were carried out to demonstrate the relationship between RIOK3 and F-actin 

(Fig 4C). In normoxia F-actin was observed as distinct perinuclear foci and as larger circular 

structures proximal to the cell edge with no obvious stress fibers present (arrowheads). 

Many of these circular associations of F-actin contained RIOK3 aggregates in the centre, 

suggesting an association between the two rather than direct co-localisation (Fig 4D). In 

hypoxia the F-actin cytoskeleton underwent reorganisation with a clear lamellipodium at the 

leading edge of the cell and prominent stress fibers on the flanking edges of the cell. RIOK3 
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aggregates dispersed, as noted earlier, and a band of more intense staining formed at the 

leading edge. Magnification of this region revealed a narrow approximately 1.3 μm intense 

band of F-actin at the leading edge, a band of approximately 2.5 μm that excluded F-actin 

behind this and then a wider 6 μm band of F-actin further behind (Fig 4D). The two stains 

were mutually exclusive with the band that excludes F-actin being positive for RIOK3 and 

vice versa (Fig 4E). Thus the relationship observed between RIOK3 and F-actin in normoxia 

was also seen in hypoxia with RIOK3 positive regions mostly excluding but directly 

adjacent to regions of F-actin.

To understand the effect of RIOK3 on actin organisation F-actin staining was carried out in 

MDA-MB-231 cells transfected with siRIOK3 (Fig 5A). RIOK3 knockdown cells displayed 

an elongated phenotype with less F-actin staining in normoxia and even less in hypoxia, 

suggesting fewer actin filaments were present. Notably, both the perinuclear F-actin foci and 

the circular structures at the cell edge were lost following RIOK3 knockdown with an 

appearance of long actin filaments, possibly stress fibers. In hypoxia RIOK3 translocated 

away from the cell periphery and prominent stress fibers formed in these areas.

Destabilisation of the F-actin cytoskeleton in siRIOK3 cells was confirmed by analysis of 

globular (G) and filamentous (F) actin fractions (Fig 5B). RIOK3 knockdown had minimal 

effect on G-actin abundance. In contrast, siRIOK3 cells contained lower levels of F-actin in 

normoxia and even less in hypoxia, consistent with the reduced level of F-actin staining 

observed by confocal microscopy. Quantification of actin band density demonstrated a 45% 

reduction in the amount of F-actin in hypoxic siRIOK3 sample compared with hypoxic 

siCon cells (Fig 5C, P < 0.05).The amount of TPM3 detected in F-actin fraction was 

similarly reduced with RIOK3 knockdown, supporting a role for RIOK3 in promoting the 

stability of TPM3-bound actin filaments.

RIOK3 expression is required for hypoxia-induced metastasis

To investigate the role of RIOK3 in invasion and metastasis in vivo we utilised a zebrafish 

embryo model.31 Following implantation into the perivitelline cavity of developing 

embryos, local and distal metastasis of MDA-MB-231 cells transfected with siRIOK3 was 

significantly reduced (arrowheads; Fig 6A). Quantification of disseminated cells and foci 

demonstrated a reduction from 26 ± 1.9/embryo for siCon cells to 16 ± 0.16/embryo for 

siRIOK3 cells (Fig 6B, mean ± SD, n = 2, P = 0.02; t test).

The effect of RIOK3 on pulmonary metastasis was investigated following i.v. injection of 

MDA-MB-231 cells in SCID mice (Fig 6C). Normoxic shCon cells produced a metastatic 

burden of 0.16 ± 0.14% human DNA (of total DNA) in the lungs at 9 weeks (mean ± SEM, 

n = 7). This was reduced in shRIOK3 cells to 0.031 ± 0.014%. Exposure of cells to 24 h 

hypoxia in vitro prior to i.v. injection resulted in a significant increase of metastasis by 9-

fold to 1.5 ± 0.42% human DNA (P < 0.01; one way ANOVA). This effect was suppressed 

in shRIOK3 cells to metastasis of 0.17 ± 0.018% human DNA (P < 0.001 vs. shCon 

hypoxia). These data suggest that the role of RIOK3 in cell invasion is also necessary for 

metastasis in animal models, particularly in the hypoxic induction of metastasis.
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Discussion

Metastasis is responsible for the majority of deaths due to breast cancer. The existence of 

intratumoural hypoxia is an important risk factor in the development of metastasis and, 

therefore, a better understanding of the molecular processes involved in hypoxia-driven 

metastasis is needed.

