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Abstract

Invariant natural killer T (iNKT) cells are a unique population of T lymphocytes, which lie at the 

interface between the innate and adaptive immune systems, and are important mediators of 

immune responses and tumor-surveillance. iNKT cells recognize lipid antigens in a CD1d-

dependent manner; their subsequent activation results in a rapid and specific downstream 

response, which enhances both innate and adaptive immunity. The capacity of iNKT cells to 

modify the immune-microenvironment influences the ability of the host to control tumor growth, 

making them an important population to be harnessed in the clinic for the development of anti-

cancer therapeutics. Indeed, the identification of strong iNKT cell agonists, such as α-

galactosylceramide (α-GalCer) and its analogues, has led to the development of synthetic lipids 

which have shown potential in vaccination and treatment against cancers. In this Masters of 

Immunology article we discuss these latest findings, and summarise the major discoveries in 

iNKT cell biology, which have enabled the design of potent strategies for immune-mediated tumor 

destruction.

Introduction

Invariant Natural Killer T cells (iNKT) cells represent a distinct population of T 

lymphocytes, which have features of both conventional T cells as well as natural killer (NK) 

cells [1]. As a result of their unique ability to recognize CD1d-bound endogenous lipid 

antigens, iNKT cells have a constitutive memory phenotype and are capable of rapidly 

responding to stimulation, producing a broad range of cytokines. In addition, through direct 

interactions, in particular via CD1d and CD40L-CD40 signalling, as well as indirect 

interactions with other immune cells, iNKT cells are capable of maturing dendritic cells 

(DC) and activating B cells, and thus are crucial in enhancing antigen-specific B- and T-cell 

responses [2]. The use of iNKT-cell deficient mice and iNKT cell-specific adjuvants has 

provided compelling evidence demonstrating that iNKT cells play an important role in 

mounting an antitumor response. Indeed, the importance of iNKT cells in tumor 

immunosurveillance is further emphasised with the observation that reduced iNKT cell 

numbers and function have been documented in a large number of cancer patients, including 

in patients with progressive malignant multiple myeloma [3], prostate cancer [4] and a broad 

range of other solid malignancies [5]. In this Master of Immunology article, we will discuss 
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the role of iNKT cells in enhancing tumor immunity and introduce clinical strategies that are 

currently being considered to harness iNKT cells in cancer patients to encourage stronger 

anti-cancer immune responses.

NKT cells: classification and subsets

In contrast to conventional T cells, which recognize protein-derived antigens presented by 

major histocompatibility complex (MHC) class I and class II molecules, the T-cell receptors 

(TCR) on NKT cell recognize both exogenous and endogenous lipids presented in the 

context of the non-polymorphic, MHC class I-like CD1d molecules [6, 7]. NKT cell 

development requires thymic selection, similarly to that of conventional T cells, which 

results in the release and expansion of a population of cells with the ability for specific 

antigen recognition, but also with a range of innate immune functions [2]. Analysis of the 

phenotype and cytokine profile of NKT cells has led to the identification of two main NKT-

cell subsets: invariant NKT (iNKT) cells, otherwise known as type I NKT cells, and diverse 

NKT cells, which are more commonly called type II NKT cells [8]. iNKT cells express an 

antigen-specific TCR composed of a semi-invariant α-chain (Vα14-Jα18 in mice and Vα24-

Jα18 in humans) paired with a restricted repertoire of β-chains (Vβ2, Vβ7 and Vβ8.2 in 

mice, or Vβ11 in humans) [9]. Similarly, type II NKT cells are CD1d-restricted, but in 

contrast to iNKT cells, they express a polyclonal TCR repertoire, and are more comparable 

to the highly diverse TCRs of conventional CD4+ and CD8+ T cells [10-12]. The importance 

of antigen presentation by CD1d molecules in NKT-cell activation and development was 

highlighted by the observation that Cd1d−/− mice lack both iNKT cells and type II NKT 

cells [13-15]. Indeed, to distinguish the roles of the two NKT populations, researchers 

commonly compare the phenotype of Cd1d−/− mice [13-15] with that of Jα18−/− mice [16], 

which lack only iNKT cells. Notably, recent studies have highlighted that Jα18−/− mice 

exhibit additional defects in the T-cell repertoire [17], therefore, the iNKT cell relevance of 

results obtained using Jα18−/− mice should be considered in the context of these findings. 

