
Viral Miniproteins

Daniel DiMaio
Department of Genetics, Yale School of Medicine

Daniel DiMaio: daniel.dimaio@yale.edu

Abstract

Many viruses encode short transmembrane proteins that play vital roles in virus replication or 

virulence. Because these proteins are often less than 50 amino acids long and not homologous to 

cellular proteins, their open reading frames were often overlooked during the initial annotation of 

viral genomes. Some of these proteins oligomerize in membranes and form ion channels. Other 

miniproteins bind to cellular transmembrane proteins and modulate their activity, whereas still 

others have an unknown mechanism of action. Based on the underlying principles of 

transmembrane miniprotein structure, it is possible to build artificial small transmembrane 

proteins that modulate a variety of biological processes. These findings suggest that short 

transmembrane proteins provide a versatile mechanism to regulate a wide range of cellular 

activities, and we speculate that cells also express many similar proteins that have not yet been 

discovered.
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Introduction

How to remain small?

Virus has a strategy.

Transmembrane proteins.

Viruses are biological haiku. Like the traditional stylized Japanese poetry, viruses are small, 

constructed according to strict rules, and lacking extraneous features that detract from the 

central message. Viruses thus provide an exceptionally clear view into the soul of the poet, 

natural selection. Over the course of evolution, natural selection has identified and refined 

the core imperatives of the virus life cycle: genome amplification and transmission to new 

hosts. Central to rapid genome amplification is small genome size. Viruses have adopted a 

number of strategies to maintain the small size of their genomes; chief among them is a 
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parasitic lifestyle, in which the host cell provides the biochemical infrastructure that 

supports virus replication.

Another strategy employed by viruses to maintain small genome size is the use of very small 

proteins. These proteins, some shorter than 50 amino acids, were often overlooked during 

sequence analysis of viral genomes or biochemical analysis of infected cells, and they cloud 

the distinction between proteins and peptides. We regard a polypeptide chain as a protein 

regardless of its length if it is a primary translation product from viral mRNA. Cleavage 

products of large precursor proteins are not discussed in this review, even though some of 

them resemble the proteins discussed here. Many viral miniproteins are extremely 

hydrophobic and span viral or cellular membranes. These viral transmembrane miniproteins 

constitute the subject of this review.

Poxviruses, papillomaviruses, polyomaviruses, paramyxoviruses, lentiviruses, influenza 

viruses, and presumably many other virus families encode short transmembrane proteins that 

are not homologous to cellular proteins. Thus, these proteins are not restricted to RNA or 

DNA viruses or to a particular viral genome replication strategy. Why do viruses use short 

transmembrane proteins instead of soluble globular proteins replete with hydrophilic amino 

acids? The active site of enzymes is often constructed from only a small number of charged 

or polar amino acids in a particular conformation for catalysis, so most of the protein can be 

viewed as a scaffold to steer the catalytic amino acids into the proper three-dimensional 

position in a suitable environment to carry out their chemical roles. Similarly, for proteins 

that bind to other macromolecules, most amino acids perform the back-office function of 

supporting the relatively few amino acids that actually constitute the interacting surface. For 

an organism that puts a premium on small size, like a virus, there are clear advantages to 

using proteins that can dispense with a large scaffold. However, because the vast majority of 

very short proteins consisting of a mixture of hydrophobic and hydrophilic amino acids are 

presumably unfolded or aggregate, they are unlikely to be biologically active.

In contrast, owing to underlying chemical principles, transmembrane domains form short, 

folded proteins (94a). First, fewer than 25 amino acids is sufficient to span membranes. 

Second, the predominance of amino acids with hydrophobic side chains ensures their stable 

incorporation into membranes. Most important, the energetics of lipid-protein interactions 

results in the generation of a stable protein structure in the absence of a discrete scaffold, 

regardless of the amino acid sequence (66, 105). Because the main-chain polypeptide 

backbone is studded with polar amine and carboxyl groups, a protein with a hydrophobic 

composition is faced with a dilemma: How can it simultaneously accommodate the 

energetically favorable insertion of hydrophobic side chains into a membrane with the 

unfavorable presence of main-chain hydrophilic groups in the hydrophobic lipid bilayer? 

