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Abstract Post-translational arginine methylation is re-

sponsible for regulation of many biological processes. The

protein arginine methyltransferase 5 (PRMT5, also known

as Hsl7, Jbp1, Skb1, Capsuleen, or Dart5) is the major

enzyme responsible for mono- and symmetric dimethyla-

tion of arginine. An expanding literature demonstrates its

critical biological function in a wide range of cellular

processes. Histone and other protein methylation by

PRMT5 regulate genome organization, transcription, stem

cells, primordial germ cells, differentiation, the cell cycle,

and spliceosome assembly. Metazoan PRMT5 is found in

complex with the WD-repeat protein MEP50 (also known

as Wdr77, androgen receptor coactivator p44, or Valois).

PRMT5 also directly associates with a range of other

protein factors, including pICln, Menin, CoPR5 and RioK1

that may alter its subcellular localization and protein sub-

strate selection. Protein substrate and PRMT5–MEP50

post-translation modifications induce crosstalk to regulate

PRMT5 activity. Crystal structures of C. elegans PRMT5

and human and frog PRMT5–MEP50 complexes provide

substantial insight into the mechanisms of substrate

recognition and procession to dimethylation. Enzymo-

logical studies of PRMT5 have uncovered compelling

insights essential for future development of specific

PRMT5 inhibitors. In addition, newly accumulating evi-

dence implicates PRMT5 and MEP50 expression levels

and their methyltransferase activity in cancer tumorige-

nesis, and, significantly, as markers of poor clinical

outcome, marking them as potential oncogenes. Here, we

review the substantial new literature on PRMT5 and its

partners to highlight the significance of understanding this

essential enzyme in health and disease.
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Introduction

Protein arginine methyltransferases (PRMTs) transfer

methyl groups from S-adenosylmethionine (AdoMet or

SAM) to a guanidine nitrogen of protein arginine resulting

in the reaction products methylarginine and S-adenosyl-

homocysteine (SAH) (reviewed in [1]). There are four

types of PRMTs: type I PRMTs catalyze x-NG-

monomethylarginine (MMA) and asymmetric x-NG, NG-

dimethylarginine (aDMA); type II PRMTs catalyze MMA

and symmetric x-NG, N0G-dimethylarginine (sDMA); type

III PRMTs are capable of only monomethylation; and Type

IV generates d-NG-monomethylarginine (Fig. 1; type IV

activity, limited to yeast Rmt2 [2], is not shown). PRMT1,

2, 3, 4, 6, and 8 are Type I, while PRMT5 and possibly

PRMT7 are Type II PRMTs [3–6]. Recent proteomic

analysis of human tissues reveals differences in PRMT

family protein expression (Fig. 2) [7], with higher ex-

pression in fetal tissues for all PRMTs. PRMT2, 3, 6, 7, and

8 exhibit tissue-specific expression patterns, while PRMT1,

4, and 5 exhibit more universal expression. PRMT5’s

partner methylosome protein 50 (MEP50) has similar
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expression to PRMT5. PRMT9, newly annotated in NCBI,

is still undescribed. The initially annotated PRMT9 is now

correctly identified as an F-box protein, FBXO11 [8].

PRMT5 is the primary Type II arginine methyltrans-

ferase and found in all eukaryotic species investigated

(Fig. 3a). The S. cerevisiae homolog of PRMT5 is histone

synthetic lethal 7 (Hsl7); the S. pombe homolog is Shk1

kinase-binding protein 1 (Skb1) [9, 10]. Hsl7’s synthetic

lethality with histones that led to its name likely had no

connection with histone methylation, as no evidence of

Fig. 1 Arginine methylation states catalyzed by the family of protein

arginine methyltransferases (PRMTs). The guanidinium side chain of

arginine residues in proteins is positively charged. It can accept a

monomethyl addition, catalyzed by the family of Type I, II, and III

PRMTs through transfer from the S-adenosylmethionine (SAM or

AdoMet) cosubstrate, resulting in a x-NG monomethylated arginine

(MMA) and S-adenosylhomocysteine (SAH). Type I PRMTs, com-

prising the majority of PRMT enzymes, can further catalyze the x-NG

monomethylation to x-NG, NG asymmetric dimethylarginine

(aDMA), consuming SAM and producing SAH. PRMT5, a Type II

enzyme, catalyzes the x-NG monomethylation to x-NG, N0G asym-

metric dimethylarginine (sDMA), also consuming SAM and

producing SAH. Type III enzymes are incapable of processing to

dimethylation. Methylation does not alter the positive charge on the

arginine guanidinium side chain

Fig. 2 PRMT5 and MEP50 are broadly expressed in somatic and

embryonic tissues. The human proteome map, analyzed by total

proteome mass spectrometry (http://www.humanproteomemap.org

[7]), was queried for the PRMT family of proteins which showed

that they are distinctly expressed in a range of human tissues and

cells. The relative protein abundances for the PRMT1-8 (CARM1 is

the name for PRMT4) are shown in a heatmap, with white repre-

senting low protein abundance and dark red representing higher

abundance, with a ten-step range indicated in the legend. PRMT5 is

bolded and boxed, as is its MEP50 cofactor. Note that PRMT5 and

MEP50 are most highly expressed in fetal tissue and that their ex-

pression patterns are quite similar
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histone arginine methylation exists in S. cerevisiae. Human

PRMT5 was first identified as Jak-binding protein 1

(JBP1), and shown to methylate, among many cellular

proteins, histones H2A and H4 on Arg3 and histone H3 on

Arg8 [11–13] (Table 1). Histones H2A and H4 share a

conserved targeted N-terminal sequence: SGRGK….