An extensive change in actin cytoskeletal organisation occurs when MDA-MB-231 cells are 

exposed to hypoxia. Despite this considerable remodelling, minimal overall difference in 

cell migration in 2D cell cultures is observed, with hypoxic cells migrating at similar 

velocity to normoxic cells, at least when exposed to 0.1% O2. In contrast, hypoxic MDA-

MB-231 cells display a >5-fold enhanced ability to invade through 3D extracellular matrix, 

albeit at lower density than tumour tissue. This suggests that the altered hypoxic actin 

cytoskeleton is better optimised for invasive motility but provides little advantage in 2D 

movement. Actomyosin-dependent contraction is associated with stronger mechanical forces 

and is necessary for migration through 3D extracellular matrix, where forces generated at 

the rear of the cell squeeze the cell nucleus through the narrow gaps between connective 

tissue fibrils.32, 33 In contrast, the protrusive forces generated at the leading edge of the cell 

by actin filament assembly and disassembly are sufficient for migration in 2D but do not 

provide sufficient mechanical force for invasion through 3D matrix. Our findings are 

consistent with a model whereby hypoxic modification of the actin cytoskeleton favours 

formation of longitudinal stress fibers and greater actomyosin contraction compared with a 

more dynamic and less contractile F-actin arrangement in normoxia.

It is recognised that myosin II is required for organisation of the actin cytoskeleton and 

establishment of cell polarisation. Myosin II is the dominant force generating motor in cells 

and promotes retraction of the cell rear during actin-based cell migration in most cell 

types.34 MDA-MB-231 cells exclusively utilise a uropod containing F-actin/myosin-II at the 

rear of the cell to generate contractile forces necessary for invasion through 3D matrix.35 

We demonstrate that RIOK3 depletion causes MDA-MB-231 cells to become elongated 

because they fail to effectively protract their trailing edge (Fig 3D). This suggests that there 

is a lack of mechanical force generated at the rear of the cell and this defect results in an 

inability to invade through 3D matrix (Fig 3F). These observations implicate RIOK3 in 

maintenance of actomyosin contractility.

Depletion of RIOK3 resulted in changes in the organisation and abundance of F-actin (Fig 

5). Tropomyosins are important regulators of actin fibers and can influence arrangement of 

stress fibers, lamellipodia and lamella and the rate of cell migration.12, 14 We observed a 

reduction in the amount of TPM3 bound F-actin following RIOK3 depletion, particularly in 

hypoxic conditions. This change would be expected to reduce the stability of F-actin, as 

observed. RIOK3 was enriched in an area 2-4 μm behind the leading edge of the migrating 

cell between the lamellopodium and lamella, located approximately 1-3 μm and 4-11 μm 

from the leading edge, respectively, in line with reported values.14 High levels of the 

ARP2/3 complex are found in the lamellipodium where this complex promotes actin 

filament branching. ARP2 (ACTR2) was observed to co-immunoprecipitate with FLAG-

RIOK3 suggesting that RIOK3 may function at the interface between the lamellipodium and 
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lamella to orchestrate specialisation of F-actin into a more linear TPM-bound lamellar 

conformation. Although this process is most clearly visualised at the leading edge of the cell 

these specialising effects on F-actin may also occur in other regions of the cell, contributing 

to the phenotype of defective protraction observed in cells with RIOK3 knockdown.

We demonstrated that RIOK3 knockdown reduced the level of pulmonary colonisation in an 

experimental model of pulmonary metastasis (Fig 6C). This assay only measures the late 

stages of metastasis i.e. extravasation and establishment of micrometastases and does not 

recapitulate all of the steps necessary for metastasis. Additional studies using orthotopic 

models are needed to better define the requirement of RIOK3 in the earlier steps of the 

metastatic cascade.

The development of HIF inhibitors is an on-going effort and may provide opportunities to 

reduce hypoxia-driven metastasis.36 Given the modest and transient increase in RIOK3 

protein expression during hypoxia, HIF inhibition is unlikely to significantly suppress 

RIOK3 expression. However, the re-localisation of RIOK3 that occurs in hypoxia suggests 

that it participates in the restructuring of the actin cytoskeleton that occurs during hypoxia, a 

process that is dependent on HIF1.37 Our demonstration that RIOK3 is required for actin 

cytoskeletal organisation in both normoxia and hypoxia suggests that development of 

RIOK3 inhibitors to prevent cell invasion is a promising anti-invasion strategy. Further 

biochemical studies are needed to establish the kinase activity and substrates of RIOK3, and 

these efforts would aid in drug development projects.

