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Abstract

Neuronal development requires a complex choreography of transcriptional decisions to obtain 

specific cellular identities. Realizing the ultimate goal of identifying genome-wide signatures that 

define and drive specific neuronal fates has been hampered by enormous complexity in both time 

and space during development. Here, we have paired high-throughput purification of pyramidal 

neuron subclasses with deep profiling of spatiotemporal transcriptional dynamics during 

corticogenesis to resolve lineage choice decisions. We identified numerous features ranging from 

spatial and temporal usage of alternative mRNA isoforms and promoters to a host of mRNA genes 

modulated during fate specification. Notably, we uncovered numerous long non-coding RNAs 

with restricted temporal and cell type specific expression. To facilitate future exploration, we 

provide an interactive online database to enable multidimensional data mining and dissemination. 

This multi-faceted study generates a powerful resource and informs understanding of the 

transcriptional regulation underlying pyramidal neuron diversity in the neocortex.
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Introduction

The myriad and complexity of neuronal networks present in the mammalian brain provide 

the basis for critical faculties such as sensory perception, motor behavior, and cognition. The 

neocortex in particular plays a critical role in computing higher-order brain functions, which 

are executed by an extreme diversity of cortical neuronal classes. Decoding the origin of this 

variety of neurons and defining the rules that shape and maintain neuronal diversity in the 

neocortex, and in the CNS more broadly, holds great potential but is still an unmet goal.

Addressing this challenge requires both a high-throughput neuronal subclass purification 

method and an integrative approach that considers dynamic, multilayered transcriptional 

regulation during the acquisition of distinct neuronal identities. Similarly, combinatorial 

profiling of multiple neuronal subtypes obtained from the same tissue may be required to 

understand cross-regulatory events that shape circuits.

A variety of genetic and surgical approaches have been used to attempt to resolve 

neocortical complexity and characterize distinct neuronal cell types (Arlotta et al., 2005; 

Ayoub et al., 2011; Belgard et al., 2011; Doyle et al., 2008; Fertuzinhos et al., 2014; Fishell 

and Heintz, 2013; Heiman et al., 2008; Lobo et al., 2006; Molyneaux et al., 2009; Sugino et 

al., 2005). However, it remains challenging to mark and purify defined neuronal subclasses, 

especially during developmental timelines, where the specificity of individual markers is 

dynamic, and in a scalable manner that enables high-throughput molecular profiling across 

many populations. We present here a broadly applicable approach leveraging a combination 

of experimental and systems-wide analyses to address this critical need. Specifically, we 

have incorporated the knowledge gained from other approaches to enable combinatorial 

immunodetection of nuclear markers to resolve neocortical pyramidal neuron populations 

and their temporal changes during cortical development.

We sought to investigate the transcriptome of three different subpopulations of cortical 

pyramidal neurons, selected for their diversity of targets, their importance for cortical 

function, and their direct clinical relevance. We profiled subcerebral projection neurons 

(ScPN), which include the clinically significant corticospinal motor neurons (CSMN), 

callosal projection neurons (CPN), and corticothalamic projection neurons (CThPN). To 

characterize these subpopulations throughout development, we used immunostaining against 

unique combinations of transcription factors for fluorescence-activated cell sorting (FACS) 

(Hrvatin et al., 2014). Using this approach we identified molecular signatures that 

distinguish between populations. In fact, we could discriminate among pyramidal neuron 

types, for the first time, at the height of key decisions in fate specification, migration, and 

axon targeting.

To comprehensively and systematically characterize the molecular signatures underlying 

neuronal diversity we performed whole transcriptome analyses by massively parallel RNA 

sequencing. In total, we identified 8864 genes with significant differential expression, 812 

alternative promoter switches, 1068 changes in protein-coding sequences, and 1181 genes 

that demonstrate significant shifts in their relative isoform abundance during corticogenesis. 

Increasing evidence suggests that long noncoding RNAs (lncRNAs) play essential roles in 
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the specification and maintenance of cell identity (Dinger et al., 2008; Grote et al., 2013; 

Guttman et al., 2011; Mercer and Mattick, 2013; Mercer et al., 2008; Ponting et al., 2009; 

Ramos et al., 2013; Sauvageau et al., 2013). Accordingly, we assembled 5195 lncRNAs 

from these data, 806 of which exhibit differential expression across neuronal types over 

time.

Given the complexity and depth of this resource, we have developed an intuitive web-based 

utility to facilitate data dissemination (http://rinnlab.rc.fas.harvard.edu/pyramidal/), 

exploration, and future investigation, enabling researchers to navigate the full extent of the 

dataset. Specifically, this utility allows researchers to dynamically explore groups of genes 

meeting user defined expression criteria, examine upstream regulatory mechanisms, identify 

expression data at the isoform level, and examine processed RNA-seq reads to identify new 

exons and promoters for genes of interest. The data are integrated with other online 

resources such as the Allen Brain Atlas and the UCSC Genome Browser to facilitate cross-

platform discovery.

Collectively, this work provides an approach to purify multiple classes of neurons from the 

same tissue without the need for genetic labeling. The labeling and purification procedure is 

compatible with high throughput RNA sequencing, and it enabled the generation of a deep 

resource of global transcriptional controls over the developmental divergence of individual 

classes of pyramidal neurons. The scalability of the methods and independence from genetic 

labels makes this platform universally applicable to transcriptional and epigenetic profiling 

and amenable to the screening of primary classes of neurons from the human brain.