Multiple PRMT5 splice variants are found in human cells,

although evidence for translated proteins from these shorter

mRNAs is lacking (Fig. 3b).

In this review, we highlight and interpret the lit-

erature on PRMT5, its partners, targets, structure, and

enzymology. We address PRMT5’s role in stem cells

and primordial germ cells, differentiation, and animal

development. In the context of PRMT5’s wide-ranging

biological roles, we explore the extensive literature

implicating PRMT5 in a large number of cancers.

While hints of PRMT5’s significance for tumorigenesis

have been apparent for some time, we argue here that

the sheer abundance of evidence shows that PRMT5 is

now a compelling target for clinical screening and,

hopefully, for future chemotherapeutic approaches. A

recent review of the function of all PRMTs in chro-

matin organization provides a complementary view of

the specific function of arginine methylation in nuclear

function [14].

MEP50: a critical PRMT5 cofactor

The majority of vertebrate PRMT5 complexes contain

MEP50, a 7-bladed WD40 repeat (tryptophan, aspartic

acid) b-propeller protein. MEP50 is also known as Wdr77

or androgen receptor coactivator p44, by which it is re-

ferred to in the cancer literature [15–24]. MEP50 directly

binds PRMT5 and greatly enhances PRMT5’s histone

methyltransferase ability, primarily through increased

A

B D

C

Fig. 3 PRMT5 domain organization and structure are evolutionarily

conserved. a A range of PRMT5 protein sequences across eukaryotic

species [Homo sapiens (human), Xenopus laevis (frog), Danio rerio

(fish), Drosophila melanogaster (fly), Arabidopsis thaliana (plant),

Caenorhabditis elegans (worm)] was aligned using the MAFFT

algorithm and the Pam120 similarity index and represented in a

heatmap from white (\60 % similarity) to dark blue (100 %

similarity). Alignment gaps are indicated by a line, and overall

identity is shown on the right. The major domains and interfaces are

indicated above and below the sequences. Asterisk indicates sequence

insertion in C. elegans PRMT5 that prohibits tetramerization. b The

human prmt5 gene has multiple splice variants, as shown from the

NCBI human genome sequence. All the variants are in the N-terminal

domain of the encoded protein. c Subunit arrangement of the hetero-

octameric PRMT5–MEP50 structure shown in cartoon form, with the

head-to-tail N-terminal and C-terminal PRMT5 arrangement shown

by ‘‘N-’’ and ‘‘-C’’. d Ribbon diagram of a monomer of human

PRMT5 (PDB:4GQB) with the domains and substrate-binding sites as

indicated
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affinity for protein substrate (D.S., manuscript under re-

view). The arrangement of MEP50 in complex with

PRMT5 is illustrated in Fig. 3c.

Structure and enzymology of PRMT5 and MEP50

Structural insight into general PRMT mechanisms was

recently reviewed [25]. The C. elegans, Xenopus, and hu-

man PRMT5 all contain a triosephosphate isomerase (TIM)

barrel on the N-terminus, a middle Rossmann-fold, and a

C-terminal b-barrel containing a dimerization domain

(Fig. 3d). CePRMT5 forms a homodimer in which the

dimerization arm of one monomer interacts with residues

contained in the TIM barrel of the other monomer, forming

a ring [26]. This head-to-tail ring-shaped homodimer is

conserved in all of the solved Type I PRMT structures [27–

33]. In contrast, the human and Xenopus PRMT5s form a

heterooctomeric complex composed of four PRMT5 pro-

teins and four MEP50 proteins (Fig. 3c) [34, 35]. The

PRMT5 molecules form two dimers in the head-to-tail

arrangement typical of PRMTs. One of the two dimers in

the human and Xenopus PRMT5 tetramer is similar to the

C. elegans dimer and contains a number of conserved hy-

drogen bonds. The second dimer interface, unique to the

human and Xenopus PRMT5 tetramer, contains hydrogen

bonds not seen in the C. elegans dimer. Furthermore, a

sequence insertion found in C. elegans would prevent this

dimerization of PRMT5 to a tetramer (noted by asterisk in

Fig. 3a). The PRMT5 tetramer forms the core of the

complex and MEP50 interacts with PRMT5 through the

N-terminal TIM barrel domains. A monomer of human

PRMT5 is illustrated in Fig. 3d, showing the domain

structures as well as the locations of the SAM and histone

peptide substrates within the crystal.

The PRMT5–MEP50 complex has a higher level of

methyltransferase activity compared to PRMT5 alone [35].

This could be due to MEP50 having a positive allosteric

effect on the binding of cofactor and protein or SAM sub-

strates by PRMT5 and/or MEP50 being necessary to present

protein substrate to PRMT5. The latter is supported by ex-

periments demonstrating MEP50 interaction with H2A and

H4 [34, 36], and that excess MEP50 inhibits methyltrans-

ferase activity, consistent with MEP50 sequestering substrate

from the enzyme [34]. The PRMT5 catalytic site is also

oriented toward the cross-dimer paired MEP50 and electron

microscopy-localized substrate density on MEP50 [34].

PRMT5–MEP50 is nonprocessive, as production of the

dimethylated H4 peptide product is dependent on the

concentration of the monomethylated peptide exceeding

that of the unmethylated substrate [35, 37]. Thompson and

colleagues [38] demonstrated that CePRMT5 is truly dis-

tributive. This is in contrast to PRMT1, for which

monomethylated and dimethylated products are observed

despite the presence of excess unmodified substrate, indi-

cating PRMT1 uses a partially processive mechanism [39].