Materials and Methods

Cell lines

MDA-MB-231 were obtained from ATCC (Lot: 5883183, cultures initiated 19/08/2010) and 

maintained in RPMI 1640 (Life Technologies, Paisley, UK) supplemented with 10% FBS 

(PAA Laboratories Ltd., Somerset, UK). HEK-293T cells were obtained from Open 

Biosystems (Lot: L0708; Thermo Scientific, Leicestershire, UK) and maintained in DMEM 

+ 10% FBS. All studies were conducted using early passage cultures typically within 3 

months of thawing from cell stocks confirmed mycoplasma negative.

Hypoxic exposure

All hypoxic exposures were done at 0.1% O2/5% CO2 in N2 using an Invivo2 400 

workstation (Ruskinn Technology Ltd, Bridgend, UK).

Real time-qPCR

RNA was extracted using TRI® reagent (Sigma-Aldrich) and converted to cDNA using a 

High Capacity cDNA Reverse Transcription Kit (Life Technologies). qPCR was carried out 

using SensiMix SYBR No-ROX One-Step Kit (BioLine, London, UK) using the following 

primers RIOK3 F AAGGAGTCTGTTGTCTTTCATGC, RIOK3 R 

CTTGATGGCACATTCTGTAGGT, HPRT1 F CCAGTCAACAGGGGACATAAA, 

HPRT1 R CACAATCAAGACATTCTTTCCAGT.
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Western immunoblotting

Western immunoblotting was performed as reported.21 Primary antibodies used were: 

RIOK3 (H00008780-M01, Abnova), HIF1α (610959, BD Transduction Laboratories), 

HIF2α (NB100-122; Novus), CA9 (clone M75, gift of J. Pastorek, Bratislava), TPM3 

(ab113692, Abcam), TPM3 (HPA009066, Sigma-Aldrich), TMOD3 (HPA001849, Sigma-

Aldrich) and Actin-HRP (A3854; Sigma-Aldrich). Band densitometry was performed using 

the Analyze Gels tool in ImageJ (http://imagej.nih.gov/ij, version 1.47q).

RNAi

Cells were transfected with 20 nM siRNA targeting RIOK3 (SI02223396; siRIOK3) or 

AllStars Negative control (1027281; siCon) using HiPerFect reagent (Qiagen, Manchester, 

UK). Custom siRNA oligonucleotides containing 3 sequences targeting HIF-1α (1 

CAAGCAACTGTCATATATA, 2 TGCCACCACTGATGAATTA, 3 

TGACTCAGCTATTCACCAA) or HIF-2α (1 TAACGACCTGAAGATTGAA, 2 

CAAGCCACTGAGCGCAAAT, 3 TGAATTCTACCATGCGCTA) were purchased from 

Eurogentec (Southampton, UK). pGIPZ plasmids targeting RIOK3 (Clone ID 

V2LHS_16875; shRIOK3) or non-silencing control shRNAmir (RHS4743; shCon) were 

obtained from Thermo Scientific. Lentivirus packaging and titration was carried out as 

described.38 Cells were transduced at MOI 1 and pools of transduced cells were selected 

with 1 μg/mL puromycin (Life Technologies) 48 h post-transduction.

Confocal microscopy

Cells grown on coverslips were rinsed in PBS, fixed in 4% (v/v) paraformaldehyde in PBS, 

permeabilised using 0.2% (v/v) Triton-X100 in PBS, blocked in 3% (w/v) BSA in PBS 

containing 0.1% Tween-20 (PBST) and incubated with primary antibody diluted in blocking 

buffer. Secondary detection utilised goat anti-mouse/rabbit IgG labelled with Alexa Fluor 

488/594 (Life Technologies). F-actin was stained using 5 μM TRITC-phalloidin (Sigma-

Aldrich). DNA was stained using 1 μM DAPI. Coverslips were mounted using ProLong® 

Gold antifade (Life Technologies). Confocal images were captured on a Zeiss 510 Inverted 

Confocal microscope using 63× objective lense.

In vitro 2D wound migration assay

MDA-MB-231 cells were seeded into Ibidi Culture-Inserts at 30,000 cells/well (Ibidi, 

Martinsried, Germany) and allowed to attach overnight. Inserts were removed and culture 

medium was aspirated and replaced. Images were captured at 3 marked sites/wound. Wound 

area (culture surface lacking cells) was measured using ImageJ. % wound remaining was 

calculated using the formula: wound at end h/wound at start×100.