Results

Scalable purification of molecularly defined neuronal populations

To investigate the transcriptional dynamics of neuronal fate decisions, we chose to focus on 

pyramidal neurons of the neocortex, a region of the brain with extraordinary neuronal 

diversity that remains underexplored at the molecular level. We purified and profiled three 

classes of pyramidal neurons based on the differential expression of a combination of three 

transcription factors: BCL11B (CTIP2), TLE4, and SATB2 (Figure 1A). Layer V 

subcerebral projection neurons, which include corticospinal motor neurons, are identified by 

their high BCL11B, low TLE4, and low SATB2 expression (Molyneaux et al., 2007). 

Corticothalamic projection neurons and subplate neurons (hereafter collectively referred to 

as CThPN) are identified by high TLE4 (Allen and Lobe, 1999), moderate BCL11B (Arlotta 

et al., 2005), and low SATB2 expression. Interhemispheric callosal projection neurons are 

identified by high SATB2, absent BCL11B, and absent TLE4 expression (Alcamo et al., 

2008; Arlotta et al., 2005). Cortical tissue was dissociated to a single cell suspension, and 

cells were fixed with paraformaldehyde and concomitantly permeabilized by saponin prior 

to immunocytochemistry with chosen combinations of antibodies for FACS (Figure 1B-F; 

Experimental Methods).

Despite changes in marker gene expression at different stages of development, we were able 

to use our labeling and FACS strategy to reliably distinguish between the lineages of ScPN, 

CPN and CThPN as early as E15.5 (Figure 1B-E). For example, even though BCL11B 
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functions as an ideal discriminating marker later in development, BCL11B expression at 

E15.5 is roughly equivalent between subcerebral projection neurons and corticothalamic 

projection neurons, precluding their distinction. However, differing levels of TLE4 can 

distinguish the two cell types at this stage. As a result, over time, we can detect changes in 

levels of expression of each transcription factor and therefore distinguish these three 

neuronal classes as they diverge from each other during development (FACS plots; Figure 

1B-1E). We can also detect temporal changes in the relative abundance of each cell type. 

For example, from E15.5 to P1 CPN increase from 5.4% of total cells to 26%, ScPN 

decrease from 6% to 1.1%, and CThPN remain constant at approximately 6%.

To understand gene-regulatory changes in these populations we performed systematic and 

comprehensive whole transcriptome analyses. Briefly, we generated RNA-seq libraries with 

two biological replicates for each neuronal type and across several developmental stages 

(E15.5, E16.5, E18.5, and P1). Despite fixation and reverse crosslinking, we obtained high-

quality total RNA from all purified cell populations with RNA integrity numbers (RIN) 

ranging from 6.4 to 9 (median of 7.1). Approximately 100,000 cells were required to obtain 

200 nanograms of total RNA, which served as input for the standard Illumina TruSeq RNA-

seq library preparation. Libraries were sequenced to a mean of over 100 million mapped 100 

base pair paired-end reads per replicate (Table S1; Figure S1A-C). Merged assemblies were 

generated as described in (Trapnell et al., 2012b) and detailed in Methods, and used as input 

for our previously-described long noncoding RNA (lncRNA) identification pipeline (Cabili 

et al., 2011). LncRNAs with a minimum of 3× coverage were appended to the list of known 

UCSC protein-coding genes to establish a suitable reference transcriptome for isoform-level 

quantification and differential expression testing with Cuffdiff2 (Trapnell et al., 2012a).

We first analyzed the sorted markers in our whole transcriptome analyses and find they are 

in the expected populations. As anticipated, the expression profiles of Bcl11b, Satb2, and 

Tle4 were consistent with known patterns of expression in vivo (Figure 1G). This specificity 

extended more broadly to a cohort of 150 genes known to have varying degrees of subtype 

specific expression during development (Figure 1H and Table S2) (Arlotta et al., 2005; 

Hoerder-Suabedissen and Molnar, 2013; Lein et al., 2007; Lodato et al., 2014; Molyneaux et 

al., 2007; 2009) for which we now provide detailed profiles of temporal changes in 

expression. Notably, most genes that distinguish between ScPN and CThPN are not 

expressed until E16.5.

To evaluate the purity of the sorted populations, we investigated genes with known 

expression in interneurons, oligodendryoctes, astrocytes, and endothelial cells (e.g. Dlx1, 

Gad1, Gad2, Sox10, Gfap, and Vwf; Figure S1D-H) that normally would not be expressed 

in these populations. We observed they were not expressed in most samples, indicating that 

these populations have minimal contamination with other cell types. The singular exception 

was the CPN samples from E15.5 where the FACS plots demonstrated that the Satb2-high 

population was not a clearly distinct population for gating (Figure 1B, CPN gate) and had 

low yet detectable levels of expression of Dlx1, Gad1, Gad2, Sst, and Lhx6, indicating 

possible contamination from migrating interneurons (Figure S1D-E). Intriguingly, we found 

that the P1 CThPN population also expressed somatostatin (Sst), a gene whose expression is 

normally associated with subpopulations of interneurons (Kawaguchi and Kubota, 1997). 

Molyneaux et al. Page 4

Neuron. Author manuscript; available in PMC 2016 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



However, in contrast to the E15.5 CPN samples, other known markers of interneurons were 

not expressed in P1 CThPN at levels strikingly different from other conditions (e.g. Dlx1, 

Gad1, Gad2, Slc32a1; Figure S1D-E). This observation indicates that Sst expression might 

not be the result of contamination by interneurons but that this gene is differentially 

expressed in CThPN or a subpopulation of CThPN. Together, these data demonstrate that 

FACS purification with antibodies to cell-type-specific transcription factors can be utilized 

to obtain high-quality RNA to resolve transcriptional dynamics.

