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Abstract

Various aspects of immune response exhibit 24-hour variations suggesting that infection 

susceptibility and treatment efficacy may vary by time of day. Whether these 24-hour variations 

are endogenous or evoked by changes in environmental or behavioral conditions is not known. We 

assessed the endogenous circadian control and environmental and behavioral influences on ex-vivo 

lipopolysaccharide stimulation of whole blood in thirteen healthy participants under 48 hours of 

baseline conditions with standard sleep-wake schedules and 40–50 hours of constant 

environmental and behavioral (constant routine; CR) conditions. Significant 24-hour rhythms were 

observed under baseline conditions in Monocyte Chemotactic Protein, Granulocyte-Macrophage 

Colony-Stimulating Factor and Interleukin 8 but not Tumor Necrosis Factor alpha whereas 

significant 24-hour rhythms were observed in all four immune factors under CR conditions. The 
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rhythm amplitudes, expressed as a percentage of mean, were comparable between immune factors 

and across conditions. In contrast, the acrophase time (time of the fitted peak) was different 

between immune factors, and included daytime and nighttime peaks and changes across 

behavioral conditions. These results suggest that the endogenous circadian system underpins the 

temporal organization of immune responses in humans with additional effects of external 

environmental and behavioral cycles. These findings have implications for understanding the 

adverse effects of recurrent circadian disruption and sleep curtailment on immune function.
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1. INTRODUCTION

Various immune factors have been shown to exhibit daily rhythms in both humans and 

animal models including lymphocyte proliferation (Esquifino et al., 1996), number of 

leukocytes, hematocrit, and white blood cell subsets (Abo et al., 1981; Born et al., 1997; 

Kawate et al., 1981) and cytokine levels (Born et al., 1997; Young et al., 1995). In addition, 

a time-of-day dependent modulation has been reported for infection susceptibility 

(Shackelford and Feigin, 1973), survival rate after endotoxic shock in mice (Halberg et al., 

1960), disease severity in rheumatoid arthritis (Cutolo, 2012) and adverse cardiovascular 

events and asthma (Litinski et al., 2009). The immune system in mice (Gibbs et al., 2012), 

Drosophila (Stone et al., 2012) and the flowering plant Arabidopsis (Wang et al., 2011a) is 

regulated by endogenous circadian clocks, suggesting that the endogenous clock-based 

regulation of immune response is conserved across phyla. In addition, recent studies in mice 

have demonstrated the circadian regulation of innate immune response in the presence of 

LPS, and that it is mediated by macrophage-specific molecular clocks (Gibbs et al., 2012; 

Keller et al., 2009).

An evolutionarily conserved molecular clock is also found in human peripheral blood 

mononuclear cells (PBMCs), which include most immune cell types. The phase of gene 

expression in these PBMC clocks is sensitive to light/dark schedules (Boivin et al., 2003; 

James et al., 2007). This suggests that these molecular clocks in the PBMCs may be 

controlled by the central circadian pacemaker, which drives endogenously generated 

rhythms that persist in the absence of external or behavioral time cues (Mills, 1966; 

Pittendrigh, 1960). Whether innate immunity in humans is also controlled by the circadian 

pacemaker remains to be elucidated, however. Nycthemeral (24-hour) rhythms that are 

observed under normal conditions may not be intrinsic, and therefore not circadian, if they 

are induced by external cycles such as the light/dark cycles, sleep, posture and activity. Prior 

studies in humans of immune response and/or basal immune function rhythmicity have not 

controlled for external factors such as sleep or meal times (e.g., (Born et al., 1997; Young et 

al., 1995)), and therefore have not determined whether immune function is intrinsically 

circadian. For example, circulating cytokine levels in the presence of LPS can be altered 

based on meal frequency (Dixit et al., 2011; Manning et al., 2008) and sleep (Born et al., 

1997) that could influence their rhythmic expression patterns.
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The aim of the study was to assess whether cytokine and chemokine levels in the presence 

of LPS exhibit endogenous circadian rhythmicity in humans. Our primary interest was in 

Monocyte Chemotactic Protein (MCP-1) as it has been shown to be regulated by the 

molecular clock (Gibbs et al., 2012; Hayashi et al., 2007; Sato et al., 2014) and has been 

implicated in diverse health disorders including diabetes (Kang et al., 2010; Seok et al., 

2013) and cardiovascular disease (Niu and Kolattukudy, 2009; Seijkens et al., 2014), which 

are common in shift work that induces recurrent circadian disruption (Puttonen et al., 2011; 

Scheer et al., 2009; Wang et al., 2011b). Therefore we wanted to establish if MCP-1 is 

endogenously circadian, which could make MCP-1 a potential target of circadian disruption 

leading to the adverse health effects associated with MCP-1 function. We studied Interleukin 