Single cell migration in 2D

MDA-MB-231 were seeded in 24-well ImageLock Plates (Essen BioScience, Hertfordshire, 

UK). Cell migration was monitored on an Incucyte EX (Essen BioScience). Images in a 

series were opened in ImageJ, converted to stacks and then sorted on label. Cell movement 

was tracked manually using MTrackJ plugin.39 Cells in clumps of >2 cells or those that 

Singleton et al. Page 9

Oncogene. Author manuscript; available in PMC 2016 March 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://imagej.nih.gov/ij


underwent cell division during assessment were excluded. >40 cells were analysed per 

sample.

Invasion assay

100 μL of 0.5 mg/mL Growth Factor Reduced Matrigel (BD Biosciences, Oxford, UK) was 

pipetted into 8 μm pore size cell culture inserts (BD Bioscience) and allowed to set 

overnight. 5×104 cells were seeded into the coated inserts in RPMI + 1% FBS and invasion 

was stimulated using RPMI + 10% FBS in the bottom chamber. At endpoint invaded cells 

were fixed with 4% formalin and stained with 0.5% crystal violet in H2O. Mean number of 

invaded cells/insert was assessed using 4 independent fields-of-view. % invasion was 

calculated using the formula: invaded cells/siCon normoxia invaded cells×100.

FLAG immunoprecipitation

Construction of the FLAG-RIOK3 expression construct is detailed in the supplementary 

methods. Immunoprecipitation was done using anti-FLAG® M2 magnetic beads (Sigma-

Aldrich). Antigen and bound interacting species were eluted using either FLAG peptide or 

heating the beads to 70°C for 10 min in denaturing LDS buffer. Gels were stained using 

ProteoSilver™ Plus Silver Stain Kit (Sigma-Aldrich). Bands were excised from the gel, 

digested with trypsin and subjected to tandem mass spectrometry (LC-MS/MS) analysis as 

described previously.40

G-actin/F-actin fractionation assay

Cellular G-actin/F-actin fractions were generated from samples containing 1×107 cells using 

G-actin/F-actin In Vivo Assay Kit (Cytoskeleton Inc., Denver CO).

Zebrafish study

Metastasis of MDA-MB-231 cells in the zebrafish embryo model was conducted as 

described.31 Cells were transfected 24 hours prior to implantation into the perivitelline 

cavity.

Pulmonary metastasis assay

6-8 week old female SCID (CB17/IcrHan®Hsd-Prkdcscid mice; Harlan, Bicester) were 

injected with 2.5×105 cells (passed through a 40 μm strainer) in 100 μL RPMI into the tail 

vein. Cells in hypoxic groups were incubated for 24 h at 0.1% O2 prior to harvest. At 9 

weeks all mice were sacrificed and the lungs were frozen in liquid N2. All work was 

conducted in accordance with UK Home Office guidelines under project licence 

PPL30/2771.

Quantification of lung metastasis using qPCR

Lung DNA was extracted using Gentra Puregene Tissue Kit (Qiagen). Standards of human 

and mouse DNA were generated from in vitro MDA-MB-231 cells and xenograft naïve 

mouse lung, respectively. Human specific or total (human + mouse) PTGER2 primer pairs 

were used to amplify 50 ng of lung DNA using syber green.41 Samples containing 0.01, 0.1, 
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1, 10 or 100 ng human or mouse DNA were used to generate standard curves. Percent 

human DNA was calculated using the formula: human DNA/total DNA×100.

Statistical analysis

All statistical analyses were done using GraphPad Prism (v 6.0) by t test or one way 

ANOVA followed by Tukey’s multiple comparisons test on independent experimental 

replicates, unless otherwise indicated (* P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 

0.0001).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
RIOK3 expression is increased in MDA-MB-231 cells during hypoxia in a HIF1α-

dependent manner. (A) Expression of RIOK3 mRNA is increased in MDA-MB-231 cells 

during exposure to hypoxia (mean ± SEM, n = 3). (B) Expression of RIOK3 protein is 

transiently increased in MDA-MB-231 cells during exposure to hypoxia. Band density is 

indicated by italicised numbers below the immunoblot. HIF1α, HIF2α and CA9 

immunoblots are presented as hypoxic controls. (C) The hypoxic up-regulation of RIOK3 

mRNA in MDA-MB-231 cells is suppressed following transfection with siRNA targeting 

HIF1α or HIF1α and HIF2α (mean ± SEM, n = 4, repeated measures one-way ANOVA). 

