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Abstract

We have investigated the effect of cis-diamminedichloropla-
tinum(II) (CDDP) on signal transduction pathways. CDDP
treatment did not cause any change in the binding of 1H1-
phorbol dibutyrate to PC-9 (human lung adenocarcinoma cell
line) cells, a measure of protein kinase C activation. However,
2-h CDDP treatment (20 gg/ml) caused - 200% increase in
1,2-sn-diacylglycerol (DAG) production and - 50% decrease
in inositol 1,4,5-triphosphate production. To explore the differ-
ent source of DAG, we analyzed phospholipids labeled with
I"Cicholine by TLC and revealed that ['4Cjcholine-labeled
phosphatidylcholine (PC) was decreased to 50% by CDDP
treatment. This suggested that PC turnover was increased by
CDDP-treatment. PC-specific phospholipase C (PC-PLC) ac-
tivity was increased to 2.5-fold (2.58±0.28 nmol/mg protein
per min) by 2 h CDDP (20 ;&g/ml) treatment compared with
control (1.05±0.24 nmol/mg protein per min). Treatment of
CDDP also stimulated PC-PLC in the crude membrane extract
from PC-9 cells. CDDP had no effect on the activities of phos-
pholipase A2 and D. Trans-DDP, which has far less cytotoxic-
ity than its stereoisomer, CDDP, did not cause any change in
PC-PLC activity. A significant inhibition of DNA synthesis
(< 80%) occurred 4 h after 2 h CDDP (20 ;&g/ml) treatment.
These results demonstrated that CDDP-induced PC-PLC acti-
vation was an early event in CDDP-induced cytotoxicity and
suggested that the effects of CDDP on signal transduction
pathways had an important role in CDDP-induced cytotoxicity.
(J. Clin. Invest. 1992. 89:1622-1628.) Key words: cis-diam-
minedichloroplatinum(II) * phosphatidylcholine * phospholi-
pase C

Introduction

cis-diamminedichloroplatinum(II) (CDDP)' is a key anti-
cancer agent for the treatment of solid tumors (1). Phorbol
esters, such as 12-O-tetradecanoylphorbol 13-acetate (TPA),
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1. Abbreviations used in this paper: CDDP, cis-diamminedichloropla-
tinum(II); DAG, 1,2-sn-diacylglycerol; dH2O, distilled water, G pro-
teins, GTP-binding proteins; IP3, inositol 1,4,5-trisphosphate; LPC,
lysophosphatidylcholine; PA, phosphatidic acid; PBt2, phorbol dibuty-

have various biological effects on a variety ofcellular functions
(2,3). Several recent studies have shown thatTPA could modu-
late CDDP-induced cytotoxicity (4-6). Hofmann et al. (4) have
observed sensitization of Walker rat carcinoma cells to CDDP
by long-term (48-h) exposure to TPA and have postulated that
the sensitization effect ofTPA resulted from the inhibition or
downregulation ofprotein kinase C (PKC). Basu et al. (5) have
also observed that long-term (24-h) pretreatment with TPA
sensitized HeLa cells to CDDP, but they have shown that the
downregulation ofPKC could not explain the sensitizing effect
of TPA and postulated that activation of PKC was necessary
for sensitization to CDDP. Isonishi et al. (6) have reported that
short-term (1-h) TPA exposure could sensitize 2,008 ovarian
carcinoma cells to CDDP. Although they did not measure the
actual PKC activity, they suggested that CDDP sensitivity
could be modulated by PKC.

We have recently reported that CDDP-resistant human
lung cancer cell line was cross-resistant to the growth-inhibi-
tory effect of TPA (7). Considering that TPA modulated
CDDP-induced cytotoxicity and that CDDP-resistant cells
showed cross-resistance to TPA, we can speculate that TPA
and CDDP have a somewhat common mechanism ofaction in
their growth-inhibitory effect and cytotoxicity.