8 (IL-8) as a secondary marker of chemokine response and because previous studies have 

suggested that it is not under the control of the circadian molecular clock but does 

demonstrate rhythmicity in vivo (Gibbs et al., 2012). As a classical marker of LPS induced 

cytokine response, we studied Tumor Necrosis Factor alpha (TNF-α) and as a secondary 

cytokine marker we studied Granulocyte-Macrophage Colony-Stimulating Factor (GM-

CSF). In addition, GM-CSF expression was shown to be disrupted by recurrent circadian 

misalignment (Castanon-Cervantes et al., 2010). We employed the gold-standard method for 

determining circadian rhythmicity, namely the constant routine (CR) protocol (Duffy and 

Dijk, 2002; Mills et al., 1978), and assessed two cytokines (TNF-α and GM-CSF) and two 

chemokines (IL-8 and MCP-1) every four hours over a 40 to 50-hour CR protocol. We also 

measured the same parameters under standard sleep-wake baseline conditions with standard 

sleep-wake schedules conditions to assess potential differences in circadian versus evoked 

characteristics of the rhythms.

2. METHODS

We studied 13 healthy participants (mean age ± SD = 24.5 ± 3.1 years; range 20–30 years; 

six females, three in follicular and three in luteal phase determined by self-report) in the 

Intensive Physiology Monitoring Unit in the Center for Clinical Investigation at Brigham 

and Women’s Hospital. The study was approved by the institutional Human Research 

Committees at Brigham and Women’s Hospital, and participants gave their written informed 

consent. All participants were healthy as determined by comprehensive physical, 

psychological and ophthalmologic exams. A modified version of the Horne and Ostberg’s 

Morningness-Eveningness Questionnaire (Horne and Östberg, 1976) was used to exclude 

subjects with extreme chronotypes (excluded: 70<score<30; mean ± SD chronotype score 

53.1 ± 6.9). Potential participants were also excluded for night/shift work in the past 3 years 

or travel across more than two time zones in the previous 3 months. To stabilize circadian 

rhythmicity before starting the inpatient phase of the study, all participants maintained a 

self-selected, constant 8 h sleep/rest/dark schedule confirmed with calls to a time- and date-

stamped voicemail at bedtime and wake time for 3 weeks and actigraphy (Actiwatch-L, 

Minimitter, Inc., Bend, OR) for at least 1 week prior to entering the unit. The average (± 

SD) for bedtime (2329 ± 0:58h) and waketime (7:26 ± 0:55 h) and the average duration of 

sleep (7:56 ± 0:15 h) during the last seven days prior to admission were used to calculate the 

scheduled sleep times maintained during the inpatient portion of the study and are 

referenced as scheduled sleep. Participants were instructed to refrain from use of 
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prescription or nonprescription medications, supplements, recreational drugs, caffeine, 

alcohol, or nicotine. Compliance was verified by urine toxicology tests during screening and 

upon starting the inpatient phase of the study.

2.1 Study Protocol

Participants were studied for 7 or 9 days in an environment free of time cues (no access to 

windows, clocks, watches, live television, radio, internet, telephones, and newspapers and 

continually supervised by staff trained not to reveal information about the time of day). We 

analyzed the first 5 days of the protocol, that were identical for both the 7- and 9-day 

studies. Both protocols consisted of a 3-day baseline (8 h:16 h sleep:wake cycle based on 

average sleep times in the 7 days prior to study entry). The baseline days were followed by a 

40-h CR in the 7-day study and a 50-h and 10 min CR in the 9-day study (Figure 1). During 

the CR episodes, participants were asked to remain awake while supervised in constant dim 

light in a semirecumbent posture, with daily nutritional intake divided into hourly portions 

(150 mEq Na+/100 mEq K+ (± 20%) controlled nutrient, isocaloric [basal energy 

expenditure x 1.3] diet, 2000–2500 mL fluids/24 h) (Lockley et al., 2006).

During the first 2.5 baseline days, maximum ambient light during scheduled wake was 48 

µW/cm2 (~190 lux) when measured in the horizontal plane at a height of 187 cm and 23 

µW/cm2 or (~88 lux) when measured in the vertical plane (137 cm). Midway through day 3, 

maximum ambient light was decreased to 0.4 µW/cm2 (< 3 lux; ~1.5 lux) when measured in 

the horizontal plane and 0.1 µW/cm2 (~0.6 lux) when measured in the vertical plane and 

maintained at that level for the remainder of the study. Room light was switched off during 

scheduled bedrest episodes. Ambient room lighting was generated using ceiling-mounted 

4100K fluorescent lamps (F96T12/41U/HO/EW, 95W; F32T8/ADV841/A, 32W; F25T8/

TL841, 25W; Philips Lighting, The Netherlands) with digital ballasts (Hi-Lume 1% and 

Eco-10 ballasts, Lutron Electronics Co., Inc., Coopersburg, PA) transmitted through a UV-

stable filter (Lexan 9030 with prismatic lens, GE Plastics, Pittsfield, MA). Routine 

illuminance and irradiance measures were conducted using an IL1400 radiometer/

powermeter with an SEL-033/Y/W or SEL-033/F/W detector, respectively (International 

Light, Inc., Newburyport, MA).