There is a simple solution: The amine and carboxyl groups form intramolecular hydrogen 

bonds along the axis of the protein roughly perpendicular to the membrane plane, resulting 

in the formation of an α-helix (94a). This shields the main-chain polar groups from the 

hydrophobic core of the membrane and forces the side chains to be radially displayed in an 

energetically favorable position facing the hydrophobic fatty acid groups in the lipid bilayer, 

where they can interact specifically with complementary surfaces generated by other 

transmembrane domains (104). Transmembrane miniproteins may self-associate in the 
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membrane and form homooligomers or associate with the transmembrane segments of other 

cellular or viral proteins and influence their activity. Thus, the chemistry of hydrophobic 

proteins and the surrounding membrane imposes a productive, stable fold on the protein.

Some viral miniproteins, known as viroporins, homooligomerize in membranes to form ion 

channels with an aqueous pore (81). The utility of a transmembrane protein to conduct 

charged molecules through a membrane is obvious. Other viral miniproteins act by binding 

to the membrane-spanning domains of much larger cellular transmembrane proteins and 

modulating their expression or activity. Still other miniproteins have an unknown 

mechanism of action. In this review, we describe the structure, biological activities, and 

biochemical properties of representative animal virus transmembrane miniproteins. We then 

discuss artificial proteins modeled on these viral proteins and close with a consideration of 

the implications of these findings.

Influenza Virus M2 Proteins

Flu M2 protein.

The amantadine target.

Stop the pandemic.

Influenza viruses, enveloped viruses with segmented RNA genomes, are of great medical 

importance. Influenza A virus causes most influenza epidemics in humans and was 

responsible for the 1918 Spanish influenza pandemic, which killed between 50 and 100 

million people. Influenza A virus encodes the M2 protein (A/M2), a 97-amino-acid integral 

membrane phosphoprotein with a single membrane-spanning domain and a 54-amino-acid 

carboxy terminus cytoplasmic tail (93). A tetramer of M2 exists in cell membranes and the 

envelope of the virus particle, where it acts as a proton-selective ion channel (Figure 1) (47, 

92, 93, 117). Hence, M2 is a viroporin. Numerous RNA and DNA viruses encode 

viroporins, most of which facilitate the assembly and release of virus particles from infected 

cells. For example, the nonenveloped polyomaviruses SV40 and JC virus encode viroporins, 

which facilitate virus release (96, 120). The reader is referred to the excellent review by 

Nieva et al. (81) for a comprehensive discussion of viroporins.

M2 proton channel activity is essential for influenza virus replication, possibly by acting at 

several different steps in the virus life cycle (93, 136, 137). Internalization of the influenza 

virion deposits it in the endosome, but virus uncoating and delivery of the viral genome into 

the cytoplasm requires acidification of the interior of the virion (44). Virion acidification is 

mediated by the proton channel activity of the M2 tetramer, which conducts protons from 

the endosomal lumen into the virion interior (135). The M2 proton channel is not 

constitutively open, but it requires low pH for maximal activity (92). Detailed genetic, 

biochemical, and biophysical studies provided insight into the molecular basis of these 

activities. The transmembrane domain of M2 mediates tetramerization and is sufficient for 

proton channel activity (25, 57, 65). Mutational analysis and biochemical studies identified 

the crucial amino acids that mediate M2 channel activity, including two polar amino acids 

on a single turn of the transmembrane α-helix, histidine 37 and tryptophan 41 (91). 
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Replacing the histidine with any of several amino acids allows M2 to transport Na+ and K+ 

as well as H+, showing that histidine confers ion selectivity (129, 131). The tryptophan 

appears to play an important role in activating the channel in response to low pH, by 

participating in a pH-dependent conformation change. Molecular modeling and structural 

studies showed that the essential histidine and tryptophan side chains lie in the central pore 

of the M2 tetramer (Figure 1) (1, 7, 50, 106, 134, 135) and suggest that the M2 tetramer is 

not a static conduit of protons but rather adopts a series of conformational states during ion 

passage (49, 62, 113, 135). Influenza B virus M2 (BM2) also forms a proton channel (134). 