The effects of TPA appear to be mediated largely through
signal transduction pathways involving PKC activation (2, 3).
Recent evidence suggests that TPA acts on phosphatidylinosi-
tol (PI)-specific phospholipase C (PI-PLC) (8-12) and phos-
phatidylcholine (PC)-specific phospholipase C (PC-PLC) (13-
23), both of which are considered to be important enzymes in
signal transduction pathways. However, there have been few
reports describing the effect of CDDP on signal transduction
pathways; the reports have focused only on PKC activity (24).

For this report we investigated the effect ofCDDP on signal
transduction pathways and demonstrated that CDDP has no
effect on PKC activity and that CDDP activates PC-PLC. This
PC-PLC activation occurred before CDDP-induced inhibition
of DNA synthesis. Trans-diamminedichloroplatinum(II)
(trans-DDP) did not cause PC-PLC activation. Therefore, the
effect ofCDDP on signal transduction pathways might have an
important role in CDDP-induced cytotoxicity.

Methods

Chemicals. CDDP was obtained from Bristol-Myers Squibb Japan
(Tokyo, Japan). RPMI 1640 and calcium- and magnesium-free PBS

late; PC, phosphatidylcholine; PC-PLC, PC-specific phospholipase C;
PI, phosphatidylinositol; PI-PLC, PI-specific phospholipase C; PKC,
protein kinase C; PLA2, phospholipase A2; PLD, phospholipase D;
SM, sphyngomyelin; Thd, thymidine; trans-DDP, trans-diammine-
dichloroplatinum(II); TPA, 12-O-tetradecanoyl phorbol 13-acetate.
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were purchased from Nissui Pharmaceutical Co. (Tokyo, Japan). [y-
32P]ATP; ['4C]choline; PC, l-stearoyl-2-[methyl-'4C]arachidonyl
(['4C]PC), and [3H]thymidine ([3H]Thd) were purchased from Amer-
sham Japan (Tokyo, Japan). Other drugs and chemicals were pur-
chased from Sigma Chemical Co. (St. Louis, MO) if not otherwise
mentioned.

Cell cultures. PC-9 is a human non-small cell lung cancer cell line
(25). Cells were grown in RPMI 1640 medium supplemented with 10%
fetal bovine serum, penicillin (100 U/ml), and streptomycin (100 ,g/
ml) in a humidified 5% CO2 atmosphere at 370C.

Assayfor cellular 1,2-sn-diacylglycerol (DAG). At various time pe-
riods after the addition of20 ,g/ml CDDP, lipids ofPC-9 cells (2 x I05
cells) were extracted with chloroform/methanol (2:1) (vol/vol). Then,
we added 1.25 vol of chloroform and 1.25 vol of 0.2 M KCI-5 mM
EDTA solution. After centrifugation at 1,000 g for 10 min at 4VC,
lipids in organic phase were extracted by the modified method of Bligh
and Dyer (26). Samples in the organic phase were dried under N2 gas,
and DAG mass was assayed according to the method of Preiss et al.
(27). The assay was linear with respect to DAG mass from 0.2 to 5
nmol.

Assayfor inositol 1,4,5-trisphosphate (IP3). At various time periods
after the addition of 20 Mg/mi CDDP, 1 ml of PC-9 cell suspension (2
X I05 cells/ml) was mixed with 200 AI ice-cold 20% perchloric acid and
kept on ice for 20 min. Proteins were sedimented by centrifugation at
2,000 g for 15 min at 4VC. Supernatants were transferred to the new
tubes and were neutralized to pH 7.5 by 1 M KOH and kept on ice for 1
h. Then we added 4 ml distilled water (dH20) to the neutralized super-
natants. This solution was applied to the minicolumn (Amprep, Amer-
sham) at a flow rate of 3 ml/min. The column was washed once with 5
ml ofdH2O and once with 5 ml of0.1 M KHCO3 at the same flow rate.
The IP3 fraction was eluted with 5 ml of 0.17 M KHCO3 and was
collected. This 100 Al of IP3 fraction was measured by a competitive
binding assay (Amersham IP3 assay kit).