Identification of genes contributing to class-specific neuronal identity

We first sought to identify genes with significant differences in gene-level expression over 

time or between subtypes, and used these expression estimates to identify clusters of 

meaningful expression patterns. Cuffdiff2 was used to identify 8864 genes (8058 protein-

coding and 806 lncRNAs) with significant (q<0.0004; Cuffdiff2 test) differential expression 

between cell types and developmental stages. Examining all pair-wise differences between 

conditions, we can describe the set of all genes that change during both neuronal 

differentiation over time and subtype specification during corticogenesis. These 8864 genes 

represent a comprehensive list of PolII transcribed elements that significantly distinguish 

these neuronal populations during cortical development and were utilized in select 

downstream analyses to investigate the dynamics of gene expression.

To disentangle gene expression changes that correlate with general neuronal maturation 

from those that correlate with cell type specification, we performed principal component 

analysis (PCA) independently on the significant protein-coding genes and lncRNAs. PCA 

on the protein-coding genes revealed that neuronal maturation over embryonic time was a 

greater source of variability than neuronal subtype differentiation (Figure S2A). In contrast, 

PCA on significant lncRNAs identified principal components that were mixed for both 

temporal and neuronal cell-type-specific contexts (Figure S2B).

To identify novel marker genes that appropriately distinguish between these three neuronal 

subtypes and might play functional roles in their development and function, we sought to 

identify those genes that exhibit the highest degree of cell type specificity. To this end, we 

ranked all significantly differentially expressed genes using a custom similarity score based 

on the Jensen-Shannon distance between the gene’s normalized expression and an ideal gene 

with uniform expression for a given cell type across time (Methods). For each cell type, the 

top 25 most specific genes that meet this criteria are presented in Figure 2A. As anticipated, 

several genes with previously described expression in each cell type were identified, 

including Lhx2, Cux1, and Cux2 for CPN (Bulchand et al., 2003; Nieto et al., 2004), Oma1 

and 6430573F11Rik for ScPN (Arlotta et al., 2005), and Tle4 and Ngfr in the 

corticothalamic/subplate population (Allen and Lobe, 1999; Allendoerfer et al., 1990). In 

addition to previously known markers, we identified many new genes, including lncRNAs 

that have not previously been described as being specifically expressed within these three 

neuronal populations. In situ hybridization for twelve such genes confirmed highly restricted 

patterns of expression in the developing cortex consistent with their RNA-seq expression 

profiles (Figure S3A-L). For example, RNA-seq data reveals that linc-Cyp7b1-3 is 

expressed in ScPN, and in situ hybridization demonstrates expression restricted to a subset 
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of layer V cells, consistent with restriction to ScPN (Figure S3J). Together these results 

suggest that many novel lncRNAs identified have consistent expression patterns in vivo.

We sought to obtain an unbiased view of the various expression profiles used during 

specification and maturation of these cell types to begin to discern patterns of co-regulation. 

We distilled the significant gene expression profiles into 20 distinct patterns of gene 

expression using nearest-neighbor agglomerative graph clustering on cosine similarities 

(Table S3; see Experimental Procedures). The resulting clusters were manually partitioned 

into five distinct groups: three groups of “class specific signature clusters” (CPN, ScPN, and 

CThPN); one group of “mixed-cell type” clusters whose genes demonstrate expression in 

only two cell types (i.e. corticofugal, which includes ScPN and CThPN); and one group of 

clusters whose genes demonstrate consistent expression between all cell types, either 

increasing or decreasing over time (Figure 2B). Genes within the subclass-signature clusters 

represent likely candidates that may contribute to neuronal cell type specification or subtype 

specific activities, while those genes in the latter clusters are most likely associated with 

broader neuronal differentiation processes shared among distinct neuronal cell types.

The organization of these data into clusters of similarly regulated genes vastly expands upon 

the list of known cortical neuron subtype specific genes. For example, cluster 11 contains 

Bcl11b (Ctip2), which plays a key role in mediating ScPN axonal projections to the spinal 

cord (Arlotta et al., 2005). Bcl11b shares a similar expression profile with 218 other genes 

within cluster 11 demonstrating elevated expression in ScPN from the earliest stages of 

development. Cluster 16 contains the known ScPN genes Crim1, Crym, and Diap3 (Arlotta 

et al., 2005) as well as 743 other genes with subcerebral specific profiles that increase in 

expression during development. Each of these clusters contains both lncRNAs and protein-

coding genes (Figure 2B; pie chart inlays).

In order to understand the relative contribution of lncRNAs and protein-coding transcripts to 

cell type specificity, we compared a calculated maximum specificity score (Cabili et al., 

2011) for protein-coding genes and lncRNAs across all three cell types at each time point. 

Given the complexity of comparing specificities when lncRNAs as a population are 

expressed at significantly lower levels than protein-coding genes [Figure 2C; (Cabili et al., 

2011)], we examined specificity scores using two different methods to correct for the 

confounding influence of expression level.

First, we resampled protein-coding genes drawn from the learned empirical distribution of 

lncRNA maximum FPKM values for each time point. For each of the 1000 samples (Figure 

2D, black lines) we performed a Kolmogorov-Smirnov (K-S) test between the cumulative 

densities of the lncRNA maximum specificity scores (Figure 2D, red lines) and the scores 

for the resampled protein-coding genes. Next, to more appropriately model cell type 

specificity as a continuous function of expression levels, a generalized additive model 

(GAM) was fit across all genes with maximum specificity as the response variable and 

maximum FPKM expression, cell type, and developmental time as explanatory variables 

(Figure 2F; Experimental Procedures).
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We observed that expression level accounts for the majority of variation in cell type 

specificity in our data (Figure 2F). While lncRNAs were slightly more cell-type-specific 

than protein-coding genes (Figure 2D & 2E, by K-S test >97% of the resampled specificity 

distributions are different for all time points, p<0.01; Figure 2F & 2G, by GAM p<3.2e−06, 

Pr(<|t|)), the magnitude of the difference is small. Interestingly, we also observed a 

significant increase (p<0.00015; Pr(<|t|)) in specificity for both lncRNAs and protein-coding 

genes over the course of cortical neuron development (Figure 2G; second panel), consistent 

with increased transcriptional divergence between neuronal cell types over developmental 

time. Together, these data indicate that lncRNAs have a small, statistically significant 

increase in specificity after correcting for expression; this difference is small and its 

biological value hard to define.