A conserved phenylalanine in the C. elegans PRMT5

catalytic site is essential for specifically catalyzing sym-

metric dimethylation by structural orientation of the

monomethylated arginine substrate [26]. Mutation of a

catalytic site Met to Phe remodels PRMT1 to produce

symmetric dimethylation, although production of the

symmetric dimethylarginine has a higher energy barrier

[40]. This reveals that the catalytic mechanisms for pro-

duction of the various methylarginine products are similar

and are regulated through structural and energetic means.

Table 1 Major PRMT5 protein substrates and their function

PRMT5 substrate Biological function of arginine methylation by PRMT5 References

Histone H2A and H4 R3 Transcriptional repression [54, 56, 61, 62, 64, 65, 67, 68, 76, 77, 103,

162]

Histone H3 R2 Transcriptional repression [4, 80, 163]

Histone H3 R8 Transcriptional repression [13, 57, 60, 82, 122, 164]

Spliceosome Sm proteins Facilitates spliceosomal assembly [41, 44, 49, 108, 165–169]

Ribosomal protein

RPS10

Facilitates ribosomal assembly [170]

p53 Facilitates survival and cell cycle arrest over apoptosis [71, 143]

FEN1 Facilitates PCNA binding and DNA replication and repair [171]

Nucleoplasmin Enriched in early development; unknown function [37]

Nucleolin RNA binding; unknown function [108, 109]

EGFR Reduces autophosphorylation and EGFR activation [145]

EBNA Methylation stimulates Epstein–Barr nuclear antigen promoted

transcription

[153, 154]
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PRMT5 and the major spliceosome

PRMT5–MEP50, along with PRMT7, play important roles

in the splicing of mRNA through methylating spliceosomal

proteins [41]. Sm proteins D1, D3, and B/B0 are symmet-

rically dimethylated on their C-terminus by the

methylosome, PRMT5–MEP50 in complex with pICln

(chloride channel nucleotide sensitive 1A, Fig. 4) [42, 43].

pICln binds the Sm domain and acts as an assembly

chaperone [44–47]. PRMT5-catalyzed sDMA of Sm D1,

D3, and B/B0 dramatically increases binding of these three

proteins to the Tudor domain-containing protein SMN (-

survival of motor neuron), the product of the spinal

muscular atrophy gene [42, 43]. SMN is part of a complex

consisting of at least six other subunits, and is responsible

for loading the seven Sm proteins onto the snRNA [48–51].

There is some evidence the snRNPs can assemble without

the SMN complex in vitro [52], leading to some debate as

to whether the symmetric dimethylation of Sm proteins is

necessary. However, in vivo the SMN–PRMT5 relation-

ship most likely acts as a chaperone that prevents the

misassembly of Sm proteins to non-target RNAs and

blocks the aggregation of Sm proteins [51]. A conditional

PRMT5 knockout in mouse neural stem/progenitor cells

(NPCs) shows PRMT5 is necessary for correct splicing:

absence of PRMT5 leads to selective retention of introns

and skipping of exons with weak 50 donor sites [53].

Histone methylation by PRMT5 and its function

in transcriptional regulation

Histone tail modifications are major components of the

epigenetic regulation of gene transcription. PRMT5 sym-

metrically dimethylates H2AR3, H4R3, H3R2, and H3R8

in vivo, all of which are linked to a range of transcriptional

regulatory events (Fig. 5) [11, 13, 54–60]. Specific gene

targets include cyclin E1 [59], Rb [57], and ribosomal

genes [61]. In Arabidopsis, PRMT5 is recruited to the

CORYNE locus to down-regulate its expression and reg-

ulate shoot apical meristem phenotypes [62] and the

FLOWERING LOCUS C to control flowering time [63].

PRMT5 coordinates with a range of Mediator complex

subunits to dimethylate H4R3 at promoter regions of im-

mune response genes and C/EBPb target genes [64].

Conversely, PRMT5 methylation of histone H3R2 recruits

Wdr5 and the MLL complex, stimulating H3K4 methyla-

tion and euchromatin maintenance [4].

PRMT5 selectively methylates cytosolic H2AR3 in ES

cells, but not H4R3 [65]. The distinction between roles for

Fig. 4 PRMT5 methylation and

regulation of the spliceosome. A

cartoon representation of the

function of PRMT5 methylation

of splicing proteins in the

cytoplasm. Methylated

substrates are represented with a

red ‘‘–CH3’’. PRMT5, in

complex with MEP50 and

pICln, form the methylosome

that targets spliceosomal

subunits for methylation. pICln

then chaperones the subunits to

the SMN complex, resulting in

proper targeting of RNAs to be

spliced
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H2A and H4 R3 methylation by PRMT5 suggests that each

histone tail and targeted arginine has a unique function and

will require future work to disentangle. However, since

H2A and H4 have the same ‘‘NH2-SGRGK…’’ site of

methylation, most available antibodies recognize both

methylated histones making discrimination difficult. The

few genome-wide studies of PRMT5-catalyzed histone

methylation on H2A/H4 R3me2s demonstrate global en-

richment [66], with specific enrichment at GC-rich

promoter regions in mouse embryonic fibroblasts [67]. In

contrast, enrichment on non-GC satellite DNA [68] as well

as a modest anti-correlation with H3K36me3 [56] is ob-

served in other studies. Girardot et al. [67] used an

antibody lot that specifically recognizes H4R3me2s but not

H2AR3me2s, possibly explaining these distinct observa-

tions. Future experimentation with a range of highly

specific histone methylarginine antibodies, including

monomethylarginine, and performed in a range of cell

types and organisms, will help clarify the function of his-

tone arginine methylation in gene regulation.

PRMT5 also regulates transcription and many down-

stream events through methylation of transcription factors,

such as NF-jB [69, 70], p53 [71], and E2F-1 [72]. PRMT1-

and PRMT5-catalyzed asymmetric and symmetric

dimethylarginine have distinct roles in activating or sup-

pressing apoptotic activity, respectively, of E2F-1 through

recruitment of the p100-TSN Tudor domain to symmetric

dimethylarginine [72].