2.2 Cytokine and chemokine measurement

Whole blood was drawn every 4 hours through an indwelling cannula in a forearm vein kept 

patent via a heparinized saline infusion (5 IU heparin/mL 0.45% NaCl, infused at 40 mL/h). 

Blood collection started 8 h after wake time on baseline Day 2 and continued throughout the 

CR and subsequent recovery sleep episode on Day 6 (Figure 1). We used a validated ex-vivo 

whole-blood LPS challenge assay to investigate the circadian regulation of LPS induced 

cytokine and chemokine production in humans (Born et al., 1997) although we used a 

shorter incubation time, which has been validated in murine models (Adams et al., 2013) 

and room temperature incubation as described below Samples of whole blood (500 µl) were 

collected in EDTA-coated tubes containing 31.25, 62.5 or 625 µg of LPS from Escherichia 

coli O111:B4 (SIGMA, Saint Louis, MI, USA) diluted in RPMI 1640 medium (ATCC, 

Manassas, VA, USA) supplemented with 2mM L-Glutamine and 10mM HEPES [final LPS 

concentration was 50 µg/ml (n = 3); 100 µg/ml (n = 8); and 1000 µg/ml (n = 2)] and 
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incubated at room temperature (RT) for 4 h. Incubation was stopped by centrifuging the 

sample at 1500 g x 10 minutes at 4°C and then immediately freezing the samples at −20° C 

for storage prior to batch assays at a later time. The different doses of LPS were used to 

construct a dose response curve to determine the optimum dose for LPS challenge. Plasma 

samples were analyzed in duplicate for the expression of multiple cytokines using a 

Milliplex MAP kit (Millipore, Bedford, MA; USA) ran on a Luminex xMAP platform per 

manufacturer’s instructions. For each cytokine measured, the assay had a detection range 

from 0.64 to 10000 pg/mL. The intra-assay coefficient of variation (%CV) generated as the 

mean of the %CV’s from eight reportable results across two different concentration of 

cytokines in one experiment was 7.1% for IL-8, 10.5% for TNF-α, 6.1% for MCP-1 and 

10.4% for GM-CSF. Inter-assay %CV generated as the mean of the %CV’s from two 

reportable results each for two different concentrations of cytokine across four different 

experiments was 11.6% for IL-8, 15.9% for TNF-α, 12.0% for MCP-1 and 12.6% for GM-

CSF.

2.3 Circadian Phase Markers

Core body temperature (CBT) was measured throughout the protocol via a rectal thermistor 

(Yellow Springs Instruments Inc., Yellow Springs, OH) with temperature values recorded 

every minute. This variable was used for estimation of circadian phases associated with the 

blood samples. In addition, the dim light melatonin onset (DLMO) was used as an additional 

circadian phase marker based on plasma melatonin collected every 30–60 minutes from the 

second baseline wake episode until the end of the study. Melatonin concentration was 

determined by double-antibody radioimmunoassay with the Kennaway G280 antiserum 

(Vaughan, 1993) by a laboratory blind to experimental conditions (Specialty Assay 

Research Core Laboratory, Brigham and Women’s Hospital, Boston, MA). The plasma 

melatonin intra-assay coefficient of variation (%CV) was 10.0% at 1.9 pg/mL and 7.2% at 

21.9 pg/mL, and the interassay %CV was 12.65% at 3.06 pg/mL and 12.12% at 22.36 

pg/mL.

2.4 Data Analysis

Data are expressed as mean ± SEM unless otherwise specified. The first 5 h of data from the 

CR were excluded from analysis to eliminate transitory masking effects from the prior sleep 

episode and posture changes (Brown and Czeisler, 1992). Values greater than 3 standard 

deviations of the mean were removed for each immune factor (Scheer et al., 2010), leading 

to 2.1% loss in total data. The cytokine and chemokine levels were significantly different 

between individuals independent of differences in LPS concentration (p<0.01; one-way 

mixed model analysis; Supplemental Figure 1). Therefore, data were transformed to Z-

scores and percentage-of-mean as appropriate for the type of analysis. Transformed values 

were not different between individuals (Supplemental Figure 1). While there was a 

significant effect of LPS concentration on the absolute levels of cytokine and chemokine 

expression (p<0.01; one-way mixed model analysis; Supplemental Figure 2), the 

transformed data did not show a significant dose response (Supplemental Figure 2) therefore 

subsequent analysis was performed on pooled data.
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Two different types of analyses were performed to assess (i) the endogenous circadian 

regulation and (ii) the differences in immune response under standard sleep-wake/baseline 

and CR conditions. In both analyses, all individual values were assigned a time relative to 

scheduled wake time for each individual. Values were binned every 4-hours within each 

individual and values from matching bins were averaged across individuals for group 

analyses. For each individual, each cytokine and chemokine value was first transformed to a 

percentage of the mean calculated as the average concentration over the entire 96-h 

collection interval (Scheer et al., 2010). The transformed values were then analyzed 

separately for baseline and constant routine conditions, with data from the first 48 h of the 