Analysis ofphospholipid labeled with ["C choline. Cells (2 X 105)
were labeled with 2 MCi of ['4C]choline (sp act 50-60 mCi/mmol) for 48
h. The last 24 h of labeling was performed in serum-free medium.
Labeled cells were washed once with warmed PBS and were exposed to
various concentrations ofCDDP for 2 h. Reactions were terminated by
removing the supernatants and the cells were washed three times with
cold medium containing unlabeled 1 mM choline. Then we added 2 ml
of ice-cold methanol and transferred the cells to glass tubes after a
10-min incubation at 4°C. The washed culture dish was rinsed twice
with 1 ml of ice-cold methanol and we added this solution to the glass
tubes mentioned above. We then added 2 ml ofchloroform and left the
extracts for 1 h at 4°C. The tubes were then centrifuged at 400 g for 10
min. Organic phases were dried under N2 gas and lipids were fraction-
ated by TLC using the following solvent systems. For the fractionation
ofdifferent phospholipids, chloroform/methanol/concentrated ammo-
nia (65:25:4) (vol/vol/vol) was used in the first dimension and chloro-
form/acetone/methanol/acetic acid/water (30:40:10:10:5) (vol/vol/
vol/vol/vol) was used in the second dimension. The spot corresponding
to each lipid, located by autoradiography, was scraped offthe plate; and
the radioactivity of each lipid was measured in a liquid scintillation
counter.

Preparation of membrane fraction. Subconfluent cells were har-
vested and washed twice with ice-cold buffer 1 (PBS containing 1 mM
EDTA [pH 7.3]). Collected cells were resuspended in buffer 2 (2 mM
Hepes, 154 mM NaCl, 1 mM EDTA, pH 7.4) at 6 X 106 cells/ml. After
freezing and thawing twice, the cell suspension was sonicated in a bath
sonicator for 30 s. Before ultracentrifugation, an aliquot of fresh soni-
cate was centrifuged at 180 g for 10 min at 4°C. The supernatant was
then centrifuged at 100,000 g for 90 min at 4°C (Ultracentrifuge TL-
100 with a fixed-angle rotor TL-45, Beckman Instruments, Fullerton,
CA). After ultracentrifugation the pellet was resuspended in buffer 2.
Membrane fractions were immediately frozen at -80°C until use. Pro-
tein content was measured by the method of Lowry et al. (28).

Analysis ofPC hydrolysis in PC-9 cells. [14C]PC (sp act 56 mCi/
mmol) was dried under N2 gas and then was stored in chloroform at