Fig. 5 PRMT5 is targeted to multiple histone and nuclear targets by

cofactors. A cartoon representation of the function of PRMT5

methylation of nuclear proteins (nucleus represented by pale yellow).

Methylated substrates are represented with a red ‘‘–CH3’’. Histones,

the protein component of chromatin, are synthesized and then

transported to the nucleus. PRMT5–MEP50 targets newly synthesized

histone H2A in the cytoplasm and may target soluble H4 in the

nucleus (both H2A and H4 are methylated on R3 in the sequence

N-SGRGK… as shown in the cartoon), as well as transcription factors

such as p53 and NF-jB. PRMT5-methylated H2A and H4 are then

deposited into chromatin (DNA wrapped around histone proteins,

with histone N-terminal tails indicated in the cartoon). Alternative

binding partners for PRMT5 (RioK1 in the cytoplasm, CoPR5 and

Menin in the nucleus) may displace one or more MEP50 molecules

and alter the targeting of PRMT5 toward substrates as shown,

including histone H3 on R2 or R8 in the sequence

N-ARTKQTARKST…
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Readers of symmetric dimethylation

Methylated arginine is translated into a meaningful cellular

signal through recognition (‘‘reading’’) by effector proteins

or by inhibiting binding of effector proteins (recently re-

viewed in [73]). Tudor domain-containing proteins are the

primary direct readers of methylarginine. The splicing

factors methylated by PRMT5 are recognized by SMN

proteins containing Tudor domains [74] while PRMT5-

methylated PIWI proteins are recognized by the SND1

Tudor-containing protein [75]. Histone H4R3me2s

specifically recruits the DNA methyltransferase DNMT3A

to chromatin domains via its ADD (ATRX-DNMT3-

DNMT3L) domain to suppress gene expression [76, 77].

However, another report was unable to reproduce this in-

teraction [78], so further study is necessary. In contrast,

H4R3me2s or H4R3me2a can interfere with the ability of

the Signal Recognition Particle (SRP) proteins SRP68 and

SRP72 to bind the H4 tail [79].

PRMT5 also methylates histone H3R2 and recruits

Wdr5, a WD40-repeat protein and essential component of

MLL (mixed lineage leukemia lysine methyltransferase)

complexes, to promote H3K4 methylation and downstream

gene activation [4, 80]. Wdr5 quantitatively binds

H3R2me2s, but does not bind H3R2me2a, providing a

unique switch between recruitment states based on the

change in methylarginine. The crystal structure of Wdr5

bound to H3R2me2s demonstrates that the symmetric

dimethylarginine displaces water within the binding cavity,

substantially enhancing the interaction and suggesting that

WD-repeat proteins may function to distinguish between

different post-translation modification (PTM) states [4].

Interaction of PRMT5 with ATP-dependent chromatin

remodelers: function in transcriptional regulation

PRMT5 methylates histones and interacts with ATP-de-

pendent chromatin remodelers to either enable or repress

gene expression, depending on the cellular context (Fig. 5)

(reviewed in [81]). PRMT5 localizes to the promoter of the

early MyoD-induced gene myogenin, and also coimmuno-

precipitates with MyoD and the chromatin remodeler

ATPase Brg1 [82]. Furthermore, H3R8 dimethylation cat-

alyzed by PRMT5 at the myogenin promoter is a necessary

prerequisite for the binding and chromatin remodeling ac-

tivity of Brg1, which in turn is necessary for the binding of

MyoD. Antisense-mediated knockdown of PRMT5

positively and negatively regulated many genes, including

several with antiproliferative and tumor suppressor activity

[13]; in this study, PRMT5 was shown to associate with the

BRG1 and BRM chromatin remodelers and methylate

promoter H3R8 to inhibit tumor suppressors. PRMT5 also

associates with the NuRD remodeling complexes that

contain the methyl-CpG-binding domain protein 2 (MBD2)

[83]. Together these studies suggest that gene repression or

activation by PRMT5 is context dependent.

Other PRMTs associate with chromatin remodeling

complexes as well. PRMT4 is required to facilitate SWI/

SNF chromatin remodeling activity for late but not early

gene expression in skeletal muscle differentiation, in con-

trast to PRMT5 promotion of early gene expression [84,

85]. These data demonstrate that arginine methyltrans-

ferases sequentially cooperate with chromatin remodeling

complexes.

Role of PRMT5 in development

PRMT5 participates in both early and late developmental

pathways. In murine early development, PRMT5 is ma-

ternally inherited in the oocyte cytoplasm until the first

cellular differentiation event when it translocates to the

nucleus [65]. Prmt5-/- murine embryos suffer early em-

bryonic lethality and are incapable of producing embryonic

stem ES cells. RNAi knockdown of PRMT5 in ES cells

results in down-regulation of pluripotency-associated genes

and up-regulation of differentiation-associated genes [65].

In human stem cells, PRMT5 is only required for prolif-

eration, and not pluripotency, through methylation of the

cell cycle-regulated p57 [86]. Mep50 null mice are

similarly embryonic lethal [21, 24], further supporting the

essential function of the intact PRMT5–MEP50 complex.

In Xenopus laevis embryos, prmt5 is abundant until

zygotic stage 8, when transcript levels drop precipitously

coincident with the onset of zygotic transcription [37].

PRMT5-methylated histones and histone chaperones are

heavily enriched in early frog embryos [87–89]. PRMT5–

MEP50 methylates pre-deposition histones H2A/H2A.X-F

and H4 and the maternal histone chaperone nucleoplasmin

on a conserved motif (‘‘GRGxK’’) [37]. These observations

are consistent with a maternal and early zygotic role for

PRMT5–MEP50 in regulating embryonic chromatin

assembly and globally repressing zygotic transcription.