96-h profiles as baseline and data from the next 48 h as constant routine. CBT and melatonin 

data were Z-transformed (Chua et al., 2013) before fitting with a single harmonic cosinor 

regression model with one 24-h fundamental component and a linear term [Y= µ + 

A*cos*((2π(x− φ))/24) + ((m*x)+b)] or a dual harmonic cosinor regression model with one 

24-h fundamental component and 12-h harmonic component [Y = µ + (A*cos*((2π(x−φ))/

24)) + (A*cos*((2π(x- φ))/12)) + ((m*x)+b)], where µ = Mesor, A = amplitude, φ = 

acrophase, m= gradient of the linear term, b = vertical intercept of the linear term. The 

regression was considered significant if the amplitude was significantly different from 0. 

Whenever a significant nadir was detected by the regression model then the acrophase time 

was calculated as the peak 12-hours earlier for a single harmonic model or 6-hours earlier 

for a dual harmonic model. A linear component was included in the model to estimate the 

influence of secular changes associated with the CR protocol (e.g., effects of accumulating 

sleep loss, time in semi-recumbent posture, repetitive meals, etc.). Residual error was 

assumed to be independent and to have a normal distribution εi ~ N(0,σ2) (Fortier et al., 

2011). If the linear or harmonic components were not significant, a simpler single harmonic 

cosinor regression model with one 24-h fundamental component was used. Therefore, four 

different regression models were used in total: (i) single harmonic (ii) single harmonic with 

linear component (iii) dual harmonic (iv) dual harmonic with linear component. If multiple 

models were significant or none of the models were significant then the final model was 

selected based on the Akaike Information Criterion results.

Differences in rhythm acrophases and amplitudes between different immune factors using 

values from each individual were assessed using one-way General Linear Model analysis 

followed by Student-Newman-Keuls post-hoc analysis under baseline and CR conditions 

separately. Differences in rhythm acrophases and amplitudes between different immune 

factors using values from group fitted results were assessed using one-way ANOVA 

followed by Student-Newman-Keuls post hoc analysis under baseline and CR conditions 

separately.

To assess the differences in immune response under standard sleep-wake/baseline and CR 

conditions Z-transformed data were subjected to repeated-measures, random intercept two-

way mixed model analysis of variance with restricted maximum likelihood (REML) 

estimates of the variance components. Data were analyzed for the main and interaction 

effects of time awake and behavioral state (baseline and CR).

The estimated circadian phase of the core body temperature minimum (CBTmin) was 

evaluated from data collected during the CR using the previously validated method of fitting 
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a dual-harmonic regression with correlated noise model (Brown and Czeisler, 1992). 

Melatonin phase was assessed as the dim light melatonin onset (DLMOn) defined as the 

clock time at which the melatonin rhythm crossed a threshold value of 25% of the three-

harmonic peak-to-trough fitted amplitude (half the standard amplitude) (Gooley et al., 

2010). The cosinor regression models used to fit the immune data were also applied to core 

body temperature and plasma melatonin. These values were then compared with CBTmin 

and DLMOn assessments derived using validated methods for assessing each of these 

parameters (Brown and Czeisler, 1992; Gooley et al., 2010). Melatonin rhythm acrophases 

derived using the current cosinor regression models and DLMOn values derived using the 

previously validated method were significantly correlated (p<0.01; Pearson r2=0.90) and 

CBT rhythm acrophases derived using the current cosinor regression models and CBTmin 

values derived using the previously validated method were also significantly correlated 

(p<0.01; Pearson r2=0.81). All linear statistical analyses were computed using SAS version 

9.2 (Cary, NC, USA) and all circular statistical analysis used to compute group temporal 

means was computed using R 3.1.0 (2014) with the packages psych and circular. For all 

statistical analyses, significance was set to p<0.05.

3. RESULTS

3.1 Regression model selection

The immune factors IL-8, TNF-α, and MCP-1 were detected in all 13 participants, whereas 

only 8 participants had detectable GM-CSF. Under baseline conditions immune measures 

could not be assessed for two individuals due to missing blood samples. The absolute 

rhythm profiles under standard sleep-wake (48 h) and CR (48 h) conditions are shown in 

Figure 2A–F. The complementary profiles shown in Figure 2G–L were derived from 

transformed data and fitted with cosinor regression models.