-20'C until use. At the time of the experiments, stocked 22.4 MCi
[14C]PC was suspended in 100 Al ofdH20 and was sonicated in a bath
sonicator for 2 min at room temperature. 50 Mg membrane fraction
proteins were incubated with 100 Al of reaction buffer, 100 Ml of
['4CJPC solution and 100 Ml of 6 mM CaC12 for 1 h at 370C. Reaction
buffer consisted of 100 mM Hepes and 100 mM sodium acetate (pH
7.5). Parallel reactions, in which 5 U ofphospholipase A2 (PLA2) or 10
U of PC-PLC (Seikagaku Kogyo Co., Tokyo, Japan) were included
instead of membrane fraction proteins, were performed as control ex-
periments. Reactions were terminated by the addition of 1 ml ofchloro-
form/methanol (2:1) (vol/vol), which contained 36 mM HCl. All mea-
surements were performed in triplicate. Then nonradiolabeled lipid
mixture (60 nmol each of PC, lysophosphatidylcholine [LPC], oleic
acid, DAG, and sphingomyelin [SM]) was added just before lipid ex-
traction for visualization of PC, LPC and DAG on TLC plates. The
solutions were mixed and incubated for 1 h at 4VC. After incubation,
phase separation was facilitated by centrifugation at 200 g for 5 min.
The chloroform phase was transferred to a new glass tube. The residual
aqueous phase was extracted again with 0.8 ml ofchloroform and com-
bined with the former chloroform phase. The pooled chloroform
phases were dried under N2 gas and dissolved in 20 Ml of chloroform/
methanol (2:1) (vol/vol) and then applied to the silica gel F254 TLC.
For the fractionation of [14C]DAG, diethyl ether/benzene/ethanol/
triethylamine (40:50:2:1) (vol/vol/vol/vol) was used as the first-dimen-
sion solvent system. Chloroform/methanol/acetic acid (85:14:1) (vol/
vol/vol) was used as the second-dimension solvent system. For the
fractionation of ['4C]LPC and ['4C]phosphatidic acid (['4C]PA), the
plates were developed in chloroform/methanol/concentrated ammo-
nia (65:35:5) (vol/vol/vol). LPC (Rf= 0.10), PA (Rf = 0.05), and SM (Rf
= 0.17) were completely separated from PC (Rf = 0.39) when the dis-
tance of solvent front from origin was 17 cm.

After drying, TLC plates were exposed to iodine vapor for 1 h. The
spots corresponding to the lipid standards were marked and were
scraped off the plates. Then the radioactivity was counted by a liquid
scintillation counter. About 95% of the radioactivity could be recov-
ered. PLA2 activity was quantitated by the release of ['4C]LPC from
[14C]PC. PC-PLC activity was quantitated by the release of ['4C]DAG
from ['4C]PC. Depending on the substrate used and the activity being
assayed, the product spots usually gave 2,000-20,000 cpm counts.

Analysis ofPC-PLC andPLA2 activities in CDDP-treated cells. PC-
9 cells were treated with various concentrations ofCDDP for 2 h. Cells
were harvested and the membrane extraction was performed according
to the methods described in "Preparation ofmembrane fraction." The
activities of PC-PLC and PLA2 in the extracts were analyzed by the
same methods described in "Analysis of PC hydrolysis in untreated
cells."

Analysis of the effects of CDDP and trans-DDP on PC-PLC and
PLA2 in the crude cell extracts. At the time ofthe experiments, stocked
22.4 MCi [14C]PC was suspended in 100 Ml dH20and was sonicated in a
bath sonicator for 2 min at room temperature. 50-Pg membrane frac-
tion proteins were incubated with 50 Ml ofCDDP or 120 Mg/ml trans-
DDP, which gave a final concentration of 20 Mg/ml; 100 Ml of reaction
buffer; 100 Mul of [14C]PC solution; and 50 Ml of 12 mM CaCl2 for 2 h at
37°C. The content of the reaction buffer was described in "Analysis of
PC hydrolysis in untreated cells." After incubation we performed the
same procedure described in "Analysis of PC hydrolysis in untreated
cells."

DNA synthesis. 2 x 106 cells were treated with 20 Ag/ml ofCDDP
or PBS as the control for 2 h. After incubation CDDP was removed and
then the cells were incubated in a humidified atmosphere of 5% C02-
95% air in the complete medium for 0-18 h. At each time point, cells
were resuspended in I ml of fresh complete medium containing 2 MCi/
ml of [3H]Thd (sp act 6.7 Ci/mmol) and incubated for 30 min to pro-
duce radiolabeled DNA. The cells were then collected to a 15-ml centri-
fuge tube and were rinsed twice with ice-cold PBS. We added 10 M1 of
horse serum as a carrier and 5 ml of 10% ice-cold TCA and mixed well.
This mixed solution was incubated on ice for 15 min, and the precipi-
tate was collected by centrifugation at 1,500 g for 10min at 40C. 200Ml
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of folic acid (Wako Pure Chemical Co., Osaka, Japan) was added to
solubilize the pellets. The radioactivity was measured in a liquid scintil-
lation counter.