PRMT5 function in primordial germ cell

and keratinocyte differentiation

PRMT5 also plays a role in a number of tissue-specific

differentiation pathways, including primordial germ cells,

keratinocyte, muscle, and nerve cell differentiation [81, 82,

84, 90–94].

In germ cell development, PRMT5 methylates Piwi

proteins and regulates their subsequent binding to Tudor

domain-containing proteins in an sDMA-dependent fashion

The PRMT5 arginine methyltransferase 2047
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[95–99]. Piwi proteins are primarily expressed in the

germline lineage and interact with small non-coding RNAs,

piRNAs [100]. piRNAs complement transposable DNA

elements and other genes, leading to their silencing, which

is essential for normal gametogenesis [101]. For example,

in Drosophila, either a prmt5 homozygous null mutant or a

loss of function Tudor mutation causes transposon up-

regulation [102]. PRMT5 histone methylation is also re-

quired for suppressing transposable elements during

murine PGC demethylation [103]. PRMT5 interacts with

the transcriptional repressor Blimp1, an essential compo-

nent of primordial germ cell (PGC) induction [54, 104].

Association of PRMT5 and Blimp1 in the nucleus of PGCs

results in increasing levels of H2A/H4 R3me2s and upon

the subsequent translocation of PRMT5 and Blimp1 to the

cytoplasm H2A/H4 R3me2s is almost completely lost [54].

This coincides with the down-regulation of pluripotency

genes and the expression of Dhx38, an RNA helicase,

which may recruit PRMT5 and Blimp1 to specific DNA

sequences [54, 105]. These results suggest that the Blimp1/

PRMT5 complex has an essential role in maintaining the

PGC lineage during the migration of the cells into the

gonads [106]. Alternatively, PRMT5’s function may be at

the end of PGC programming to regulate RNA splicing

[107].

In human keratinocyte differentiation involucrin gene

expression is partially controlled by PKC-d suppression of

PRMT5 [92]. PRMT5 is part of the p38-d complex and

functions through suppression of p38-d phosphorylation

and sDMA modification of an as yet unidentified protein

[92].

Modulation of PRMT5 activity through binding

partners, post-translational modification crosstalk,

and subcellular localization

PRMT5 activity and localization are regulated in multiple

ways, including binding partners (Table 2), PTMs, sub-

cellular localization, and microRNAs (miRNA).

Binding partner regulation of PRMT5

PRMT5 binds to pICln or the Rio domain-containing

protein RioK1 in a mutually exclusive manner on

PRMT5’s N-terminal domain, and likely serves to specify

substrate choice [108] (Fig. 5). The RNA-binding protein

nucleolin interacts only with the C-terminus of RioK1, and

not with PRMT5 or MEP50. RioK1 functions similarly to

pICln and MEP50 by acting as an adaptor protein [108]. In

further support of the biological connection between

PRMT5 and nucleolin, the AS1411 aptamer that targets

nucleolin alters the subcellular localization of the PRMT5–

nucleolin complex within prostate cancer cells, potentially

providing a molecular basis for some AS1411 effect on

cancer cell proliferation [109]. RioK1 is exclusively lo-

cated in the cytoplasm, which may further control the

temporal and spatial activity of PRMT5. Therefore, cou-

pled subcellular localization of adaptor proteins could be

an important mechanism to regulate PRMT5 activity.

Other vertebrate-specific binding partners also regulate

or target PRMT5 activity to specific substrates, including

Menin/Men1, pICln, RioK1, and CoPR5 [44, 45, 93, 108,

110–114]. CoPR5 (cooperator of PRMT5), to date only

found in mammals, binds histones in the nucleus and re-

cruits PRMT5 to nucleosomes [114]. CoPR5 binding to

PRMT5 is necessary for myogenic differentiation, possibly

through altered targeting of PRMT5 [93]. Menin, a unique

adapter protein found in MLL complexes to target histone

K4 trimethylation and frequently mutated in endocrine

tumors, was shown to directly bind to the N-terminus of

PRMT5 and target H4R3me2s at a specific promoter [110].

One compelling hypothesis supported by published in-

teraction data and our structural modeling is that RioK1

and Menin may displace one or more MEP50 molecules

from the PRMT5 complex, altering PRMT5 targeting while

maintaining MEP50 in part of the heterocomplex to pro-

mote histone or other methylation (Fig. 5). This hypothesis

could explain why PRMT5 forms a tetramer in vertebrates:

to maintain MEP50 interaction and allow simultaneous

binding of additional cofactors. Another mechanism for

regulation of PRMT5 binding is via splicing. Alternative

transcripts of PRMT5 missing exons in the N-terminus of

PRMT5, which binds MEP50, Menin, Riok1 and plCln, are

known (Fig. 3b) [115]. Future studies may reveal altered

PRMT5 protein production from these transcripts that alter

partner binding.