The heterogeneity of Vα14+ iNKT cells has been further appreciated with the identification 

of several subsets of iNKT cells with distinct developmental and functional properties 

[18-21]. Indeed, a distinct Vα50-Jα10 iNKT-cell subset was identified, which although 

absent in Cd1d−/− mice, was found to be present in Jα18−/− mice [22]; it is clear that 

considering these subsets will be critical in order to accurately interpret forthcoming data.

Although a lack of reagents to monitor type II NKT cells has slowed down functional and 

phenotypic analysis of these cells, access to CD1d tetramers loaded with iNKT-cell agonists 

has allowed characterisation of the frequency and phenotype of iNKT cells both in mice and 

humans [23-25]. In mice, iNKT cells comprise approximately 1–3% of the lymphocytes in 

the circulation and lymphoid organs, and are unusually enriched in the liver where they can 

comprise up to 30% of resident lymphocytes [26]. Conversely, although found to be 

enriched in the adipose tissue and omentum [27], the frequency of iNKT cells in the human 

periphery is lower and more variable than in mice [28].
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iNKT cells recognize a diverse range of antigens

Despite their semi-invariant TCRs, iNKT cells are able to recognize a diverse range of 

antigens [29]. Structural and functional studies have been fundamental in determining which 

features of lipid recognition modulate the potency and activation of iNKT cells, and 

importantly, have been crucial in optimising the design of iNKT-cell agonists suitable for 

use in the clinic [30-36]. α-galactosylceramide (α-GalCer), derived from the 

glycosphingolipid extract of the marine sponge Agelas mauritianus, was the first lipid 

identified which potently activates iNKT cells [37]; the α-linked glycan in α-GalCer has 

since been shown to be a structural motif common to many of the identified α-linked 

bacterial pathogens, which can directly and potently activate iNKT cells [38-41]. Recently a 

β-linked lipid, Asperamide B, was identified as the first example of a fungal-derived iNKT-

cell agonist [42], although in other models of fungal infection iNKT-cell reactivity was 

shown to be driven through Dectin-1- and MyD88-mediated upregulation of IL12 by 

antigen-presenting cells (APC) [43]. In addition to recognising synthetic and microbial-

derived antigens, iNKT cells react against CD1d+ APCs in the absence of exogenous 

antigens, a feature defined as autoreactivity. iNKT-cell autoreactivity underpins the 

constitutive memory phenotype of iNKT cells and their ability to be activated during a wide 

variety of immune responses including infections, cancer and autoimmunity [44, 45]. 

Although complete elucidation of endogenous and exogenous lipids mediating iNKT-cell 

activation has been challenging due to poor sensitivity of assays, which are often unable to 

detect low lipid concentrations purified from cellular extracts and pathogens, seminal studies 

in the last year identified the gut mucosa [46-48] and alternative enzymatic pathways in 

mammals [49, 50] as potential sources of exogenous and endogenous iNKT-cell lipid 

agonists. Further investigations are warranted to fully characterise these lipids, which will be 

highly valuable for understanding the role of iNKT cells in cancers, where endogenous 

lipids undoubtedly play a key role in triggering the immune response.

iNKT-cell activation and down-stream signalling

Activation of iNKT cells can occur directly or indirectly

i) Direct activation of iNKT cells involves the endocytosis of glycolipid antigens 

by APCs and their presentation to iNKT cells via CD1d-antigen complexes. In 

addition to direct iNKT-cell activation by exogenous lipid agonists, we and 

others have shown that signalling events downstream of Toll-like receptors 

(TLR) [44, 45, 51], inflammasome components NOD1 and NOD2 [52] and the 

Formyl Peptide Receptor 2 (FPR2), which recognizes Serum Amyloid A-1 [53], 

results in the loading of CD1d molecules expressed on APCs with endogenous 

lipid antigens, and subsequent iNKT-cell activation. Additionally, since a 

number of tumor cells express CD1d [3, 54-57], it is hypothesised that tumor 

cells may also present endogenous lipids to iNKT cells directly, although to date 