(D) The hypoxic up-regulation of RIOK3 protein in MDA-MB-231 cells is suppressed 

following transfection with siRNA targeting HIF1α or HIF1α and HIF2α. Band density is 

indicated by italicised numbers below the immunoblot.
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Figure 2. 
RIOK3 undergoes subcellular re-localisation in hypoxia and its depletion alters cell 

morphology. (A) Representative confocal images of migrating MDA-MB-231 cells in 

normoxia (Nor) or hypoxia (Hyp) stained for RIOK3. Scale bar = 10 μm. (B) Immunoblot 

demonstrating RIOK3 expression in MDA-MB-231 cells transduced with shCon or 

shRIOK3 lentivirus. (C) shCon cells grow in a homogeneous, scattered pattern, whereas 

shRIOK3 cells form colonies after 1 week in culture (arrowheads). Scale bar = 1 mm. (D) 

Immunoblot demonstrating RIOK3 expression in MDA-MB-231 cells transfected with 

siCon or siRIOK3. (E) MDA-MB-231 cells immunofluorescently stained for RIOK3. Scale 

bar = 50 μm.
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Figure 3. 
RIOK3 promotes 2D cell migration and 3D invasion in hypoxia. (A) Modified scratch 

wound assay shows the % wound area closed was decreased in normoxia and hypoxia 

following transfection of MDA-MB-231 cells with siRIOK3 (mean ± SEM, n = 4). (B-C) 

Analysis of single cell migration in 2D demonstrated cell velocity and maximum distance 

from origin were reduced in siRIOK3-transfected MDA-MB-231 cells (mean ± SEM, n = 

3). (D) Timelapse image of migration of a single siCon or siRIOK3 transfected cell. Images 

were captured every 5 min over 75 min. Scale bar = 50 μm. (E) Representative 3D invasion 

assay micrographs. Scale bar = 0.2 mm (F) Cell invasion at 24 h is stimulated by hypoxia 

and this effect is suppressed in siRIOK3-transfected cells. Columns represent invaded cells 

as a % of siCon normoxia (mean ± SEM, n = 3).
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Figure 4. 
RIOK3 associates with TPM3 and actin in cells. (A) Silver-stained PAGE gel of anti-FLAG 

immunoprecipitates from MDA-MB-231 cells expressing either RIOK3 or FLAG-RIOK3. 

Species detected by tandem mass spectrometry only in the FLAG-RIOK3 sample are 

indicated on the right of the gel by gene symbol. (B) Confocal images of MDA-MB-231 

cells in normoxia (Nor) and hypoxia (Hyp) demonstrate colocalisation of RIOK3 and TPM3. 

Scale bar = 10 μm. Phase contrast (PC) images show changes in cellular appearance. (C) 

Confocal images of MDA-MB-231 cells demonstrate that RIOK3 associates with actin. In 

normoxia RIOK3 aggregates are often surrounded by F-actin (arrowheads). In hypoxia 

RIOK3 aggregates disperse and F-actin organisation changes to form stress fibers and a 

dense F-actin network adjacent to the leading edge (arrowheads). Scale bar = 20 μm. (D) 

Magnified images of regions in C. Scale bar = 2 μm. (E) Pixel density of F-actin and RIOK3 

stain at the leading edge of the hypoxic cell (from D). F-actin is observed immediately 

adjacent to the cell edge, followed by an intense band of RIOK3 stain and then a by a wider 

band of F-actin.
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Figure 5. 
RIOK3 promotes F-actin stability in cells. (A) Confocal microscopy images of MDA-

MB-231 cells transfected with siRIOK3 demonstrate reduced F-actin stain and altered 

organisation in both normoxia and hypoxia. All images were captured using the same 

exposure settings to enable comparison. Scale bar = 20 μm. (B) Levels of G- and F-actin in 

MDA-MB-231 cells following RIOK3 knockdown. The amount of F-actin was reduced in 

siRIOK3-transfected cells in both normoxia and hypoxia. The levels of TPM3 in the F-actin 

fraction were also reduced in siRIOK3-tansfected cells, particularly in hypoxic conditions. 

(C) Relative actin band density for G- and F-actin fractions (mean ± SEM, n = 3).
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Figure 6. 
RIOK3 expression is required for metastasis in zebrafish and mouse models. (A) 

Dissemination and metastasis of MDA-MB-231 cells in zebrafish embryos. Cells were 

implanted into 48 h post-fertilization zebrafish embryos and then detected at day 4 post-

injection. Arrowheads indicate disseminated tumour cells and foci. (B) Mean number of 

disseminated cells/foci was quantified in >20 embryos (n = 2; mean ± SD). (C) Metastatic 

burden in lungs following i.v. injection of MDA-MB-231 cells with or without 24 h prior 

hypoxic exposure (n = 7 mice/group; mean ± SEM).
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