In fitting the four regression models described earlier, only a minority (≤ 50%) of individual 

rhythms had improved fits when including the linear component under CR (Percent subjects 

with a significant linear component in the cosinor regression model: MCP-1 30.8%; GM-

CSF 12.5%; IL-8 23.1%; TNF-α 38.5%; Supplemental Table 1) and therefore the linear 

component was removed and only the single or dual harmonic cosinor regression models 

used. Under baseline conditions, the majority of individual rhythms were best modeled with 

a dual harmonic regression (Percent subjects: MCP-1 63.6%; GM-CSF 50.0%; IL-8 54.6%; 

TNF-α 63.6%; Supplemental Table 1). In contrast, under CR conditions, the majority of the 

individual rhythms for immune factors except TNF-α were best modeled with a single 

harmonic regression (MCP-1 61.5%; GM-CSF 62.5%; IL-8 69.2%; TNF-α 38.5%; 

Supplemental Table 1). Therefore, the dual harmonic regression model was used for all 

individuals for all measures under baseline conditions, and the single harmonic regression 

used under CR conditions, except for TNF-α which was modeled with dual harmonic 

regression under both baseline and CR conditions.

The immune rhythm acrophases and amplitudes from individual profiles, the group mean 

values (averaged across values derived from individual profiles) and group fitted values 

(regression models applied to the cytokine and chemokine group average profiles) are 

shown under baseline conditions in Table 1 and under CR conditions in Table 2.
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3.2 Daily Rhythms in LPS induced cytokine and chemokine production under Baseline 
Conditions with Standard Sleep-Wake Schedules

Under baseline conditions with standard sleep-wake schedules there were significant 24-h 

rhythms observed in group fitted data in MCP-1 (p<0.01), GM-CSF and IL-8 (p<0.05) but 

not in TNF-α (Figure 2G–J; Table 1). Although the individual rhythms were best modeled 

with dual harmonic regression, the group fitted data for MCP-1 and GM-CSF were best 

modeled using single harmonic cosinor regression (Figure 2G and H) whereas IL-8 was best 

modeled using a dual harmonic cosinor regression with two distinct peaks (Figure 2I). 

MCP-1 and GM-CSF peaked at night within a few hours after bedtime at ~0200 h and 

~2330 h respectively (Figure 2G and H) whereas IL-8, peaked twice with similar 

amplitudes, the first one a few hours after wake at ~1000 h and a second peak a few hours 

before bedtime at ~2100 h (Figure 2I). The nighttime acrophases of MCP-1 and GM-CSF 

were significantly different than the daytime acrophase of IL-8 (p<0.01) but MCP-1 and 

GM-CSF acrophases were not significantly different between each other (Figure 3A and 

Table 1). The rhythm amplitudes were not different between the different immune factors 

(p>0.05) (Table 1). Regression analysis restricted to samples stimulated with the same dose 

of 100 µg/ml (n = 8) showed similar rhythm characteristics (Supplemental Figure 3) as the 

rhythm profiles generated using all available data.

At the individual level, the proportion of participants who exhibited significant 24-h rhythms 

under baseline standard sleep-wake conditions were 45% for MCP-1, 100% for GM-CSF, 

36% for IL-8 and 27% for TNF-α (Table 1). Although most individuals had nocturnal peaks 

during sleep some individuals exhibited peaks a few hours before and after the sleep episode 

(Figure 3A and Table 1). In contrast to group fitted results, individual acrophase times and 

amplitudes revealed significant differences in amplitudes (p<0.01) but not in acrophase 

times (p>0.05) between immune parameters on average (Table 1). MCP-1 amplitude was 

significantly lower than IL-8 and TNF-α but not different as compared to GM-CSF (Table 

1).

3.3 Circadian Rhythm in LPS Induced Cytokine and Chemokine Production

Under CR conditions there were significant 24-h nocturnal rhythms observed in group-fitted 

data in MCP-1, GM-CSF (p <0.01), IL-8 and TNF-α (p<0.05) (Figure 2G–J). MCP-1 and 

GM-CSF were best modeled with a single harmonic cosinor regression (Figure 2G and H) 

and IL-8 and TNF-α were best modeled using a dual harmonic cosinor regression (Figure 2I 

and J). Similar to the baseline condition, both MCP-1 and GM-CSF peaked during the 

biological night at ~0200 h and ~0000 h respectively, but IL-8 and TNF-α both peaked 

during the biological day, both at ~1000 h (Figure 3B and Table 2). The two nighttime 

acrophases were significantly different than the two daytime acrophases (p<0.01) but were 

not within each other (Figure 3B and Table 2). The amplitude of the cytokine rhythms were 

not significantly different. Similar to baseline conditions, regression analysis restricted to 

samples stimulated with the same dose of 100 µg/ml (n = 8) showed similar rhythm 

characteristics (Supplemental Figure 3) as the rhythm profiles generated using all available 

data.
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At the individual level, the proportion of participants who exhibited significant 24-h rhythms 

under constant routine conditions were 69% for MCP-1, 87% for GM-CSF, 46% for IL-8 

and 31% for TNF-α (Table 2). Similar to under baseline conditions, most individuals under 

CR conditions also had nocturnal peaks in LPS induced cytokine and chemokine production 

generally around the time of habitual sleep, although for IL-8 and TNF-α more individuals 

had daytime peaks occurring several hours after wake time (Figure 3B and Table 2). There 

were no significant differences in amplitudes or in acrophase times (p>0.05) between 

immune parameters (Table 2).