Although the sequence of BM2 diverges greatly from that of A/M2, it contains the essential 

histidine and tryptophan residues noted above.

A/M2 is the target of the antiviral medicines amantadine and rimantadine, which block virus 

uncoating by inhibiting the proton channel activity of M2 (94). Mutations in M2 can cause 

amantadine resistance (41), and peptide reconstitution and mutant expression experiments 

demonstrated that the transmembrane domain was sufficient to reconstitute amantadine-

sensitive proton channels in lipid bilayers and cells (25, 65). More recent studies 

demonstrated that amantadine binds inside the aqueous pore of the M2 tetramer and inhibits 

proton channel activity by physically obstructing ion flow (Figure 1) (15, 52). The clinical 

utility of these medicines is limited by the high prevalence of drug-resistant virus strains 

(119). Thus, more complete understanding of the structure-function relationships of the 

influenza virus M2 proteins is likely to lead to the rational design of improved therapeutics 

(8, 133).

The cytoplasmic carboxy terminus tail of A/M2 serves another interesting function. The last 

step in the release of enveloped viruses is membrane scission, whereby the extruded nascent 

virion at the plasma membrane is pinched off to separate from the cell. In several virus 

families, membrane scission is mediated by a cellular protein complex called endosome 

sorting complex required for transport (ESCRT) (130), but influenza virus release is ESCRT 

independent (13, 18). Instead, an amphipathic helix in the membrane-proximal segment of 

the cytoplasmic domain of M2 inserts into the plasma membrane at the neck of the budding 

virion and alters membrane curvature, leading to membrane scission and virion release 

(Figure 2a) (99). Viral mutants lacking this segment (or lacking M2 entirely) display a 

striking beads-on-a-string budding phenotype due to incomplete scission (Figure 2b) (73, 

97) and are attenuated in vivo (138). Thus, the transmembrane domain of M2 not only forms 

the proton channel required for virus entry, but also targets the hydrophilic carboxy terminus 

of M2 to the cell membrane, where it can participate in virus release.

Human Immunodeficiency Virus Vpu

In the cell membrane,

HIV needs Vpu.

Escape host defense.

HIV-1 causes AIDS. In addition to its major structural genes, HIV-1 encodes accessory 

proteins that assist in virus replication or counter host immune defenses. One of these 
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proteins is Vpu, an approximately 80-amino-acid, multifunctional, single-span 

transmembrane phosphoprotein that resides primarily in intracellular membranes (116, 123). 

Notably, Vpu causes downregulation of the immune protein (and HIV receptor) CD4 and 

antagonizes the antiviral protein known as tetherin or Bst2. Vpu acts as an adaptor to link 

newly synthesized CD4 in the endoplasmic reticulum (ER) to the βTrCP-1 and βTrCP-2 

subunits of the cytosolic SCF E3 ubiquitin ligase complex, resulting in polyubiquitination 

and proteasomal degradation of CD4 (14, 32, 69, 107). The p97 ATPase plays a role in the 

extraction of CD4 from the ER membrane prior to degradation (11, 68). In addition, Vpu 

may cause the ER retention of CD4 as another mechanism to ensure low cell-surface levels 

of CD4 (68). Although the carboxy-terminal domain of Vpu seems the primary determinant 

of CD4 downregulation (23), the transmembrane domain may also play a role, possibly by 

affecting Vpu oligomerization (67).