Results

Effect of CDDP on PKC and PI-hydrolysis. To examine the
effect of CDDP on signal transduction pathways, we initially
determined the dose-dependent effect of 2 h CDDP treatment
on DAG production, IP3 production, and phorbol dibutylate
(PBt2) binding to PC-9 cells. The activation of PKC has been
correlated with its translocation from the cytosol to cellular
membranes and a subsequent increase in the binding of [3H]-
PBt2 to intact cells (29, 30). Therefore, PBt2 binding reflects
PKC activity. DAG production was stimulated in a dose-de-
pendent manner by 2 h CDDP treatment (Fig. 1 a). However,
IP3 production was inhibited by higher concentrations (> 20
,gg/ml) ofCDDP treatment (Fig. 1 b) and we could not observe
any change of [3H]PBt2 binding to the cells after various con-
centrations of CDDP treatment for 2 h (data not shown). The
PKC content was also not affected by various concentrations of
CDDP treatment (data not shown).

The physiological activation ofPKC generally results from
acute increase in cellular DAG content. In the following exper-
iments, we examined DAG production, IP3 production, and
PBt2 binding to the cells at various times within 2 h after the
addition ofCDDP (20 ,g/ml). By the use ofa colony formation
assay (2 h CDDP exposure), CDDP concentration of20 ,g/ml
killed 90% of the cells at the time of colony counting (day
10) (unpublished data). However, 2 h after the addition of 20
,ug/ml CDDP, we could not observe any decrease in cell num-
bers or viability as counted by trypan blue staining. CDDP
treatment caused an increase ofDAG production 30 min after
the addition of CDDP (Fig. 2 a). DAG production doubled
after 2 h. However, unexpectedly, there no increase of PBt2
binding to the PC-9 cells occurred within 2 h (data not shown)
and a significant inhibition of IP3 production (Fig. 2 b) was
observed. The hydrolysis of phosphatidylinositol 4,5-bisphos-
phate by PI-PLC is an important source ofDAG and IP3, but it
is now known that PC can also be hydrolyzed by PC-PLC to
yield DAG. To explore the different source ofDAG, the follow-
ing experiment was carried out.

CDDP treatment increased PC turnover. To examine the
effect ofCDDP addition to quiescent PC-9 cells on PC-PLC-

a 250 b 110 Figure 2. Time course of
100 the effect of CDDP on
90 DAG production, IP3

0
00 / l t production, and PBt2

/ 2R 80 binding to PC-9 cells. (a)
8 70 At various times after the
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o0 Jr 50 8 T CDDP, the DAG mass in
1000:3 100 'U 4
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0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 the results (triplicate de-

termination in two exper-
Time (min) Time (min) iments) are expressed as

DAG in CDDP treated
cells as percentage of DAG in control PC-9 cells, which contain 1.5 nmol (900 cpm) of DAG per 2 X 106 cells. (b) At various times after the ad-
dition of 20 ,g/ml of CDDP, IP3 production was measured by the use of an IP3 assay kit. The amount of IP3 was obtained from the standard
curve and the results (triplicate determination in two experiments) are expressed as IP3 in treated cells as a percentage of IP3 in control PC-9
cells (which contains 1,630 cpm).
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Figure 3. Dose response of the effect of CDDP on PC labeled with
['4C]choline. PC-9 cells (2 x 105 cells) were preincubated for 48 h
with 2 uCi of ['4C]choline. Cells were exposed to various concentra-
tions of CDDP for 2 h. After CDDP treatment, labeled lipids were
extracted and were analyzed by TLC. Basal ['4C]choline incorpora-
tion into PC is 72,000 cpm per 2 x IO' cells.