3.4 Effects of Sleep and Extended Wake on LPS induced cytokine and chemokine 
production

The prolonged wakefulness of the CR was not associated with a consistent linear change in 

LPS induced cytokine and chemokine production (Figure 2A–D). There was a significant 

main effect of time on MCP-1 (p<0.01) and GM-CSF (p<0.05), under both CR and standard 

sleep-wake conditions (Figure 2A and B), showing a decreasing trend with time under 

baseline conditions but an increasing trend under CR conditions. In addition, there was a 

significant main effect of behavioral state (baseline standard sleep-wake as compared to CR 

and extended wake) on MCP-1 and GM-CSF (p<0.01) with significantly lower levels 

overall during CR (Figure 2A).

4. DISCUSSION

In the current study we used an ex vivo assay to assess the potential for cytokine and 

chemokine production in the presence of the bacterial endotoxin LPS. The results 

demonstrate that the endogenous circadian pacemaker regulates LPS-induced expression of 

the pro-inflammatory cytokines TNF-α and GM-CSF and pro-inflammatory chemokines 

IL-8 and MCP-1 in humans. These rhythms are also apparent under normal sleep-wake 

conditions but behavioral and environmental cycles modulate the expression of the intrinsic 

circadian regulation.

By using the CR protocol, which is designed to remove or uniformly distribute external and 

behavioral influences that may affect the expression of endogenous rhythms (Czeisler and 

Klerman, 1999; Duffy and Dijk, 2002), we demonstrated that LPS induced cytokine and 

chemokine production rhythms are endogenously regulated. These rhythms are therefore not 

merely passive responses to changes in external or behavioral factors such as sleep-wake 

state, feeding/fasting, posture, activity and light but are internally generated by the circadian 

clock.

The extended CR procedure that we used also permits a comparison of rhythms under 

constant versus baseline conditions with standard sleep-wake schedules and identification of 

factors that may have a direct influence of immune rhythm expression. For example, MCP-1 

induction appears suppressed under CR conditions as compared to standard sleep-wake 

conditions, and exhibits a different time course with time awake under the two conditions. 

While MCP-1 induction decreased with time under baseline conditions, MCP-1 induction 

increased with time under CR conditions. It is possible that the difference in time-dependent 

change in MCP-1 induction between CR and baseline conditions may be a time-into-study 

Rahman et al. Page 9

Brain Behav Immun. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



effect instead of time-awake, nonetheless the change was induced by transition from 

baseline to CR conditions, suggesting that behavioral factors including sleep deprivation can 

modulate the rhythms of LPS induced cytokine and chemokine production.

The effects of sleep on the immune system have been examined in several studies although 

the results are not always in agreement. Compared to extended wake, sleep has been 

associated with reduced counts of all lymphocyte subsets at specific times of the day in one 

study (Born et al., 1997), whereas another study reported increased monocyte count (Dinges 

et al., 1994) and a third found no differences in lymphocyte subsets studied under sleep and 

extended wake conditions (Palmblad et al., 1976). Moreover, the effects of sleep deprivation 

are not the same on all cytokines and chemokines (Born et al., 1997).

In addition to the adverse effects of sleep loss on immune function, recurrent circadian 

disruption with minimal sleep loss is associated with markedly altered immune response in 

mice (Brager et al., 2013; Castanon-Cervantes et al., 2010). Animals maintained under 

recurrent circadian disruption have heightened release of pro-inflammatory cytokines and 

four times greater mortality induced by endotoxic LPS challenge. Since the cytokines and 

chemokines studied in the present study have diverse roles in the inflammatory response 

cascade, their temporal relationship -insuring that internal events are timed appropriately 

relatively to each other - is likely functionally important. Internal circadian disruption, 

therefore, may alter this relative coordination and understanding the impact on health will be 

important in future studies.

Under constant conditions, the majority of the individual profiles were significantly modeled 

using a single-harmonic regression analysis rather than a dual-harmonic model, whereas 

under standard sleep-wake conditions majority of the individual profiles were significantly 

rhythmic using a dual-harmonic model with a 12-h component. These results support the 

hypothesis that as yet unidentified external factors induce direct effects on the timing of LPS 

induced cytokine and chemokine production in addition to the endogenous circadian 

regulation, as commonly observed for core body temperature, cortisol and other circadian 

rhythms.

Previous studies suggest that rhythmic changes in cell number may be one of the 

mechanisms controlling the circadian oscillations in cytokine and chemokine rhythms (Born 

et al., 1997). Endogenous glucocorticoid levels may also modulate the daily oscillations in 

chemokine and cytokine expression since glucocorticoid administration attenuates 

proinflammatory cytokine and chemokine expression (Cechin and Buchwald, 2014). The 

aim of the present study was to investigate whether daily rhythms in cytokine and 

chemokine expression are under endogenous regulation. Additional studies are required, 

however, to investigate a causative and mechanistic relationship between glucocorticoids, 

lymphocyte counts and other endocrine and/or molecular signals and daily rhythms in 

immune response.