PTM crosstalk modulation of PRMT5

PRMT5–MEP50 substrate PTMs can affect methyltrans-

ferase activity. SWI/SNF-associated PRMT5 methylates

hypoacetylated H3 and H4 more efficiently than hyper-

acetylated H3 and H4 [58]. Neighboring H4 lysine

acetylation marks stimulate PRMT5 activity in contrast to

their inhibition of PRMT1 activity [116], while high-den-

sity histone peptide arrays document an elaborate crosstalk

of activity regulation [34]. We modeled acetylation on

H4K5 in the crystal structure of human PRMT5 and

demonstrate that it would likely be stabilized in position

compared to the hydrogen bonding with the structural

water molecule in the unacetylated H4K5 in the structure

(Fig. 6a, b). H2AS1 and H4S1 phosphorylation also inhibit

PRMT5 activity [34]; as shown in Fig. 6c, the bulkier S1ph

may be hindered from binding and/or may be electro-

statically repulsed from the neighboring PRMT5 Y304.
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PTMs on PRMT5 or MEP50 also modulate methyl-

transferase activity. Although PRMT5 was first identified

through its interaction with Jak2 protein in humans [11], the

functional significance of this finding was not fully realized

until recently. Mutant Jak2, common in certain types of

leukemia, phosphorylates PRMT5 on its N-terminus in a

region that is highly conserved from human to Xenopus

(Y304 shown in Fig. 6c) [117]. This may abolish the in-

teraction of PRMT5 with the histone substrate by clashing

with its N-terminal Ser1 and thus significantly impairs the

ability of PRMT5 to methylate histones H2A or H4 on R3

(similarly to H2A/H4 S1ph, Fig. 6c) [35, 117]. Conversely,

phosphorylation of MEP50 on T5 increases the methyl-

transferase activity of PRMT5–MEP50 toward H4 [118],

potentially by increased affinity for histone substrates. Fi-

nally, PRMT5 can influence the activity of other enzymes,

as PRMT5 methylation of the transcription factor GATA4

inhibits p300-mediated GATA4 acetylation [119].

Subcellular localization and other regulation of PRMT5

In a variety of somatic cells, PRMT5 predominantly lo-

calizes to the cytoplasm [120–122] and as noted above the

translocation of PRMT5 appears to play a role in controlling

pluripotency in early development of mouse embryos [65].

PRMT5 has three novel nuclear exclusion signals (NES)

that are unlike the conventional leucine-rich NES [123].

PRMT5 localization is also regulated by binding partners.

The transcription factor SNAIL forms a complex with

PRMT5–MEP50 mediated by the LIM protein AJUBA

[120] and promotes translocation of the primarily cytoplas-

mic AJUBA and PRMT5 to the nucleus. SNAIL recruits the

complex to the E-cadherin proximal promoter, resulting in

increased methylation of H4R3. PRMT5 knockdown or in-

hibition results in expression of E-cadherin, suggesting

transcriptional repression of E-cadherin by the SNAIL

complex is dependent on PRMT5 methyltransferase activity.

The SNAIL-induced epithelial-to-mesenchymal transition is

essential during development and a major contributor to

metastasis and tumor progression [124].

PRMT5 translation is regulated by miRNAs in mantle

cell lymphoma (MCL) cells, in which a global increase in

PRMT5 protein and H3R8 and H4R3 methylation appears

despite less mRNA and slower transcription compared to

normal B lymphocytes [122]. Re-expression of miRNAs

that normally bind the 30UTR of PRMT5 results in a strong

decrease in PRMT5 protein levels. Similar results were

obtained in transformed B cell chronic lymphocytic leu-

kemia (B-CLL) cell lines [57]. Intriguingly, a prmt5

antisense RNA is found embedded within the prmt5 gene

in the human genome possibly causing a similar effect on

translation (NCBI Entrez Gene ID 100505758).

PRMT5–MEP50 in cancer

PRMT5’s regulation of proliferation and its direct inter-

action with proteins commonly misregulated or mutated in

Table 2 Major PRMT5 interacting proteins and their function

PRMT5 binding

partnera
Biological

function

References

MEP50 (also known as Wdr77/Androgen

Coactivator p44)

Essential for PRMT5 histone methylation;

always found bound to PRMT5 in metazoans

[16, 22, 23, 34–37, 65, 83, 118, 125, 129,

167, 172, 173]

pICln Contributes to spliceosome assembly and directs

PRMT5 methylation to Sm proteins

[44, 45, 47, 113, 167]

RioK1 Competes with pICln for PRMT5 binding and recruits

nucleolin for methylation

[108]

Menin/MEN1 Adapter protein for MLL methyltransferase that targets

PRMT5 to chromatin

[110–112]

CoPR5 Mammalian nuclear protein that targets PRMT5 to

chromatin

[93, 174]

hSWI/SNF Chromatin remodeling

complexes

Targets PRMT5 to chromatin and methylation

of Histone H3

[13, 57, 58, 60, 82, 84, 122, 164]

JAK kinases Mutant Jak2 found in leukemia phosphorylates

PRMT5 and reduces its activity

[11, 117]

Blimp1 Localization of PRMT5 in primordial germ cells [54]

AJUBA Coordinates PRMT5 interaction with SNAIL [120]

Piwi Recruitment via Tudor domain proteins to piRNA

pathways

[95–97, 101]

a Caution is warranted when considering PRMT5 interacting proteins identified in the literature by anti-FLAG precipitation (not shown here) as

PRMT5 was shown to directly interact with FLAG antibodies [175]
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cancer indicate that PRMT5 may play a role in cancer as an

oncogene [21–24, 57, 123, 125–129]. Cancer etiology is

now highly correlated with alterations in the histone code

signaling of epigenetic information [130, 131]. Yang and

Bedford [132] provide an overall literature review of the

role of the family of PRMTs in cancer.

Increased expression and mutation of PRMT5 and

MEP50 are found in a wide range of cancers, as we ex-

tracted from The Cancer Genome Atlas project database

(Fig. 7a) [133]. PRMT5 overexpression appears to be an

important factor in its tumorigenicity and occurs in a large

number of cancers, including ovarian, lung, lymphoid,

lymphoma, glioblastoma multiforme, melanoma, colon,

gastric, bladder cancer and germ cell tumors [57, 122, 123,

127–129, 134–138]. In epithelial ovarian cancer, elevated

PRMT5 correlates with decreased patient survival [128].