mediated hydrolysis of PC, PC-9 cells were labeled with [14C]-
choline for 48 h and then treated by various concentrations of
CDDP for 2 h. The last 24 h labeling was performed in a serum-
free medium. After 48 h labeling, the levels of 14C-labeled PC
became saturated (data not shown). Results shown in Fig. 3
indicate that the level of 14C-labeled PC was decreased in a
dose-dependent manner after 2 h CDDP treatment. The de-
crease was observed above 2 gg/ml of CDDP concentrations
and in fact the change of 14C-labeled PC was inversely corre-
lated with the change of DAG production. Furthermore, the
level of 14C-labeled PC was decreased in a time-dependent
manner when the cells were treated with 20 ,g/ml ofCDDP for
2 h. After 2 h, the level of '4C-labeled PC was 50% of that of
control cells (data not shown). Considering the results that
CDDP increases PC turnover, we then examined whether PC
hydrolysis was affected by CDDP treatment in the following
experiments.

CDDP treatment increased PC-PLC activity, but not PLA2
activity. Formation of PA and DAG by stimulated cells could
occur by several distinct pathways (Fig. 4). PC can be hydro-
lyzed by PC-PLC to yield DAG described above. The resultant
DAG is then phosphorylated by DAG kinase to PA (31). PA is
also formed by direct action of phospholipase D (PLD) on PC
(32-39). SM is also formed by PLD. PA, thus, is formed from
PC and DAG by PLD and DAG kinase. On the other hand,
PLA2 formed LPC and arachidonic acids from PC. We com-
pared each production ofDAG, LPC, PA, and SM before and
afterCDDP treatment. As shown in Fig. 5, PA and SM produc-
tions were much lower than those ofDAG and LPC. And after
CDDP treatment we observed no change of SM production

DAG kinase
P A - DAG

& 1 PC-PLC

SM PC > LPC

PLD PLA2 Figure 4. Several path-
ways from PC by lipases.

9g

8-

7-

6-

5

4-

3-

2-

1-II
DAG PA SM LPC

Figure 5. Hydrolyzed
products of PC in intact
PC-9 cells and CDDP-
treated PC-9 cells. 50 ,ug
of membrane fraction
proteins extracted from
PC-9 cells, either un-
treated (black bar) or
treated (shadow bar) by
20 ytg/ml of CDDP,
were incubated for 1 h
with 22.4 ,uCi of [14C]PC
in the appropriate reac-
tion buffer. '4C-labeled
lipids were extracted
and were analyzed by
TLC.

and slight increase in PA production. Considering the fact that
PA is both a PLD-mediated hydrolyzed product ofPC and also
a DAG kinase-mediated phosphorylated product of DAG, it
appears to be unlikely that PLD activity was affected by CDDP
treatment. In addition, the fact that the ratio of ['4C]PA to
[14C]DAG remained constant before and after CDDP treat-
ment suggested that DAG kinase was also not affected by
CDDP treatment.

We then examined whether PC-PLC and PLA2 activities
were affected by CDDP treatment. Membrane fractions from
the PC-9 cells with or without 2 h CDDP (20 ,g/ml) treatment
were used for the measurement of each enzyme activity. PC-
PLC activity was calculated from ["4C]DAG production. PLA2
activity was calculated from ['4C]LPC production. Without
CDDP treatment, PC-PLC activity was 1.05±0.24 (nmol/mg
protein per min) and PLA2 activity was 0.55±0.18 (nmol/mg
protein per min). After 20 ,ug/ml ofCDDP treatment for 2 h,
PC-PLC activity increased - 2.5-fold (2.58±0.28 nmol/mg
protein per min), but PLA2 activity (0.50±0.17 nmol/mg pro-
tein per min) was almost same as the control experiment. We
also examined these enzyme activities in homogenates of
whole cells. We could find the lack of change in LPC in whole
cells in the same treatment condition. On the other hand, the
activation of PC-PLC activity by CDDP was also observed in
whole cells. These results support the activation of PC-PLC
and the lack of activation of PLA2 in membranes. These find-
ings are consistent with the findings demonstrating the in-
creased DAG production and increased PC turnover in CDDP-
treated cells.