the identity of such tumor cell-derived endogenous iNKT-cell agonists remains 

contentious. Importantly, CD1d-dependent activation of iNKT cells triggers 

release of IFNγ and interleukin (IL)4, as well as of a diverse range of other 

cytokines including IL2, IL5, IL6, IL10, IL17, IL21, TNFα, TGFβ and 
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granulocyte-macrophage colony stimulating (GM-CSF) [1, 58-60], in addition to 

chemokines, such as RANTES, Eotaxin, MIP-1α and MIP-1β [61]. IFNγ and 

IL4 transcription is activated during iNKT-cell thymic development, and 

preformed IL4 mRNA in the cytoplasm allows for rapid responses upon antigen 

stimulation [62, 63]. In concert with cytokine release, activation of iNKT cells 

through TCR stimulation augments the bi-directional cross-talk with DCs in a 

CD40/CD40L and CD1d-dependent manner; this interaction promotes the 

maturation, activation and the upregulation of co-stimulatory receptors such as 

CD80 and CD86 on DCs, as well as the release of IL12. Interestingly, depending 

on the lipid antigen presented, iNKT cells may also modulate up-regulation of 

inhibitory molecules (such as PD-L1 and PD-L2) on CD8α+ DCs, which may be 

the mechanism behind the Th2-polarizing effect of some iNKT-cell agonists 

[64]. As a result of direct interaction with iNKT cells, DCs can prime antigen-

specific CD4+ and CD8+ T cells [65-67]. Licensing by iNKT cells of CD8α+ 

DCs results in the secretion of the chemokine CCL17, which attracts naive 

CD8+ T cells expressing the chemokine receptor CCR4 [68]. iNKT cells can 

also directly provide B-cell help through CD1d expression on B cells [69, 70]. 

This ability to prime the adaptive immune response indicates that iNKT-cell 

agonists could be used in the clinic to harness iNKT cells, where they have 

previously been shown to have adjuvant effects in combination with a number of 

vaccines [71].

ii) iNKT cells can be activated via soluble factors (indirect NKT-cell activation) 

released by TLR-activated DCs, such as type I IFN, IL12, and IL18 [44, 45, 51, 

72-75], or by co-stimulatory molecules like OX40/OX40L [76].

Structural and functional analyses of the interaction between the iNKT TCRs and CD1d 

molecules loaded with endogenous and exogenous iNKT-cell agonists are of importance to 

characterize further how the quality of iNKT-cell activation can be modulated by the 

binding affinity, concentration, hydrophobicity and stability of glycolipid-CD1d complexes 

[31, 32, 77, 78]. Indeed, low antigen concentration or weak binding affinity of CD1d/lipid 

complexes to the iNKT TCRs induce GM-CSF and IL13, whereas a higher antigen 

concentration or higher binding affinity of CD1d/lipid complexes induce IL4 and IFNγ, 

along with increased expression of GM-CSF and IL13 [79]. In line with this, the lipid C-

glycoside, an analog of α-GalCer, has a weak binding affinity to the iNKT-cell TCR, but as 

a result of the formation of a stable complex with CD1d, and thus its extended survival in 

vivo, is still able to induce IFNγ production from iNKT cells [80]. These mechanisms 

demonstrate how antigenic activation of iNKT cells can enhance both cell-mediated and 

humoral immunity through direct or indirect interaction with other immune cells.

iNKT cells in tumor immunity

The initial observation that α-GalCer injected into mice could protect against tumor 

progression [81, 82], led to the subsequent discovery that α-GalCer specifically activated 

iNKT cells in a CD1d-resticted manner [37]. In addition to exerting a protective role in a 

range of different tumor models when in vivo activated with α-GalCer [83] or IL12 [16], 

iNKT cells also play a critical role during tumor immunosurveillance. Indeed, following 
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adoptive transfer of iNKT cells into Jα18−/− mice Crowe and colleagues demonstrated their 

ability to protect mice from methylcholanthrene (MCA)-induced sarcomas via direct 

interaction of the iNKT TCR with CD1d molecules [84], confirming and extending previous 

observations by the same group using MCA tumor models [83]. The role of iNKT cells in 

tumor immunosurveillance has been confirmed in other murine studies including a p53 

deficiency model [85] and a TRAMP model [86], all of which showed enhanced tumor 

growth in iNKT cell-deficient mice (Jα18−/− mice or Cd1d−/− mice), as compared with 

wild-type animals. Notably, not all iNKT-cell subsets are equally protective, as rejection of 

MCA-1 sarcomas and B16F10 melanomas was mediated exclusively by the liver-derived 

CD4− iNKT-cell subset [87].