The mechanism by which Vpu antagonizes tetherin is incompletely understood. Tetherin is 

an integral membrane protein that inhibits the production of infectious HIV and many other 

enveloped viruses, an activity that is blocked by Vpu (Figure 3a). Electron microscopy 

showed that tetherin prevents release of budded virions from the surface of the host cell 

(Figure 3b). (56, 79, 84, 128). Direct interactions between the transmembrane domains of 

Vpu and tetherin appear to be required for tetherin inhibition (5, 24, 51, 74, 109). Vpu 

downregulates cell-surface expression of tetherin (40, 79, 128), but there is considerable 

debate (summarized in References 6 and 23) whether Vpu prevents newly synthesized 

tetherin from reaching the cell surface, inhibits recycling of internalized tetherin to the cell 

surface, or directly removes tetherin from the plasma membrane. Similarly, the relative 

importance of Vpu-mediated degradation versus tetherin redistribution is unclear, and the 

intracellular site of Vpu-induced degradation is the subject of debate.

The transmembrane domain of Vpu also oligomerizes to generate an ion channel (108), but 

viroporin activity does not appear to be essential for its effects on CD4 expression or virus 

release (12). The three-dimensional structure of the Vpu transmembrane helix has been 

solved by nuclear magnetic resonance (NMR) spectrometry, but the oligomeric state of the 

protein in its active form is not known with certainty (83).

Fibropapillomavirus E5 Proteins

The E5 proteins

Regulate cell receptors.

Transmembrane ligands.

Another well-studied miniprotein is the bovine papillomavirus (BPV) E5 protein. The 

papillomaviruses are small DNA viruses that infect humans and a wide variety of animals, 

with human papillomaviruses (HPV) being responsible for ∼5% of all human cancers. BPV 

type 1 and related fibropapillomaviruses from other ungulate species (e.g., pigs and sheep) 

encode a small, hydrophobic E5 protein and cause skin warts or papillomas with a 

prominent fibroblastic component (in contrast to the HPV, which induce purely epithelial 

papillomas) (20, 103a). Only 43 or 44 amino acids long, all fibropapillomavirus E5 proteins 
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share an extremely hydrophobic central portion that serves as a transmembrane domain, a 

glutamine at position 17, an aspartic acid or glutamic acid at position 33, and two cysteines 

near the carboxy terminus that stabilize homodimer formation between two E5 monomers 

(21). Although their hydrophobic nature is a defining feature of the E5 proteins, the 

sequence of hydrophobic amino acids is quite divergent among different E5 proteins. 

Because ∼22 amino acids are required to span the membrane and the transmembrane 

domain of E5 is thought to be in the middle of the molecule, only about 10 amino acids from 

each end of E5 are likely to protrude from either surface of the membrane. Because E5 thus 

lacks a large soluble domain, it can be regarded in essence as a free-standing transmembrane 

domain (140a) (Figure 4).

The 44-amino-acid BPV E5 protein is the major oncogene product of BPV, inducing stable 

transformation of cultured fibroblasts, and is thought to be responsible for the fibrotropism 

of this virus in vivo (20, 21). Extensive genetic and biochemical studies demonstrated that 

the E5 protein stably transforms cells by causing sustained activation of the cellular platelet-

derived growth factor (PDGF) β receptor (82, 87). This receptor is normally activated by 

PDGF binding, which results in dimerization of the receptor, transautophosphorylation of 

the intracellular domain of the receptor at specific tyrosine residues, and initiation of 

intracellular signaling cascades. Unlike PDGF, which binds to the extracellular domain of 

the PDGF β receptor, the E5 dimer acts by forming a complex with the transmembrane 

domain of two molecules of the receptor, resulting in receptor dimerization and activation 

(Figure 5) (22, 37, 58, 85, 86, 111). Indeed, the ligand-binding domain of the receptor is not 

required for E5 action, demonstrating that E5 activates the receptor in a ligand-independent 

fashion. Thus the normal ligand and the E5 protein use different biochemical mechanisms to 

activate the same receptor.