Transcriptional dynamics of lncRNAs

Our data provide a context in which to examine the relative contributions of specific 

lncRNAs to neuronal cell-type identity, as opposed to previously recognized tissue-level 

differences. We decided to examine in more detail the lncRNAs that were identified in these 

neurons. We assembled a total of 5195 lncRNA genes from our RNA-seq data, 1136 of 

which represent novel gene loci compared to the UCSC mm9 reference transcriptome 

(Figure 3A, detailed in Experimental Procedures). In addition, we identified 2978 known 

lncRNA gene loci, and 512 novel isoforms of known lncRNA genes from our data (Figure 

3A). We assembled 500 lncRNAs characterized as antisense to a known gene. However, we 

chose to remove these antisense lncRNAs from our quantification and differential 

expression assays since overlapping protein-coding gene expression would confound 

accurate expression estimates from un-stranded libraries.

We observed 806 lncRNAs that exhibit significant (q<0.0004; Cuffdiff2) changes in 

expression over time or between cell types (Figure 3B). Of the 806 significant lncRNAs, 

449 lncRNAs (55.7%; 135 CPN, 180 ScPN, 134 CThPN) are assigned to cell-type signature 

clusters, while 259 lncRNAs (32.1%) are associated with cell-type independent clusters. The 

remaining 87 lncRNAs (10.8%) can be found in the mixed cell-type clusters. The bulk of the 

significant lncRNAs (688; 85.4%) are intergenic to known genes, and the remaining 118 

(14.6%) share a bidirectional promoter with a known protein-coding gene.

We next assessed the specificity of our discovered lncRNAs for expression within the brain 

relative to other tissues. We quantified the expression of the 806 significant lncRNAs across 

a panel of 29 publicly available RNA-seq datasets (detailed in Experimental Procedures). 

49.4% of significant lncRNAs (398/806) were detected at FPKM > 2 in at least one of the 

tissues sampled. As expected, the number of tissues in which a given significant lncRNA 

was expressed with an FPKM > 2 (Figure 3C) was dramatically lower (mean 2.7; median 0), 

compared to the counts for significant protein-coding genes (mean 16.3; median 19).

We next asked whether we could identify any significantly regulated lncRNAs with 

potential human syntenic equivalents. 175 (21.7%) of the 806 significant lncRNAs have an 

identifiable syntenic human equivalent (Table S4), as defined by the presence of a 

transcribed element within the same syntenic region in the human genome (hg19; 

TransMap; detailed in Experimental Procedures). This fraction is consistent with previous 
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observations of the lincRNAs with putative human orthology (Cabili et al., 2011). 

Interestingly, despite syntenic transcription, these particular lncRNAs do not demonstrate 

any significant difference in cell type specificity within our cortical differentiation dataset 

relative to lncRNAs with no discernable human ortholog (Figure 3D).

Many of the identified lncRNAs could be used as neuron type specific markers for each 

population. For each neuronal cell type, we observed several lncRNAs with dynamic and 

specific expression. For example linc-Cyp7b1-3 is a multi-exonic intergenic lncRNA 

expressed from chromosome 3 that displays a high degree of cell type specificity for ScPN 

(Figures 3E and S3J). This lncRNA has a PhyloCSF score of −30372, indicating a very low 

probability of being a protein-coding gene. Other lncRNAs, including linc-Phf17-2 

(PhyloCSF Score −15093) and linc-1700066M21Rik-1 (PhyloCSF Score −30981), 

demonstrate remarkable cell type specificity for either CThPN or CPN, respectively (Figures 

3F-G). These few examples highlight the diversity of a large set of cell-type-specific 

lncRNAs and suggest that some lncRNAs could be used to classify neuronal subtypes during 

cortical development.

Neuronal subtype specific use of gene pathway components

We next analyzed our resource for gene sets or pathways that are differentially regulated in 

each cell type. We first conducted a Gene Ontology enrichment analysis using the lists of 

genes differentially expressed between any two neuron types at P1 (5% FDR) and 

additionally filtered by a maximum specificity score. Reactome gene sets [C2 reactome; 

MSigDB; (Subramanian et al., 2005)] were tested for enrichment using a hypergeometric 

test. The list of significant gene sets was fairly consistent between the three cell types (not 

shown), which is expected given that current annotations only cover broad processes of 

cellular development and function. We noticed however, that for many of the common gene 

sets, the individual genes driving these signatures were differentially expressed between 

class and time.

We therefore devised a different approach to identify genes that share similar curated 

annotations but are uniquely expressed in a given cell class. To achieve this, all genes were 

rank-ordered by their maximum specificity for any of the three neuronal populations at P1 

and filtered for a minimum FPKM expression level of 2. The ranked list was used as input 

for a pre-ranked Gene Set Enrichment Analysis [GSEA; (Subramanian et al., 2005)] against 

the collection of Reactome gene sets (Figure 4A; C2 Reactome v4.0; MSigDB).

We observed several pathways that exhibited significant differential usage of genes across 

individual neuronal classes including gene sets containing cell surface receptors, potassium 

channels, and various components of the extracellular matrix. Specifically, the top four most 

significant Reactome gene sets involve G-protein coupled receptor (GPCR) signaling 

molecules including both receptors and ligands, as well as genes involved in specific 

downstream signaling cascades (Figure 4B).