Activation of iNKT cells during immunosurveillance can occur either directly, through 

presentation of self-lipids by CD1d positive tumors, or indirectly, by cross-presentation of 

tumor lipids by APCs [88]. Evidence for direct presentation stems from the observation that 

overexpression of CD1d by the B-cell lymphoma NS0 induces cytokine production by iNKT 

cells and iNKT cell-dependent lysis [89]. Consistent with these findings, in a mouse model 

of breast cancer metastases, tumor down-regulation of CD1d molecules inhibits iNKT-

mediated antitumor immunity and promotes metastatic breast cancer progression [57]. 

Furthermore, human iNKT cells were found to recognize and kill CD1d+ osteosarcoma 

cells, but not CD1d− osteoblasts, confirming the CD1d restriction of iNKT cell-dependent 

cytotoxicity [90]. Notably, these studies and others [91, 92] have confirmed iNKT cell-

dependent cytotoxicity against CD1d+ tumor cell lines without pulsing with α-GalCer, 

underscoring the notion that the iNKT cell TCR can interact with endogenous antigenic 

lipids expressed by human and mouse tumor cells, which can lead to direct iNKT-cell 

activation [90].

CD1d is preferentially expressed in hematopoietic cells [93], especially those of 

myelomonocytic and B-cell lineages, and accordingly, malignancies originating from such 

tissues have also been found to be CD1d-positive [3, 54, 55, 89, 94, 95]. Interestingly, CD1d 

expression has also been found on select solid tumors, such as prostate cancer [4, 56], breast 

cancer [57], renal cell carcinoma [96] and specific nervous system tumors including 

malignant glioma [97] and paediatric medulloblastoma [98]; however many other human 

and murine solid tumors are generally thought to be CD1d-negative, or to down-regulate 

CD1d molecules. Lack of CD1d expression in tumors results in their lack of recognition by 

iNKT cells, and has, in some models, been correlated with tumor progression. It remains to 

be determined, however, whether the lack of detection of CD1d molecules on the surface of 

such tumors could stem from sub-optimal antibody staining or the local down-regulation of 

CD1d, and thus whether these tumors are able to present endogenous lipid is not yet defined. 

Given that CD1d molecules are widely expressed by normal cells, it remains unclear as to 

whether a different set of unidentified self-iNKT-cell agonists can be presented by CD1d 

molecules expressed by transformed cells, as compared to normal cells. Furthermore, 

although it is commonly accepted that endogenous lipids are likely to be responsible for 

activating iNKT cells in the inflammatory tumor microenvironment, the mechanisms by 

which iNKT cells are activated during tumour growth remain elusive. Further investigations 

are warranted to elucidate these findings.
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A hypothesis: The role of the endoplasmic reticulum (ER)-stress response in modulating 
iNKT-mediated tumor immunity

In non-sterile disease models, pathogen-associated molecular patterns (PAMP) act as TLR 

agonists, and through the up-regulation of endogenous ligand presentation and the release of 

soluble factors by APCs, have been shown to enhance the activation of iNKT cells [44, 45, 

51]. In light of this, we put forward the hypothesis that a similar mechanism may be 

involved in iNKT-mediated tumor surveillance. Indeed in recent years a new concept of 

‘immunogenic cell death’ [99] has emerged, which links ER stress with the release of 

damage-associated molecular patterns (DAMP) during anticancer therapy, and through 

recognition by pattern recognition receptors (PRR), such as TLR4, the release of DAMPs by 

dying cancer cells results in the activation of a cancer-specific immune response [100]. 