The isolation of compensatory mutations that allow a mutant E5 protein to bind and activate 

a PDGF β receptor transmembrane mutant unable to recognize the wild-type viral protein 

demonstrated that E5 and the PDGF β receptor transmembrane domain contact one another 

directly (26), and models of the complex between the E5 protein and the PDGF β receptor 

have been proposed based on extensive mutational analysis and molecular modeling (2, 53, 

118). This analysis also demonstrated that the cysteines are required for E5 

homodimerization and can be replaced with a heterologous dimerization domain that forces 

the E5 monomers into the correct rotational orientation within the dimer (48, 72). Glutamine 

17 and aspartic acid 33 of E5 are thought to make a hydrogen bond with an essential 

threonine in the transmembrane domain of the receptor and a salt bridge with an essential 

lysine in the extracellular juxtamembrane domain of the receptor, respectively (54, 55, 76).

The interaction between the E5 protein and the PDGF β receptor is highly specific. The 

PDGF β receptor appears to be the only receptor tyrosine kinase activated by the E5 protein 

in transformed fibroblasts, the interaction is disrupted by conservative mutations in the 

PDGF β receptor transmembrane domain, and the E5 protein cannot transform cells by 

interacting with the closely related PDGF α receptor (39, 77, 78, 86--88, 111). The E5 

protein also engages the transmembrane subunit of the vacuolar ATPase (38), but the 

biochemical basis for this interaction and its biological consequences are unclear (21).
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These experiments demonstrated that small proteins unrelated to the normal ligand can 

activate receptor tyrosine kinases. They also demonstrated that a freestanding 

transmembrane domain not linked to a large soluble domain is sufficient for biological 

activity and that it acts by binding specifically to the transmembrane domain of a much 

larger cellular protein and modulating its activity. Similarly, the p12 transmembrane protein 

of HTLV-1 and its 66-amino-acid p8 cleavage product bind and modulate cellular 

transmembrane proteins that regulate several aspects of T lymphocyte function (27).

Some HPV also express hydrophobic E5 proteins, which play a role in virus replication and 

have weak transforming activity (28, 34, 59, 61). The 83-amino-acid HPV16 E5 protein 

modulates the activity of the epidermal growth factor receptor by enhancing or prolonging 

ligand-induced receptor activation, possibly by affecting receptor trafficking (21, 35, 90, 

114, 115). Recent studies suggest that the HPV16 E5 protein may hexamerize to form an ion 

channel required for its mitogenic activity (139). Thus, HPV16 E5 may be a viroporin.

Poxviruses are A Rich Source of Small Membrane Proteins

The poxviruses

Are very large and complex.

Lots of small proteins.

Poxviruses are large, enveloped, double-stranded DNA viruses that include smallpox virus, 

which is thought to have caused more human deaths than any other infectious disease in 

history prior to its eradication. Poxviruses replicate in the cytoplasm, where they generate a 

variety of membrane structures (19) (Figure 6). For vaccinia virus, the prototype mammalian 

poxvirus, numerous mutants interfere with the biogenesis or function of viral membranes. 

Studies of these mutants identified viral genes required for viral membrane formation, 

including those encoding some of the smallest known naturally occurring transmembrane 

proteins.

The initial annotation of the vaccinia virus genome had a threshold of 65 amino acids for the 

identification of viral open reading frames (ORFs), resulting in the identification of ∼200 

viral genes (36). However, this analysis overlooked several small genes, including the O3L 

gene, which encodes a 35-amino-acid membrane-associated virion protein with a single 

transmembrane domain (101, 102). O3L mutants display a marked defect in infectivity and 

plaque formation because of impaired virus entry. O3L is nearly absolutely conserved in all 

orthopoxviruses, and a small ORF with the potential to encode a similarly sized hydrophobic 

protein is located in the same genomic position in more distantly related poxviruses. Even 

though these distantly related proteins share little sequence similarity, O3L from divergent 

poxviruses can replace the vaccinia virus version in transcomplementation experiments and 

in recombinant viral genomes, demonstrating their functional equivalence (102). Analysis of 

chimeric O3L proteins and truncation mutants revealed that the transmembrane domain of 

O3L was sufficient for stable complex formation with other viral proteins involved in 

poxvirus entry and for the restoration of infectivity of O3L mutants (100, 102). Despite its 

importance, the transmembrane domain of O3L can tolerate many mutations without loss of 
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activity, implying that it has flexible sequence requirements (100). The I2L protein is 

another short transmembrane vaccinia virion protein required for virus entry (80).