To further explore the specific use of GPCR receptor classes across our three cell types, we 

generated gene sets from the curated lists of seven transmembrane (7TM) receptors from the 

IUPHAR database of receptors and ion channels (Sharman et al., 2012). We identified a 
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cohort of metabotropic glutamate receptors that are differentially used by cortical neuron 

subtypes including Grm1 and Grm4 (specific to CThPN), Grm2 (specific to CPN), Grm3 

(specific to corticofugal), and Grm5, Grm7, and Grm8 with shared expression in both CPN 

and ScPN. In contrast, expression of the two GABAB receptors Gabbr1 and Gabbr2 

remained consistent across all three cell types. Interestingly, we also observed a significant 

differential usage of several other 7TM receptor classes including specific expression of 

several 5-HT (serotonin) receptors amongst the corticofugal cell types, and highly specific 

expression of the adrenoreceptors including Adra2c in the CPN, Adrb1 in ScPN, and Adra1b 

and Adra2a in CThPN. In addition, we also identified a number of orphan GPCRs with 

specific subtype expression including Gpr158 (CPN), Opn3 and Gpr176 (ScPN), as well as 

Gpr3, Gpr22, and Gpr39 (CThPN).

We identified several other gene sets with a significant enrichment for cell-type-specific 

genes including a set containing axon guidance molecules. Analysis of a manually curated 

set of known cell surface ligands and receptors with demonstrated roles in axonal guidance 

revealed the different codes of related molecules expressed by each neuronal subtype during 

circuit formation (Figure 4C). Importantly, this degree of specificity is only observed for a 

select few gene sets while the majority, including many genes involved in basal metabolic 

processes, are expressed at common levels (Figure 4D). These results are consistent with a 

previous study that broadly suggested that cell surface proteins greatly contribute to the 

diversity of CNS cell types (Doyle et al., 2008). However, here we provide a high-resolution 

characterization of the expression of distinct subsets of genes within broader gene sets 

otherwise shared by closely related cortical projection neuron subtypes that begins to 

describe subtle differences between these classes and their dynamic changes during 

development.

Isoform-level resolution of transcriptional dynamics during corticogenesis

The high resolution and depth of sequencing within our resource allows us to investigate 

additional aspects of transcriptional regulation such as alternative splicing and alternative 

promoter usage during corticogenesis (Figure 5A) (Trapnell et al., 2012a). We identified 812 

genes that undergo promoter switching, 1068 genes that significantly alter their protein-

coding sequence, and 1181 genes that demonstrate significant shifts in their relative isoform 

abundance. Interestingly, 597 of these genes with an alternative regulatory event 

demonstrate transcript-level regulation without significant change in overall gene expression 

(Figure 5B). Of these genes, 371 (31.4% of isoform switching genes) represented significant 

alternative isoform usage, 296 (27.7% of CDS switching genes) demonstrated a significant 

change in CDS, and 194 (23.9% of promoter switching genes) demonstrated alternative 

promoter usage during corticogenesis (Table S5).

Several genes provide compelling examples of how interpretations of gene-level significant 

differences would often exclude genes that use RNA processing as an alternative form of 

regulation during cortical development. One example is the anterograde motor protein 

Kif1a, a causal gene of hereditary spastic paraplegia (Klebe et al., 2012), a degenerative 

disease that affects corticospinal motor neurons as well as other ScPN. We observed 

comparable levels of increasing Kif1a expression in each cell type (Figure 5C). However, 
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we found that while two of the alternative isoforms for Kif1a are strongly upregulated over 

time, the expression of one isoform that is missing a cassette exon (uc007cdg.2) drops 

significantly during development. Another example is Lrrtm4, an important regulator of 

synaptic development with highly selective expression in the brain (Siddiqui et al., 2013), 

which exhibits significant antithetical isoform regulation in ScPN and CThPN with one 

isoform increasing in ScPN while another is decreasing in CThPN (Figure 5D). Lastly, 

Rbm7, a putative RNA binding protein (Lubas et al., 2011), appears at the gene level to 

maintain stable expression in all three cell types over time (Figure 5E). However, at the 

isoform level we observe a complete conversion during cortical development from the 

expression of isoform uc009pie.2, which codes for a 265 amino acid protein, to isoform 

uc009pif.2, which includes an alternatively spliced exon with three in frame stop codons that 

results in a truncated peptide (Figure 5F). Rbm7 isoform level differences identified by 

RNA-seq were confirmed by quantitative RT-PCR (Figure 5G). These examples of isoform 

level changes in expression demonstrate the importance of examining the dynamics of the 

transcriptome at the sub-gene level to identify significant differences between the use of 

individual isoform, promoter, and transcription start sites by different neurons.

DeCoN: The Developing Cortical Neuron Subtype Transcriptome Resource

As part of this study, we have created an interactive companion website to facilitate future 

analysis and exploration of these data (http://rinnlab.rc.fas.harvard.edu/pyramidal/). This 

website will enable investigators to visualize, query, and manipulate the extensive 

transcriptome data presented here and serve as a repository for future transcriptomic and 

epigenetic data on cell-type-specific development in the neocortex. At both the gene and 

geneset level, we have provided several web based visualization tools to investigate this 

dataset using all of the analyses described here as well as additional exploratory tools 

including utilities for gene discovery.

When possible, these data are integrated with existing data from various external sources 

including Allen Brain Atlas in situ hybridization data (Lein et al., 2007) and processed 

RNA-seq reads via tracks in the UCSC Genome Browser to facilitate a thorough exploration 

of the data (Raney et al., 2013). The experimental methodology, rich data resource, and 

user-friendly interface for analysis at the gene and system levels provide a critical platform 

for understanding the genome-wide transcriptional dynamics of neuronal differentiation.