Although it remains unclear whether these DAMPs can influence iNKT cell antitumor 

responses, in support of this idea, we and others have shown that stimulation of TLR4 on 

APCs can enhance presentation of iNKT-cell agonists and stimulate iNKT-cell activation 

[44, 45, 101]. In line with this, the Unfolded Protein Response (UPR), which is also 

triggered by ER stress, increases the activity of the ER lipid transfer protein microsomal 

triglyceride transfer protein (MTP) [102], which is involved in CD1d loading [103, 104]. 

Lastly, an additional UPR component, XBP-1, which modulates phospholipid synthesis and 

is required for ER membrane expansion under ER stress [105], has been shown to positively 

control hepatic lipogenesis at basal levels [106]. Disruption of XBP-1 led to decreased fatty 

acids and sterols in primary hepatocytes, possibly by directly trans-activating key genes in 

this metabolic pathway [106].

As well as tumor-intrinsic ER-stress signalling, which promotes tumor survival and 

proliferation, the tumor-cell UPR can function in a cell-extrinsic manner, transmitting ER 

stress to tumor-infiltrating myeloid cells, in a mechanism termed transmissible ER stress 

(TERS) [107]. Although not yet assessed in the context of cancer, ER stress was correlated 

with abnormalities in the function and frequency of NKT cells in hepatic steatosis, where it 

was suggested that ER disruption might lead to dysregulation of iNKT-mediated innate 

immunity through decreased expression of membrane CD1d resulting in reduced iNKT-cell 

activation [108]. While in this model ER stress had a negative effect on iNKT-cell 

activation, in light of the reported effects of ER stress on lipid metabolism and CD1d 

loading discussed above, further experimentation needs to be performed to dissect whether 

changes in lipid metabolism due to ER stress in cancer cells may modulate iNKT-cell 

activity.

NKT cell-mediated adjuvant effects on innate and adaptive immunity against cancer in 
mice

The ability of iNKT cells to activate antitumor immune responses can be jump started by 

using exogenous iNKT-cells agonists, such as the prototypic ligand α-GalCer [109-112]. 

Injection of α-GalCer was found to inhibit tumor metastases and increase survival in a range 

of murine cancer models, including models of B16 tumor challenge [109], spontaneous 

sarcomas in p53−/− mice [113] and the colon carcinoma model C26GM [114]. In line with 

this, injection of α-GalCer-pulsed DCs [115], or intravenous administration of either live or 

irradiated B16 tumor cells loaded with α-GalCer [116] was shown to elicit an innate iNKT 
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and NK cell response that rejects the tumor. The α-GalCer-mediated antitumor activity of 

iNKT cells has since been shown to be dependent on IFNγ production and NK cells [110, 

117, 118], dendritic cell maturation, activation and IL12 release, and ultimately the 

activation of CD8+ cytotoxic T cells, CD4+ Th1 cells, and gamma-delta (γδ) T cells that 

further target and kill tumor cells [65, 116, 119]. Indeed, administration of α-GalCer into 

mice injected with a T-cell lymphoma enhanced the generation of tumor-specific cytotoxic 

T cells in an IFNγ- and NK-cell-dependent manner [120]. This pathway was further 

emphasised in murine models of lung and liver metastasis, where the anti-metastatic activity 

of α-GalCer was dependent on IL12- and IL18-mediated enhancement of IFNγ production 

by iNKT and NK cells [118].

Upon activation, both murine and human iNKT cells can exhibit potent cytotoxic functions 

to promote the killing of tumor cells, such as acute myeloid leukaemia, through the 

expression of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) [121]. This 

observation was also confirmed with iNKT cells from patients with malignant melanoma, 

whereby upon α-GalCer/DC activation, the patient-derived iNKT cells displayed potent 

perforin-dependent cytotoxic activity against a range of tumor cell lines [122]. Interestingly, 

the transfer of perforin-deficient iNKT cells into Jα18−/− mice with MCA-induced tumors 

restored tumor resistance, suggesting that in this model direct perforin-dependent tumor 

lysis by iNKT cells is not critical [84]. Taken together, these observations imply that both 

direct and indirect mechanisms of iNKT-cells activation play a key critical role in iNKT 

cell-mediated tumor immunosurveillance [88, 116].