Studies suggest that indwelling catheters can confound cytokine secretion, but it appears that 

the results vary depending on the type of cytokine studied. For example, IL-6 levels may be 

affected by the use of an indwelling catheter (Haack et al., 2002) whereas TNF-α may not 
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(Haack et al., 2000). In our study, none of the parameters showed a sustained linear increase 

in levels as observed for IL-6 (Haack et al., 2002), even though the same catheter was used 

throughout the sampling interval. Therefore, it is unlikely that the temporal changes seen in 

the current study were substantially affected by the use of indwelling catheters. Cytokine 

secretion may be affected by heparin (Engstad et al., 1997; Patil et al., 2013), but only at 

supra-therapeutic doses (>10 IU/ml) (Hochart et al., 2008) whereas the heparin dose used in 

the present study was 5 IU/ml therefore, it is unlikely that the very low dose of heparin used 

in the current study may have substantially affected the results.

Previous work (De Groote et al., 1992) shows that IL-1β and IL-2, production is generally 

higher if isolated PBMC in vitro LPS stimulation assays are used, whereas IFN-γ and TNF-

α is higher when whole blood stimulation assays are used. Importantly, the change in 

cytokine/chemokine production was in the same direction, with only the absolute levels 

differing, between in vivo and ex vivo assays. The ex vivo approach, however, preserves the 

cell-to-cell interactions and the ratio between concentrations of circulating stimulatory and 

inhibitory mediators, representing the natural in vivo state more closely, unlike the in vitro 

stimulation of isolated PBMCs. Therefore, the cytokine and chemokine production observed 

in the current study is likely a composite of the circadian changes in the production capacity 

of the effector cells, as has been shown previously (Gibbs et al., 2012; Hayashi et al., 2007; 

Keller et al., 2009), and the circadian changes in modulatory influences by other cells and 

cytokines. While the production levels may have been different if isolated effector cells 

were studied, the modulatory influences present in the ex vivo system reflect in vivo 

conditions more closely, however.

In addition, future studies are necessary to investigate the endogenous circadian rhythms in 

basal cytokine and chemokine expression and the putative role of the underlying basal 

rhythms on stimulated response rhythms. Daily oscillations in basal cytokine levels have 

been reported (Born et al., 1997; Young et al., 1995), but elicited responses as studied here 

may be more indicative of disease risk. The current results form the foundation of ongoing 

studies that seek to address whether shift work disease may be predicted and ameliorated by 

surveillance of these responses in peripheral blood, since such responses are dramatically 

enhanced following simulated shift work in animal studies (Castanon-Cervantes et al., 

2010). Thus our measurement of LPS-elicited responses, rather than basal variation, 

represent a strength of our study.

Under standard sleep-wake conditions, significant daily rhythms have been reported for IL-8 

(Hermann et al., 2006) and TNF-α (Straub and Cutolo, 2007) in response to LPS 

stimulation. Significant daily rhythms in basal non-stimulated levels have been reported also 

for TNF-α, and IL-6 (Vgontzas et al., 2003) and GM-CSF (Young et al., 1995). Significant 

daily oscillations have been detected in mice in response to LPS stimulation using an ex vivo 

protocol similar to the one used in the present study in IL-6, MCP-1 and TNF-α but not 

GM-CSF (Gibbs et al., 2012). In contrast to previous reports of daily oscillations in TNF-α, 

we were unable to detect a significant 24-h rhythm in TNF-α under standard sleep-wake 

conditions but did observe significant circadian oscillations in TNF-α under constant 

conditions. Differences in sampling frequency, method of LPS stimulation, and 

rhythmometric analysis may have contributed to this difference. Moreover, TNF-α was best 
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modeled using dual-harmonic regression even under constant conditions suggesting that, 

besides the circadian rhythm, additional factors such as sleep-wake patterns, meal timing 

and activity levels may influence TNF-α, which can vary significantly between studies.

Our study shows that human immune function is regulated, at least in part, by the 

endogenous circadian system and that there is considerable inter-individual variation in 

rhythm characteristics and internal phase relationships. The inter-individual variations likely 

account for the large differences between the group-mean acrophase and amplitude values 

and the acrophase and amplitude values derived from the group fitted profile, under both the 

CR and baseline conditions with standard sleep-wake schedules. These variations have 

potentially important consequences for therapeutic interventions that may be optimized by 

incorporating an individuals’ circadian phase into treatment timing.