Additional small transmembrane proteins are involved in vaccinia virus biogenesis. The 87-

amino-acid L2R virion membrane protein has two putative membrane-spanning domains, 

which may insert into membranes as a helix-turn-helix hairpin. The absence of L2R impairs 

proteolytic processing of other virion proteins and results in abnormal production of crescent 

membranes during the formation of virions (70). L2R binds to another small transmembrane 

virion protein required for virion biogenesis, the 42-amino-acid A30.5 protein, which resides 

in the ER membrane (Figure 6) (71). There is an ORF with the potential to encode a small 

hydrophobic protein at the same genomic position as A30.5 in all vertebrate poxviruses, 

although the amino acid sequences vary. Three additional membrane proteins required for 

proper virion biogenesis and maturation are A14L, its binding partner A17L, and A13L (75, 

98, 124, 125, 127). A14L is a dimeric 90-amino-acid glycosylated virion phosphoprotein 

with two well-conserved transmembrane domains (75), and A13L is a monomeric 70-

amino-acid virion membrane phosphoprotein with a single predicted transmembrane domain 

required for virion maturation (127). The 79-amino-acid I5L protein also contains two 

putative transmembrane domains and is exposed on the surface of the intact virion. 

Although it is dispensable for virus growth in cultured cells, I5L enhances virus replication 

and virulence (110, 126). Similarly, the A14.5L gene encodes a 53-amino-acid 

transmembrane protein dispensable for replication in cell culture but required for virulence 

in mice (10). It is not clear why poxviruses devote so many different miniproteins to virion 

production, but this strategy undoubtedly provides opportunities for regulation of this 

complex process.

Paramyxovirus SH Proteins

The SH protein.

Short hydrophobic protein.

The name says it all.

The paramyxoviruses are enveloped RNA viruses, which include important human 

pathogens such as mumps virus and respiratory syncytial virus. Many paramyxoviruses 

encode a short hydrophobic (SH) integral membrane virion protein between 44 and 60 

amino acids long. These proteins display little amino acid sequence homology, but they are 

encoded in the same region of the viral genomes, suggesting they serve similar functions. 

SH proteins are not required for virus replication in cultured cells (Figure 7), but viruses 

lacking the SH gene are attenuated in vivo (42, 121, 140). Notably, the SH proteins of 

respiratory syncytial virus and parainfluenza virus 5 are interchangeable in vivo, despite 

marked sequence differences (31). Similarly, the mumps virus SH protein can functionally 

complement the simian virus 5 SH deletion mutant (Figure 7) (140). This latter finding is 

particularly striking because mumps virus SH is a type I transmembrane protein, i.e., with its 

carboxy-terminus in the cytoplasm, whereas SV5 SH displays the opposite orientation. 

Clearly, the overall hydrophobic composition rather than the precise sequence of SH was 

selected, perhaps in combination with a few key residues.
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Paramyxoviruses lacking the SH protein display enhanced cytopathic effect and induction of 

apoptosis (Figure 7), suggesting that a major physiologic role of the SH protein is the 

inhibition of apoptosis induced by viral replication (31, 43, 64, 140). The premature cell 

death induced by these mutants presumably reduces virus yield and contributes to virus 

attenuation. Human metapneumoviruses lacking the SH protein induce enhanced secretion 

of proinflammatory mediators in the airway of infected mice as a consequence of increased 

activation of the transcription factor NF-κB (9). Further studies implied that the SH proteins 

of divergent paramyxovirus types block tumor necrosis factor-α-mediated activation of NF-

κB (Figure 7) (63, 140). The direct molecular targets of SH proteins remain to be identified, 

and perhaps the miniproteins themselves can be used as affinity reagents to isolate cell 

proteins that regulate apoptosis.