Studies aimed at enhancing iNKT cell-mediated antitumor immunity have shown that the 

use of soluble α-GalCer leads to potent stimulation of iNKT-cell subsets and may result in 

iNKT-cell over-activation and anergy [123, 124]. Given these considerations, the search for 

efficient iNKT agonists with functional differences compared with α-GalCer is an ongoing 

goal in the field, which attracts the work of many laboratories. Indeed, in recent years, many 

α-GalCer analogs have been formulated that exhibit different properties, including 

optimised cytokine induction profiles, which are aimed at targeting specific subsets of iNKT 

cells in a number of different clinical settings [125-133].

Harnessing iNKT cells to optimize vaccination strategies in cancer patients

Activity of iNKT cells in cancer patients

A large number of pre-clinical and clinical trials have been performed to investigate whether 

activation of iNKT cells could be a therapeutically beneficial approach in human patients 

suffering from cancer and other infectious diseases. Reduced iNKT-cell frequency and 

function has been observed in patients with haematologic cancers [3, 134] and a range of 

solid tumors [4, 135], as compared with that of healthy volunteers, independent of tumor 

type and tumor load. In line with these observations, reduced iNKT-cell frequency was 

shown to correlate with poor overall survival in acute myeloid leukaemia [136], and head 

and neck squamous cell carcinoma [137], while increased numbers of intra-tumor or 

circulating iNKT cells have been associated with improved prognosis in colon cancer, 

prostate cancer, haematologic malignancies, and neuroblastoma [138-140]. Whether 

immune-cell subsets found in peripheral blood are accurate representative of systemic 
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cancer immunity in humans remains to be established in all cancer models [141]; relative 

NKT-cell deficiencies have, however, also been observed locally in solid tumors and the 

surrounding tissues, such as in neuroblastoma [142] and colorectal cancer [27]. 

Interestingly, other investigators have reported elevated iNKT-cell frequency in some 

tumors [143, 144]; and increased iNKT-cell frequency in the microenvironment of 

colorectal cancers is thought to be a positive prognostic indicator [145, 146]. The high 

variability in iNKT-cell frequencies in humans, in addition to the defective numbers shown 

in cancer and other diseases, reduces the effectiveness of targeting iNKT cells in these 

individuals. Indeed, studies have reported that NKT cell-based treatments may only be 

beneficial for patients with high iNKT-cell frequency [147]. To overcome these limitations, 

universal efforts have been directed at optimising the development of synthetic iNKT-cell 

agonists to enhance iNKT-cell activation and antitumor function.

iNKT cell-based cancer immunotherapy

Three main iNKT cells-directed therapeutics have been exploited thus far; these include, but 

are not limited to: administration of iNKT cell-activating ligands (all human studies 

described to date have used α-GalCer), administration of APCs pulsed with α-GalCer, 

transfer of ex vivo-expanded and/or activated iNKT cells, and finally a combination of these 

methods.

1. Intravenous injection of α-GalCer—α-GalCer remains the best-characterised iNKT 

agonist in tumor immunity to date. Although promising data utilising this agonist have been 

generated in murine models and in vitro, the fundamental question remains whether iNKT-

cell activation by select agonists is relevant in the clinic. The first clinical study of α-GalCer 

used repeated intravenous (IV) injection of α-GalCer at varying doses in patients with solid 

tumors [148]. No dose-limiting toxicity was observed, suggesting that activation of iNKT 

cells through IV injection of α-GalCer is a safe, well-tolerated treatment in humans. 

Although iNKT cell numbers appeared to decrease in the periphery, likely resulting from 

down-regulation of the TCR following iNKT-cell activation [149], Giaccone and colleagues 

observed elevated serum levels of iNKT cell-associated cytokines, including TNFα and 

GM-CSF [148], and disease stabilisation for a median of 123 days in 7 of 24 patients. 

Similar to murine studies in which injection of soluble, but not cell-associated α-GalCer 

leads to iNKT-cell anergy [123] in a PD-1/PDL-1-dependent manner [150], follow up 

studies in humans identified α-GalCer-induced iNKT-cell anergy using this administration 

method [151].