Discussion

To begin to characterize the transcriptional events responsible for the establishment of the 

neuronal diversity of the neocortex in greater detail, we developed a high throughput 

experimental method, combined with massively parallel RNA sequencing, and robust 

systems-level analyses to characterize the transcriptional dynamics of three neuronal 

populations during development. We built an interactive platform (DeCoN: The Developing 

Cortical Neuron Transcriptome Resource) to enable multidimensional data mining, 

exploration, and dissemination that is scalable and designed to integrate future data on 

additional neuronal classes and different species.
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High throughput isolation of neuronal subtypes

A key feature of the CNS is the incredible diversity of cell types. Antibody based 

discrimination of distinct cell types has enabled high throughput study in the immune and 

hematopoietic systems. Similar methods are lacking for parsing the heterogeneity of the 

CNS and the field has lagged considerably behind efforts in other tissues due to the fragility 

of neurons and the fact that many cell-type-specific neuronal cell surface markers are 

localized to the axon or dendrites rather than on the soma and thus are lost during tissue 

dissociation. Here, using fixed neurons, we demonstrate that FACS purification with 

antibodies to cell-type-specific transcription factors can be utilized to finely discriminate 

between different populations of neuronal subtypes, despite dynamic profiles of 

transcription factor expression during development.

It is increasingly evident that cortical projection neuron subtypes are themselves 

heterogeneous (Hoerder-Suabedissen and Molnar, 2013; Sorensen et al., 2013). The true 

diversity of neocortical neurons is yet to be determined but can be more readily explored 

with antibodies to additional transcription factors or intracellular epitopes to further 

subdivide and refine the molecular taxonomy of the populations described here.

Because these methods do not require genetic labeling, this approach opens the door for 

investigations of specific neuronal populations in the human and non-human primate brain, 

which has thus far been limited to laser capture microdissection of individual cells or broad 

regions (Hawrylycz et al., 2013; Johnson et al., 2009; Kang et al., 2011; Oldham et al., 

2008). Adopting this approach will greatly facilitate the study of disease susceptibility of 

selected classes of neurons in humans (Saxena and Caroni, 2011).

Notably, since neurons are fixed prior to FACS purification, they readily withstand higher-

pressure FACS conditions, which have traditionally limited the ability to purify large 

numbers of neurons. This advantage makes possible the collection of millions of neurons of 

a particular subtype, enabling broad, multidimensional profiling of the transcriptome and 

epigenome in mouse and human models of development and disease. Additionally, with new 

markers identified here, it will be possible to further subdivide individual classes to explore 

pyramidal neuron heterogeneity.

Insights into the transcriptional complexity of closely related neuronal subtypes

The process of neuronal specification, migration, and circuit formation is complex with 

multiple levels of regulation. Through deep sequencing of developing pyramidal neuron 

transcriptomes, we can describe the extent of transcriptome changes including isoform-level 

transcriptional regulation as well as the differential use of multiple promoters and 

transcription start sites (TSS) as means to add variety and diversity to the transcriptional 

output.

The accurate and complete assembly of lncRNA transcripts remains a difficult problem 

generally complicated by the lower relative abundance, and lagging curation and annotation 

of full-length lncRNA transcripts. The combination of cell-type purity and deep sequencing 

in our data enhances the likelihood that our assembled lncRNAs represent full-length 

transcript reconstructions, since read coverage is the strongest predictor of assembly quality 
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(Steijger et al., 2013). We have attempted to minimize the impact of low read coverage on 

the quality of our assembled lncRNAs by requiring that any lncRNA transcript have a 

minimum of 3.0× coverage; a threshold previously determined to provide an estimated 

>80% recovery rate of well-annotated protein-coding exons using Cufflinks (Steijger et al., 

2013). It must be noted however, that experimental validations of individual lncRNA 

transcripts currently remains the ‘gold-standard’ for assessing assembly quality. Additional 

attempts to minimize the error rates for our assembly involved the selection of a PhyloCSF 

score threshold of 100, which was previously demonstrated to correspond to a false negative 

error rate of 6% for protein-coding genes and a false positive error rate of 9.5% (Cabili et 

al., 2011). Most stringently, we also exclude transcripts with any significant Pfam hit in any 

of the three possible reading frames. The result is a catalog of assembled lncRNA transcripts 

from discrete neuronal populations that benefits from the increased depth of sequencing and 

the relative cellular homogeneity of the input materials.

Using this lncRNA catalog, we find that these genes are at least as specific as protein-coding 

genes of comparable expression levels in distinguishing individual pyramidal neuron 

subtypes. The data also highlight the importance of accounting for differences in level of 

expression when comparing the specificity of lncRNAs and protein-coding genes.

Though only a handful of lncRNAs have been functionally examined, increasing evidence 

suggests that lncRNAs have diverse biological functions, including chromatin modification, 

transcriptional regulation, and post-transcriptional processing (Mercer et al., 2009). 

LncRNAs also appear to play roles in the specification and maintenance of cell identity 

(Guttman et al., 2011; Sauvageau et al., 2013; Sun et al., 2013). Global transcriptome studies 

of whole brain or microdissected layers have identified numerous lncRNAs expressed in the 

cortex (Ayoub et al., 2011; Belgard et al., 2011; Mercer et al., 2008; Ponjavic et al., 2009; 

Zhang et al., 2014). The current data suggest that lncRNAs might contribute to subtype-

specific neuronal properties, and provide a more comprehensive list of marker genes and 

potential therapeutic targets. Although functional analysis of lncRNAs is in its infancy and 

inherently challenging (Bassett et al., 2014), here we provide hundreds of new subtype 

specific lncRNAs as candidates to investigate the contributions of lncRNAs to the 

development and function of distinct neuronal populations.