To examine whether CDDP-induced PC-PLC activation
was related to CDDP-induced cytotoxicity, we examined the in
vitro effect of CDDP and trans-DDP on PC-PLC activity, re-
spectively. Trans-DDP has far less cytotoxic ability than its
stereoisomer, CDDP. Results in Fig. 6 a clearly indicate that
CDDP caused an increase in PC-PLC activity, but trans-DDP
did not cause any change of PC-PLC activity. Moreover, in
agreement with the results obtained from in vivo experiments,
results in Fig. 6 b demonstrated that neither CDDP nor trans-
DDP affected PLA2 activity. These results suggested that
CDDP-induced PC-PLC activation is related to CDDP-in-
duced cytotoxicity.

Inhibition of DNA synthesis after 2 h CDDP treatment.
DNA is the accepted target for CDDP cytotoxicity, but recent
evidence shed doubt on DNA synthesis as the critical process
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(40). Therefore, we determined the sequence of events (PC-
PLC activation and inhibition ofDNA synthesis) occurring in
cells after CDDP treatment. 2 h CDDP treatment caused 2.5-
fold PC-PLC activation, and a significant inhibition of DNA
synthesis occurred 4 h after CDDP (20 ,ug/ml) treatment (Fig.
7), with no change of Thd transport across the cell membrane
(data not shown). It appeared that CDDP-induced PC hydroly-
sis took place before significant inhibition of DNA synthesis
occurred.

Discussion

We have demonstrated that CDDP treatment caused an in-
crease in PC-PLC activity to yield an increase in PC turnover
and DAG production and that CDDP treatment caused a de-
crease in IP3 production but had no effect on PKC activity in a
human non-small cell lung cancer cell line.
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C Incubation time following 2h-CDDP treatment (h)

Figure 7. Inhibition of DNA synthesis in PC-9 cells at various times
after 2 h treatment ofCDDP. PC-9 cells (2 x 106 cells) were treated
for 2 h with 20 ug/ml ofCDDP (e) or PBS (o) as control. After 2 h,
CDDP was removed and then cells were incubated in the complete
medium for 0-18 h. Cell were labeled with 2 ,Ci of [3H]Thd for 30
min at indicated time points. DNA synthesis was measured by deter-
mination of [3H]Thd incorporation.

DAG is considered to be an important intermediate in sig-
nal transduction pathways, regulating cell growth and transfor-
mation (41), but most studies focused on its role in positive
regulation on cell proliferation. Issandou et al. (42) have re-
ported that permeant diacylglycerol 1,2-diotanoyl-sn-glycerol
(DiC8) had a growth inhibitory effect on an MCF-7 breast
cancer cell line and that DiC8 mimicked the effects ofTPA on
cell growth inhibition. We have previously demonstrated that
CDDP-resistant PC-9 cells, PC-9/CDDP, showed cross-resis-
tance to the growth inhibitory effect ofTPA. These results sug-
gested that DAG had a potential role in the negative regulation
of cell proliferation as TPA had in some cells and that DAG
had some role in CDDP-induced cytotoxicity.

We have demonstrated increased DAG production and de-
creased IP3 production in PC-9 cells after CDDP treatment.
We could not show an increase in PKC activity although an
increase in DAG has occurred. If the source ofDAG was only
PI, these results would be contradictory considering the known
characteristics of PI-derived DAG. However, recent evidence
has demonstrated the existence of another phospholipid path-
way leading to DAG production (20, 43, 44). PC-PLC-me-
diated hydrolysis ofPC is now thought to be another important
source ofDAG (45, 46). And PC-derived DAG has been shown
to have different fatty acid composition (47) and functions (48,
49). Although the distinct role of PC-derived DAG is not
known, recent studies have demonstrated that PC-derived
DAG did not cause PKC activation in vivo (50, 51). Further
support for these results is that we have demonstrated in-
creased PC-PLC activity to yield increased DAG production
and no change of PKC activity after CDDP treatment. Our
results suggest a novel function of PC-derived DAG.