2. Adoptive transfer of α-GalCer-pulsed APCs—Studies with murine tumor models 

demonstrated that co-injection of α-GalCer and tumor antigens [65], or alternatively 

administration of α-GalCer-pulsed DCs [152], induced prolonged cytokine responses as 

compared with injection of soluble α-GalCer. Although the reasoning behind the differing 

immune responses is unclear, it has been hypothesised that the type of APC and method of 

administration could play an important role. Indeed, whereas IV injection of pulsed DCs 

induced a strong cytokine response, α-GalCer-pulsed DCs injected subcutaneously in mice 

did not stimulate a particularly effective iNKT-cell response [152]. In addition, DCs were 

found to stimulate a stronger iNKT-cell response in comparison to B cells [153]. A large 
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number of clinical trials have since utilised ex-vivo-generated, or isolated APCs pulsed with 

α-GalCer, which has thus far been shown to be safe and well tolerated.

The first phase-I trial reported utilised IV administration of α-GalCer-pulsed monocyte-

derived DCs, which were given at two weekly intervals to patients with metastatic tumors 

[154]. Although activation of iNKT cells increased serum levels of cytokines including 

IFNγ and IL12 and the trans-activation of both T and NK cells, only 2 of the 12 patients 

enrolled exhibited a decrease in serum tumor markers, indicating minimal efficacy of this 

treatment [154]. Two later studies using α-GalCer-pulsed, monocyte-derived DCs were 

published; the first, using weekly IV injections of IL2-cultured DCs in patients with 

advanced or recurrent non-small-cell lung cancer, demonstrated an expansion of iNKT-cell 

frequency and elevated IFNγ levels by PCR analysis [151]. IFNγ ceased to be detected 

onwards of the second injection, possibly consistent with the onset of iNKT-cell anergy 

[151]. Comparably, Chang and colleagues reported that the injection of α-GalCer-pulsed 

monocyte-derived DCs also induced elevation of iNKT-cell frequency to greater than 100-

fold, as well as higher serum concentrations of IFNγ and IL12 [155]. iNKT-cell activation 

could be seen for up to 6 months in some patients and was consistent with an increase in the 

levels of IL12p40, IP-10, and MIP-1β, and an increase in cytomegalovirus-specific CD8+ 

memory T cells [155]. Uchida and colleagues modified the administration approach by 

utilising injection of α-GalCer-pulsed peripheral blood APCs directly into the nasal sub-

mucosa of patients with head and neck cancer [156]. Elevation in iNKT cell numbers and 

NK activation was observed in approximately half of the patients, and a reduction or 

stabilisation of tumor growth was seen in 6 of 9 patients [156]. A follow up study 

demonstrated that administration via the nasal sub-mucosa was optimal over administration 

via the oral sub-mucosa [157]; notably, authors also reported that oral-administration was 

linked to the expansion of CD4+ CD25+ FoxP3+ regulatory T cells [157].

More recently, four additional studies were published in which cancer patients were injected 

with APCs pulsed with α-GalCer either IV or intradermally (ID) [158-161]. Injection of 

APCs generated in the presence of GM-CSF and IL2 into patients with non-small-cell lung 

cancer demonstrated expansion of iNKT cells, and in patients with elevated level of IFNγ, a 

possible prolongation in survival was observed, although no partial or complete clinical 

responses were detected [161]. Elevated IFNγ production, as well as expansion and 

infiltration of iNKT cells were also observed following injection of GM-CSF/IL2-generated 

α-GalCer-pulsed APCs prior to surgery [159]. For patients with cancers of differing origin 

and metastatic potential, Nicol and colleagues reported that IV injection of pulsed APCs 

stimulated antitumor activity both at the main tumor site, and in sites of metastasis [158]; 

more than half of the patients showed disease stabilisation or a reduction in tumor mass 

[158]. Finally treatment of patients with multiple myeloma using the combined regimen of 

α-GalCer-pulsed APCs and the immune-modulatory drug lenalidomide elicited elevated IL2 

in the serum, as well as a decrease in tumor-associated monoclonal immunoglobin levels (M 

spike) [160, 162]. Taken together, these findings demonstrate that α-GalCer-pulsed APCs 

represent a possible therapeutic strategy to enhance antitumor immunity. While further 

optimisation of loading and delivery and a more detailed understanding of the mechanisms 
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of action are required, α-GalCer-pulsed APCs show promise for reducing tumor growth and 

metastasis.