The large inter-individual differences observed in the current study is in agreement with a 

previous report of large inter-individual differences in rhythm characteristics in lipid profiles 

(Chua et al., 2013).Using a constant routine protocol similar to the one used in the current 

study, they showed that 13% of the 263 lipids assayed had circadian variation, but only 

~20% of those rhythmic lipids were also rhythmic amongst all individuals, and the timing of 

lipid rhythms ranged up to 12 h apart between individuals. We see similarly large 

distribution in acrophases and amplitudes of immune parameters and extend the findings to 

differences within the same parameter between standard sleep-wake and constant routine 

conditions. As was suggested in the case of the lipid profile variances (Chua et al., 2013) it 

is possible that individuals have different circadian metabolic and immunologic phenotypes, 

and as our results would suggest the impact of external influences such as sleep-wake and 

feeding behavior is likely highly variable between individuals. These differences may 

explain, in part, the differences in metabolic and immunologic outcomes between 

individuals when exposed to the same sleep and circadian challenges such as shiftwork.

Additional studies are warranted to examine whether other cytokines and chemokines are 

also under circadian regulation, and whether disruption of these rhythms functionally 

impairs immune and inflammatory responses. Functional genomics and proteomics studies 

conducted under similar conditions could also investigate the temporal regulation of innate 

immune response at the molecular level and whether the underlying temporal orchestration 

is perturbed in pathological states strongly associated with inflammation such as asthma and 

cardiovascular disease, and in turn may help identify potential therapeutic targets, including 

appropriately timed chronotherapy, for these chronic conditions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• We assessed the endogenous circadian control and environmental and 

behavioral influences on ex-vivo LPS stimulation of human whole blood.

• Significant 24-hour rhythms were observed under standard sleep-wake 

conditions in MCP-1, GM-CSF and IL-8 but not TNF-α

• Significant 24-hour rhythms were observed in all four immune factors under 

constant routine conditions.

• The rhythm amplitudes, expressed as a percentage of mean, were comparable 

between immune factors and across conditions.

• The acrophase time (time of the fitted peak) was different between immune 

factors, and included daytime and nighttime peaks and changes across 

behavioral conditions.
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Figure 1. Study protocol to assess daily rhythms under baseline (standard sleep-wake schedules) 
conditions and endogenous circadian rhythmicity of innate immune response in humans
This is an example protocol for a participant with a bedtime of midnight. Participants were 

enrolled in a 7-day (n = 3; A) or 9-day (n = 10; B) inpatient protocol in an environment free 

of time cues. White bars indicate exposure to ambient room light (~90 lux) and gray bars 

indicate exposure to dim ambient light (<3 lux). Black bars show scheduled sleep episodes 

in darkness. The schedule consisted of a 3-day baseline including admission (ADM), with 

8:16 h sleep:wake cycle (based on average sleep times in the 7 days prior to study entry) and 
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four meals per 24-hours (filled circles); an initial 40 h (A) or 50 h and 10 min (B) constant 

routine under dim light, semi-recumbent constant posture, forced wakefulness, and hourly 

space isocaloric meals (filled circles), a 16 h light exposure day (gray hatched bar); followed 

by 8 h sleep and then discharge (A) or a second 29 h 50 min constant routine followed by an 

8 h sleep episode and then discharge (D/C) (B). In the present study data were analyzed 

from the baseline and initial CR components only using blood samples collected at 4 h 

intervals shown by the red lines.
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Figure 2. Daily baseline and circadian rhythms in LPS induced cytokine and chemokine 
production in humans
Group data mean ± SEM (left panel) and group-mean fitted cosinor functions under baseline 

conditions with standard sleep-wake schedules (dashed lines) and constant conditions (solid 

lines) of MCP-1 (A, G), GM-CSF (B, D), IL-8 (C, I), TNF-α (D, J), plasma melatonin (E, 

K) and core body temperature (CBT; F, L). Non-significant regression fits are marked in 

gray lines. Corresponding clock times are reported relative to scheduled wake. Time = 0 

relative to scheduled wake was defined as 0730 h based on the group mean (mean ± SD: 
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0727 ± 0056 h) for illustrative purposes. Hashed gray bars represent group mean scheduled 

sleep times. Throughout the constant routine participants remained awake.
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Figure 3. Relative phase distribution of endogenous circadian phase markers and immune 
parameters
Transformed individual and group-mean data were fitted with single or dual harmonic 

cosinor regression to compute the acrophase of the rhythms under baseline standard sleep-

wake (baseline; A) and constant routine conditions (B). Group mean (± SEM) sleep-wake 

times are represented by the gray bars. Group-fitted immune parameter acrophases, DLMOn 

and CBTmin from group-mean data are shown as solid symbols for significant results (▲) or 

empty symbols for non significant results (Δ) ± SEM. Individual immune rhythm acrophases 

are shown as filled white-circles (○). Individual values were assigned a time relative to 
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scheduled wake time for each individual. Clock times are reported relative to scheduled 

wake. Time = 0 relative to scheduled wake was defined as 0730 h based on the group mean 

(mean ± SD: 0727 ± 0056 h).
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