Elevated PRMT5 and MEP50 expression in non-small cell

lung cancer (NSCLC) is highly correlated (logrank

P *2 9 10-6) with poorer survival in a large sample of

patients, as we extracted from a clinical database of pub-

lished data (http://www.kmplot.com, Fig. 7b, c) [139].

Mechanistic insight into this elevated expression in lung

adenocarcinoma was shown by studies in which high cy-

toplasmic expression of PRMT5 was directly correlated

with poor prognosis, possibly mediated through the ep-

ithelial-to mesenchymal transition [140] and histone

methylation [141]. PRMT5 overexpression causes the for-

mation of tumors in nude mice [135]. MEP50 had

significant parallel roles in enhancing PRMT5 methylation

of PI3-kinase to promote lung cancer tumorigenesis [142].

PRMT5 overexpression also results in increased prolif-

eration and induced anchorage-independent colony growth

[13, 135]. Conversely, PRMT5 knockdown significantly

reduces cellular proliferation and colony formation in

breast and lung cancer cells [13, 135, 143]. PRMT5 de-

pletion inhibits proliferation in a majority of metastatic

melanoma cell lines but accelerates growth in others [129].

These results suggest cell type might be an important factor

in determining if overexpression leads to increased growth.

However, no effect on cellular proliferation is observed

when PRMT5 is overexpressed in MCF-7 breast cancer

cells [143]. PRMT5 overexpression in cancer may in part

be mediated by the NF-Y transcription factor, known to

directly control cell cycle genes and other proliferative and

cell survival factors [144]. PRMT5-catalyzed methylation

of the growth factor receptor EGFR reduces its autophos-

phorylation, attenuating its activation and potentially

playing a role in tumorigenesis [145].

A

B

C

bFig. 6 Structural basis for modification crosstalk regulation of

PRMT5 activity. The crystal structure of PRMT5–MEP50 complexed

with H4 (1–8) tail peptide (PDB:4GQB) provided insight into activity

crosstalk by other histone PTMs. a The histone H4 Lys 5 (H4K5,

black stick) interacts with PRMT5 through a hydrogen bond between

a structural water molecule (red ball) and its e-NH2. b Modeled

interactions between an acetylated histone H4 Lys 5 (H4K5ac, yellow

stick) within the HsPRMT5 active site. The oxygen-carbonyl occupies

the position of the structural water molecule shown in a. Acetylation

of the peptide at the K5 position increases the enzyme/substrate

affinity through enhanced hydrogen bonding. c Modeled potential

interactions between a phosphorylated histone H4 Ser 1 (H4S1ph) and

the enzyme. The potential occupied space of the phosphorylated

residue is shown in mesh, and may either sterically block histone

peptide interaction, electrostatically repel PRMT5 Y304 in an active

site pH-dependent fashion, or alternatively enhance interaction with

enzyme and reduce turnover
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The effect of PRMT5 overexpression on cellular pro-

liferation suggests a role for PRMT5 in regulating cell

cycle progression. PRMT5 knockdown slows the cell cycle

in NIH3T3 cells and induces G1 arrest in 293T and MCF7

cells [135, 143]. PRMT5 overexpression increases the

protein levels of the positive regulators of G1 phase cyclin

D1, cyclin D2, cyclin E1, CDK4, and CDK6, and decreases

the protein level of the negative regulator of G1 phase Rb

protein [135]. Loss of PRMT5 leads to the increased ex-

pression of the cell cycle regulator p27Kip1 [129].

PRMT5 is also linked to the expression of the oncogenes

p53, eukaryotic translation initiation factor (eIF4E), and

microphthalmia-associated transcription factor (MITF)

[129, 143, 146]. Knockdown of PRMT5 causes a sig-

nificant decrease in both p53 and eIF4E [143].

Overexpression of eIF4E, a translational regulator, results

in rapid proliferation, suppression of apoptosis, and ma-

lignant transformation [147, 148]. Expression of eIF4E

rescues short-term loss of cellular proliferation caused by

PRMT5 knockdown, consistent with eIF4E functioning as

a critical downstream effector of PRMT5 activity [140].

In the human osteosarcoma cell line U2OS, PRMT5,

Strap and p53 form a complex in response to DNA damage

[71]. DNA damage-induced apoptosis is greater

A

B C

Fig. 7 PRMT5 is altered in a range of cancers and its expression is

correlated with poor prognosis. a The alteration frequency of prmt5

gene amplification, mutation, and deletions in a wide range of human

cancers cataloged in The Cancer Genome Atlas (TCGA, accessed

through the cBio Cancer Genomics Portal; http://www.cbioportal.org)

was plotted in a histogram, ranging up to 4.5 % alteration in uterine

cancer. This analysis did not include increased gene expression or

protein abundance. b A Kaplan–Meier survival probability plot for

high (orange) versus low (gray) prmt5 gene expression/mRNA level

for lung cancer is shown, with high prmt5 expression resulting in a

*1.5-fold worse survival (hazard ratio) at very high significance. c A

Kaplan–Meier survival probability plot for high (orange) versus low

(gray) mep50 gene expression/mRNA level for lung cancer is shown,

with high prmt5 expression resulting in a *1.6-fold worse survival

(hazard ratio) at very high significance. Survival data obtained from

http://www.kmplot.com
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concomitant with PRMT5 knockdown, indicating that

arginine methylation is a part of the p53 response. This

apoptotic response could possibly be linked to PRMT5s

role in splicing, such as in cell cycle genes with weak 50

donor sites. One of these mRNAs is Mdm4, which senses

defects in the spliceosomal machinery and transfers the

signal to activate the p53 response [53]. Furthermore,

PRMT5 monomethylates p53 within its oligomerization

domain on a similar ‘‘GRGR/K’’ sequence to that found in

histones, modestly influencing p53 tetramer formation and

its target selection [71].