Scalable platforms for data analysis

A comprehensive description of the transcriptional programs controlling neuronal 

specification represents a large dataset that requires new interactive tools to permit full 

exploration of the data by investigators. Here, we have established an interactive web 

platform that allows users to easily examine gene and isoform level expression data, explore 

clusters of related genes, discover new genes with user defined expression profiles, and links 

to displays of processed RNA-seq reads on the UCSC Genome Browser. Continually 

expanding databases of in situ hybridization and tissue level transcriptome data such as the 

Allen Brain Atlas (Lein et al., 2007) and the UCSC Genome Browser (Raney et al., 2013) 

are integrated into this dataset to facilitate more integrative analyses of these data.

The resolution of RNA-seq highlights the extensive regulation at the isoform level for 

individual neuronal subtypes, and these data are now available for investigators to examine 
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for individual genes or gene sets of interest. Beyond the expression of isoforms, our data 

provide the means to identify novel transcript variants not described here that can be 

assembled from this resource. Future expansion of this resource with additional 

transcriptomic and epigenetic data from these and other populations of cortical neurons will 

enable a more comprehensive understanding of the molecular programs driving 

corticogenesis.

Experimental Procedures

FACS-purification

All animals were handled according to protocols approved by the Institutional Animal Care 

and Use Committee (IACUC) of Harvard University. For each biological replicate, the 

somatosensory cortex of one litter of CD1 embryos or pups (six to ten per litter) was 

dissociated into single cell suspension as previously described (Arlotta et al., 2005), and 

cells were fixed immediately with 4% paraformaldehyde. The protocol for intracellular 

staining and RNA isolation was modified from (Hrvatin et al., 2014). Single cell suspension 

of fixed cells was immunostained under RNase free conditions with anti-SATB2, anti-

CTIP2, and anti-TLE4. Appropriate gates for FACS were set based on relative levels of 

SATB2, CTIP2, and TLE4 expression to isolate CPN, ScPN, and CThPN as described in 

Figure 1. Additional information is in Supplemental Experimental Procedures.

Immunohistochemistry and in situ hybridization

Immunohistochemistry and in situ hybridization were preformed as previously described 

(Lodato et al., 2014; Molyneaux et al., 2005). In situ probes are detailed in Table S6. 

Additional information is in Supplemental Experimental Procedures.

RNA isolation

RNA was recovered from FACS-purified cells using the RecoverAll Total Nucleic Acid 

Isolation Kit (Ambion) according to manufacturer’s instructions except proteinase K 

digestion was performed at 50°C for 3 hours. RNA concentration was quantified with 

Nanodrop 1000 and quality was determined with an Agilent 2100 Bioanalyzer. RNA 

Integrity Numbers (RIN) for all samples were between between 6.3 and 9. Typical yield was 

between 1 and 2 picograms RNA per sorted event, requiring approximately 100,000 cells to 

yield 200 ng RNA for library input.

RNA-seq, transcriptome assembly, and differential expression

Purified RNA served as input for the standard Illumina RNA-seq library preparation with 

poly(A) selection. 100 base pair-paired end reads were mapped to the mouse genome (mm9) 

using Tophat2 (Kim et al., 2013) with an average of 1.09×108 mapped reads (range 

7.62×107-1.33×108; s.d. 1.30×107) and assembled into transcripts using Cufflinks (Trapnell 

et al., 2010). Individual assemblies were merged using Cuffmerge and UCSC coding genes 

as a reference. The merged assembly was used as input for our previously-described long 

non-coding RNA (lncRNA) identification pipeline (Cabili et al., 2011). Assembled lncRNAs 

were appended to the list of known UCSC protein-coding genes to establish a suitable 

reference transcriptome. Differential expression testing was performed between all pairs of 
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conditions using Cuffdiff2. Data was visualized using the cummeRbund package from 

Bioconductor (Gentleman et al., 2004; Trapnell et al., 2012b) and additionally integrated 

into the DeCoN interactive web resource. RNA-seq data is available in the NCBI Gene 

Expression Omnibus repository (Accession GSE63482). Additional information is in 

Supplemental Experimental Procedures.

PCA and Cluster Analysis

Principal component analysis was performed on individual gene-level fragments per 

kilobase of RNA per million reads mapped (FPKM) using the cummeRbund package in R 

on the lists of significant protein-coding and lncRNA genes. A 20-way clustering solution of 

differential gene expression profiles was obtained using nearest-neighbor agglomerative 

graph clustering on cosine similarities using the CLUTO utility [described in (Zhao and 

Karypis, 2005)]. Additional information is in Supplemental Experimental Procedures.

lncRNA and protein-coding gene specificity analysis

Maximum specificity scores were calculated for protein-coding genes and lncRNAs across 

all three cell types at each time point as described in (Cabili et al., 2011). To correct for the 

confounding influence of expression level, we 1) compared lncRNA specificity scores to 

resampled protein-coding genes drawn from the learned empirical distribution of lncRNA 

maximum FPKM values for each time point, and 2) employed a generalized additive model 

(GAM) using the ‘mgcv’ R-package (Wood, 2011) to appropriately model the observed non-

linear relationship between expression level (FPKM) and specificity (S), and to identify any 

significant effects of gene biotype on specificity, and the observed increase in specificity at 

each time point. Additional information is in Supplemental Experimental Procedures.

Identification of syntenic positional equivalents

lncRNA human syntenic positional equivalents were defined by the presence of a 

transcribed element, within the same syntenic region in the human genome (hg19; 

TransMap). Additional information is in Supplemental Experimental Procedures.