3. Adoptive transfer of ex-vivo-activated iNKT cells—An alternative strategy to 

compensate for the decreased iNKT-cell frequency observed in patients with cancer involves 

expanding autologous iNKT-cell populations in vitro. Firstly, adoptive transfer of in vitro-

activated iNKT cells into patients with non-small-cell lung cancer resulted in in vivo iNKT-

cell expansion, downstream activation of NK cells and IFNγ release [163]. Interestingly, the 

combined transfer of iNKT cells and α-GalCer-pulsed DCs has been reported to induce 

substantial antitumor immunity in patients with head and neck squamous cell carcinomas 

[164, 165]. In these studies, patients demonstrated a partial response or stabilisation of the 

disease, and in some cases, tumor regression [164, 165]. Optimisation of the current 

protocols holds high potential in tumor immunotherapy. Indeed, functionally competent 

iNKT cells have recently been differentiated from induced pluripotent stem cells (iPSC) in 

mice, which may represent a novel approach to expand iNKT cells for cancer therapy in 

humans [166].

Conclusion & future perspectives

Murine studies and clinical trials performed to date have demonstrated that therapies 

involving the manipulation of iNKT cells are not only feasible but also appear to be 

generally well tolerated by mice and human patients alike, and in some cases induce 

significant tumor regression, disease stabilization, or possible prolongation of survival. 

Many of the approaches used thus far induce iNKT-cell activation; however it remains to be 

determined which route of administration, APC type, and dosing interval are the most 

efficacious. Although pre-clinical studies in animal models may help answer these 

questions, ultimately, appropriately designed clinical trials in humans will guide protocol 

optimization. Our ability to manipulate these cells in antitumor therapeutics is critically 

dependent on our understanding of iNKT cell biology and of the factors which activate and 

regulate these cells; the identification and optimisation of iNKT-cell agonists which can 

promote Th1 immune responses without inducing iNKT-cell anergy is of high priority. 

Notably, despite the clear ability of exogenously-activated iNKT cells to initiate potent 

antitumor activity in response to immunotherapeutic stimuli, whether this represents a 

physiologic role for NKT cells in tumor rejection, and if so, which signalling cascades are 

required, remains unclear. Additionally, in light of the identification of developmentally and 

functionally distinct subsets of iNKT cells and type II NKT cells, emphasis should be put on 

characterising the roles and interactions of these cells during immunosurveillance therefore 

improving the specificity of NKT-targeted agonists.
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Figure 1. Antitumor activities of iNKT cells
a) Invariant natural killer T (iNKT) cells can recognize endogenous lipids presented by 

CD1d molecules on tumor cells and subsequently eliminate tumor cells directly through 

iNKT cell-mediated lysis. b) In the absence of CD1d expression on tumor cells, iNKT cells 

may become activated in response to CD1d-expressing or Toll-like receptor (TLR)-activated 

antigen-presenting cells (APC). Bi-directional activation of iNKT cells and APCs promotes 

NK-cell activation and the activation of the tumor-specific T-cell response, thereby 

indirectly mediating tumor-cell killing. (This figure is created by Hemza Ghadbane of the 

Weatherall Institute of Molecular Medicine and the University of Oxford.)
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Figure 2. Structure and interactions of the prototypic iNKT-cell agonist α-GalCer with CD1d 
molecule and TCR
a) The biochemical structure of the prototypic iNKT-cell agonist, α-GalCer. b) The crystal 

structure of α-GalCer (red) loaded onto human CD1d molecules (grey) and binding to the 

iNKT-cell TCR (yellow/orange). Figure was generated using PyMOL and the Protein Data 

Bank using accession number 2PO6 from [78], and adapted by permission from Macmillan 

Publishers Ltd: Nature [78], copyright 2007. The head group of the lipid is exposed and 

allows for interaction with the iNKT-cell TCR. Modifications to the head-group, tail length 

or saturation affect the ability of iNKT-cell agonists to activate iNKT cells [31], a property 
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which has been utilised to optimise anti-cancer therapeutics. (Panel a of this figure is 

generated by Hemza Ghadbane of the Weatherall Institute of Molecular Medicine and the 

University of Oxford.)
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