PRMT5 activity is modulated by the DAL-1/4.1B tumor

suppressor which is known to function in pro-apoptotic

pathways in breast cancer cells [149, 150] and is essential

for the growth of lung cancer cells [123, 135]. The pro-

grammed cell death 4 (PDCD4) tumor suppressor protein

conversely functions to promote cell growth and tumor

formation when overexpressed with PRMT5 [126, 151].

Menin/MEN1 interacts with PRMT5 to alter its activity,

and cancer-associated Menin mutations appear to block

this interaction, possibly altering the targeting of PRMT5

and promoting tumorigenesis [110, 111].

In developing fetal testes, both PRMT5 and MEP50

were nuclear in Leydig cells and in adult nonneoplastic

testes; in contrast, testicular cancers exhibited reduced

nuclear PRMT5 and MEP50 with enhanced cytoplasmic

localization [125]. Similarly, cytoplasmic expression of

MEP50 in prostate cancer cells promotes both androgen-

and estrogen-mediated transcriptional activity and tumori-

genesis [17, 23], while forced nuclear localization of

MEP50 inhibited prostate cancer cell proliferation [24].

Consistently, targeting PRMT5 to the nucleus by fusing a

nuclear localization signal (NLS) to the N-terminus of

PRMT5 also results in inhibition of growth of LNCaP cells.

In contrast, MEP50 was nuclear in invasive ovarian and

breast cancer cells while mainly cytoplasmic in normal

cells [22]. Consistent with this observation, overexpression

of MEP50 in the nucleus stimulated proliferation and in-

vasion only in the presence of estrogen or androgen [19].

Part of the role of MEP50 in hormone-responsive tumors

may be independent of PRMT5, mediated through inter-

action and recruitment of the Smad1 transcription factor

[16].

PRMT5 in additional diseases and future drug design

outlook

Host and microbe PRMTs are involved in infectious dis-

ease pathways. Parasitic protozoa with PRMTs have a

conserved Type I PRMT with homology to PRMT1 and a

conserved Type II PRMT with homology to PRMT5 [152].

PRMT5 also binds and methylates the Epstein–Barr

Nuclear Antigen protein and stimulates EBNA-dependent

transcription, possibly indicating that host PRMT5 plays a

role in latent EB infection [153, 154]. Retroviral infections

may also be regulated by PRMT5. Human T lymphotropic

viruses encode accessory proteins p30 and p28, which were

shown to interact specifically with PRMT5, while reduc-

tion of host cell PRMT5 levels decreased HTLV-2, but not

HTLV-1, viral gene expression [155]. The HIV Tat protein

is known to be methylated and regulated by PRMT6, and

contains a long stretch of ‘‘GR’’ residues, suggesting that it

may also be a target of PRMT5 [156].

PRMT5 may also have significance for heart disease.

PRMT5, along with PRMT3, was shown to bind to and

methylate the voltage-gated sodium channel NaV1.5.

Strikingly, this arginine methylation enhanced NaV1.5 cell

surface localization and current density, showing that this

regulation may be a previously unknown component of

heart health and disease [157]. PRMT5 also was shown to

interact with GATA4 in cardiomyocytes and methylated it

on three Arg residues, inhibiting the ability of GATA4 to

promote transcriptional activation [119].

A number of other arginine and lysine methyltransferases

have also been implicated in cancer and other diseases [132,

158, 159]. This makes PRMT5, and protein methyltrans-

ferases in general, a prime target for drug development and

diagnostics [159]. Though no pharmacological treatments

directly targeting PRMT5 are available yet, research into

PRMT5 inhibitors has greatly increased within the last sev-

eral years, with a number of inhibitors currently being

developed specifically for application to cancer, b-tha-

lassemia, or sickle cell disease. Interestingly, the epizyme

inhibitor EPZ004777 directed against the Dot1L lysine

methyltransferase also inhibits PRMT5, but not the PRMT5–

MEP50 complex, suggesting that some of its activity may be

due to PRMT5 inhibition [160, 161].

Concluding remarks

Mono- and symmetric dimethylation of arginine is versatile

and commonly utilized PTMs that until recently were un-

der-recognized. An ever-greater number of proteins and

cellular pathways are now known to be regulated by these

modification states, including the splicing machinery and

histones that are the foundation of many essential biolo-

gical functions. Here, we focused on PRMT5 and

highlighted its mechanisms of catalysis and substrate

recognition, the somatic and cancerous biological pro-

cesses that PRMT5 and its partner MEP50 participate in or

are essential for, and showed the role PRMT5 and MEP50

play in early development. Current and forthcoming in-

sights into PRMT5’s molecular mechanisms of targeting

specific proteins and catalyzing mono- and dimethylation

2052 N. Stopa et al.

123



will provide crucial information for the development of

specific small molecule inhibitors. Future research will

clarify the role of PRMT5 in development and disease,

while the development of specific small molecule in-

hibitors of PRMT5 may lead to novel chemotherapeutic

approaches for cancer. However, caution is necessary in

the potential use of specific PRMT5 inhibitors due to their

multiple biological roles, suggesting possible toxicity from

its inhibition. New studies targeting PRMT5, and redun-

dancy with other methyltransferases such as PRMT7, and

their multiple biological roles are necessary to fully un-

derstand how PRMT5 functions in health and disease. New

tools, such as better methylarginine antibodies that can

distinguish histone substrates and mono- and dimethylation

states, as well as conditional knockouts in cell culture and

animals will be essential for future elucidation of the im-

portant biological roles of PRMT5.
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