Quantitative RT-PCR

Real-time PCR was performed using TaqMan Gene Expression Assays (Applied 

Biosystems) according to manufacturer’s protocol for standard cycling conditions. 

Additional information is in Supplemental Experimental Procedures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Schematic overview of the purification of three distinct neuronal subtypes for RNA-seq: 

callosal projection neurons (CPN; green), subcerebral projection neurons (ScPN; red), and 

corticothalamic/subplate neurons (CThPN; blue) (B-E) Immunofluorescence labeling of 

coronal sections of E15.5, E16.5, E18.5 and P1 mouse neocortex with antibodies to 

BCL11B, TLE4, and SATB2 and corresponding FACS plots from dissociated cortex 

highlighting the selection process to identify each cell type of interest. (F) Dissociated E18.5 

cells prior to FACS with labeled CPN (arrowheads), ScPN (arrows), CThPN (open 
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arrowheads). (G) Gene-level RNA-seq expression profiles for Bcl11b, Satb2, and Tle4 

confirm expression in specific cellular populations. Lines represent Cuffdiff2 expression 

estimates; shaded areas represent 95% confidence intervals. (H) A heat map of row-mean-

centered gene-level expression patterns for known subtype specific genes confirms the 

specific identities of the three isolated neuronal populations. Scale bars: (B-E) 50 μm, (F) 20 

μm. See also Figure S1.
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Figure 2. 
Comprehensive transcriptional analysis of neuronal cell type specificity.

(A) Heat maps of the row-mean-centered expression profiles for the 25 most specific genes 

for each neuronal subtype. (B) A 20-way clustering solution of differential gene expression 

profiles. Clusters are manually grouped by cell type specificity. Inset pie charts indicate 

proportion of genes in each cluster that are lncRNAs (red) or protein-coding genes (gray). 

Shaded areas represent 95% confidence intervals. (C) Density plots of gene expression 

estimates (FPKM) for lncRNAs (red) and protein-coding genes (black). (D) Cumulative 
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density of maximum specificity scores across each condition for protein-coding genes 

(blue), resampled protein-coding genes drawn from a learned empirical distribution of 

lncRNA maximum FPKM values (black; 1000 samples individually plotted at each time 

point), and lncRNAs (red). (E) Distributions of KS-test p-values for resampled protein-

coding gene max specificity scores versus lncRNA max specificity scores at each time point. 

(F) Smoothed spline illustrating the fitted inverse relationship between expression level 

(FPKM) and max cell-type specificity score at each time point for each gene type. (G) 

Significant effects on gene specificity scores attributed to the explanatory variables gene 

type or time after fitting a generalized additive model between specificity and expression. 

See also Figures S2-S3.
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Figure 3. 
Cell type specific lncRNAs in the developing neocortex

(A) Pie chart detailing the distribution of 5195 lncRNAs identified in the pyramidal neuron 

transcriptome. (B) Heat map of differentially expressed protein-coding genes and lncRNAs. 

(C) The number of tissues with detectable expression for a given significant lncRNA 

(FPKM >= 2) is significantly lower (mean 2.7; median 0) than the number for significant 

protein-coding genes (mean 16.28; median 19). (D) Cumulative densities of maximum cell-

type specificity scores for lncRNAs with a human syntenic equivalent (red) and those 
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without (black) suggests that the presence of a lncRNA across species does not correlate 

with a change in cell type specificity. (E-G) Barplots of estimated expression levels for linc-

Cyp7b1-3, linc-Phf17-2, and linc-1700066M21Rik-1; lncRNAs that exhibit high degree of 

cell type specificity for ScPN, CThPN, and CPN, respectively. Error bars represent 95% 

confidence intervals in expression estimates.
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Figure 4. 
GPCR and cell surface molecules are the leading indicators of neuronal diversity.

(A) Significantly (p<0.001) enriched and depleted gene sets from a pre-ranked Gene Set 

Enrichment Analysis against the Reactome collection of gene sets. (B) Dot plots of the 50 

most specific genes at P1 within the GPCR ligand binding Reactome gene set. Diameter of 

the dots are mapped to expression estimates at P1 and color mapped to relative cell type 

specificity. (C) Dot plots for specific classes of axon guidance molecules reveals that 

individual neuronal subclasses use different codes of related molecules to inform axonal 

targeting decisions. (D) Dot plot of genes within the lowest-ranked Reactome gene set for 
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contrast. Genes within this set and other basal metabolic processes show little variation 

between cell types.

Molyneaux et al. Page 25

Neuron. Author manuscript; available in PMC 2016 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Regulated programs of gene expression at the isoform level.

(A) Schematic depicting the number of genes that undergo promoter switching, alter their 

protein-coding sequence, or demonstrate shifts in isoform abundance. (B) Euler diagram 

describing the total number of significant regulatory events identified including those that 

take place without detectable changes in overall gene expression (red oval). (C) Kif1a gene 

level expression increases over time while individual isoforms undergo a dramatic shift in 

expression from isoform uc007cdg.2 to isoform uc007cdf.2. (D) Diametrically opposing 
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changes in expression are observed for two Lrrtm4 transcript variants in ScPN and CThPN. 

(E) Insignificant gene level expression estimates for Rbm7 belie a significant shift in 

expression at the isoform level. (F) This results in a switch to a significantly truncated 

peptide as a result of the inclusion of three in-frame stop codons for the uc009pif.2 isoform. 

(G) RT-qPCR confirms RNA-seq detected expression dynamics from E15 to P1 between all 

isoforms, uc009pie.2 (p = 0.0035), and uc009pif.2 (p = 0.016). * p < 0.05, ** p < 0.01. 

Shaded areas in C-E represent 95% confidence intervals.
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