Although we did not examine PI-PLC activity directly, it
might be inhibited by CDDP treatment in that a decreased IP3
production was observed in the present study. Recent reports
have shown that analogues of PI such as hexachlorocyclohex-
anes (52) and manoalide (53) inhibited PI-PLC activity and
caused a growth inhibition oftumor cells (54-56). These results
suggested inhibition ofPI-PLC activity and subsequent inhibi-
tion of PI turnover were important processes in the negative
regulation of cell growth.

The mechanism whereby CDDP increases PC-PLC activity
in PC-9 cells remains to be clarified. The activation mechanism
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ofCDDP on PC-PLC could be through a direct effect ofCDDP
on the enzyme or substrate or through an influence on the
regulatory mechanisms for PC-PLC. Some GTP-binding pro-
tein (G protein) has been suggested to be involved in the cou-
pling of various agonist receptors to PI-PLC (57) and pertussis
toxin; i.e., it interferes with the receptor-linked PI-PLC reac-
tion in some tissues (12). On the other hand, there is some
evidence to support the involvement ofaG protein in receptor-
dependent activation ofPC breakdown by PLC (58) and phos-
pholipase D (39, 45, 46, 59, 60). We have preliminary checked
the effect of CDDP on GTPyS binding and ribosylation ofG
proteins by pertussis toxin. CDDP modulated neither GTPyS
binding nor ribosylation ofG proteins. And a and , subunits of
G proteins were analyzed by immunoblotting in PC-9 and PC-
9/CDDP cells, in which CDDP showed no effect on PC-PLC
(data not shown). There was no difference in expression of a
and (3 subunits of G proteins between PC-9 and PC-9/CDDP
cells. According to these results, we have been considering that
there is less possibility for CDDP to act on G proteins. How-
ever, recent reports demonstrated that PLC-mediated PC hy-
drolysis was through a G protein insensitive to pertussis toxin
(61). And in some systems a pertussis toxin-sensitive GTP-
binding protein is not involved in the coupling (62). Further
investigation is necessary for the relationship between G pro-
teins and PC-PLC.

Considering that CDDP-induced PC hydrolysis took place
before a significant inhibition ofDNA synthesis and that trans-
DDP could not induce PC-PLC activation, PC-PLC activation
and subsequent hydrolysis ofPC might be important steps for
CDDP-induced cytotoxicity. Further support for this comes
from our preliminary data that 20 ,ug/ml of CDDP, which
caused a significant increase in PC-PLC activity and in DAG
production in the PC-9 cells, did not cause the same effect in
- 30-fold CDDP-resistant PC-9/CDDP cells. This suggests
that change in phospholipid metabolism, described in this re-
port, might contribute to the mechanism of acquired CDDP
resistance and reinforces our hypothesis that the change of
phospholipid metabolism might related to CDDP-induced cy-
totoxicity.

Almost all ofthe previous studies investigating the relation-
ship between anticancer agent sensitivity (or cytotoxicity) and
signal transduction pathways have focused only on the change
of PKC and/or PI turnover. However, the results presented
here suggest that PC metabolism might have an important role
in anticancer drug-induced cytotoxicity.

The CDDP effect on PC metabolism seems to mimic to the
effect of IL-1 (63), IL-3 (64), and Interferon a (65). In inter-
feron a, PC-hydrolysis is coupled to the growth inhibitory ef-
fect. Considering these evidences, we could speculate about the
possibility for the combination of CDDP and these com-
pounds. Recently, it has been demonstrated that many lipid
compounds, including phosphatidylcholine analogues and
ether-lipids analogues, have antitumor effects against several
kinds oftumor cells (66). These compounds were also expected
to be used in the combination with CDDP.
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