Recent structural studies indicate that the single transmembrane domain of respiratory 

syncytial virus SH protein homooligomerizes to form a pentameric ion channel in detergent 

micelles and lipid bilayers (33). Moreover, human cells expressing SH showed pH-

dependent ion channel activity, but it is not clear if this biochemical property is responsible 

for the activities in cells and animals described above.

Artificial Small Transmembrane Proteins Modeled on Viral Miniproteins

Traptamer proteins

Can alter cell behavior.

Transmembrane Ninjas!

The studies summarized above demonstrate that viral miniproteins carry out diverse 

functions that support viral replication, some by forming complexes with native cellular 

transmembrane proteins. We reasoned that in a large collection of artificial proteins 

composed of random hydrophobic sequences, many of them would insert into the membrane 

and adopt a stable α-helical conformation. Although the vast majority of such proteins are 

presumably inert, by chance some of them would bind to the transmembrane domain of a 

cellular protein and display biological activity. To test this idea, we constructed retroviral 

libraries expressing hundreds of thousands of small proteins containing totally randomized 

hydrophobic segments, expressed these proteins in cells, and imposed biological selection to 

identify the rare proteins in the libraries that displayed a desired activity. Genes encoding 

active proteins were then recovered from genomic DNA from the selected cells and 

characterized. We named these artificial transmembrane proteins traptamers, for 

transmembrane aptamers.

Using this approach, we isolated traptamers that activate the PDGF β receptor and transform 

cells (17, 29, 30, 95, 122), others that activate the erythropoietin (EPO) receptor and induce 

erythroid differentiation (16), and still others that downregulate expression of the HIV 

coreceptor CCR5 and inhibit HIV infection (103). The transmembrane domain sequences of 

these proteins are different and not homologous to known proteins (Figure 8). Some active 

traptamers are only 29 amino acids long, contain no sequences whatsoever from naturally 

occurring proteins, and have markedly reduced chemical complexity compared with natural 
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proteins (17). These studies revealed that the sequence of the transmembrane domain is 

sufficient to determine the identity of its target. Furthermore, traptamers can exert a variety 

of effects on both single-pass and multipass transmembrane proteins. These interactions are 

specific: Traptamers that activate the PDGF β receptor do not activate the EPO receptor and 

vice versa, traptamers that downregulate CCR5 do not downregulate CXCR4, and a 

traptamer selected to activate the human EPO receptor does not activate the mouse EPO 

receptor. Finally, multiple traptamers with diverse sequences can productively interact with 

the same target transmembrane domain (Figure 8), but traptamers that recognize the same 

target can engage the target in slightly different ways (89, 95).

Naturally occurring proteins and traptamers are subject to different evolutionary pressures. 

For example, viral proteins surviving natural selection are constrained by the evolutionary 

demands of virus replication and were thus presumably selected to recognize their targets 

within a certain range of affinities, possibly to recognize more than one target, or to exert a 

certain influence on their targets. In contrast, a traptamer, which can be selected for a single 

activity, can concentrate on that particular activity: bind its target with highest affinity, bind 

a single target, activate a single signaling pathway. Thus, traptamers can be specialists, 

unlike natural proteins, which may need to serve many masters.

Because of the intimate association of viruses with their hosts, viruses are powerful probes 

to identify and characterize important cellular regulatory nodes, thereby providing 

fundamental insights into numerous cellular processes. Traptamers can also be used to 

dissect cellular pathways. However, unlike intrinsic viral genes, which sample only those 

activities that benefit the virus, traptamers can be selected to perturb a wide variety of 

cellular processes. Traptamers are thus analogous to cellular proto-oncogenes transduced by 

acutely transforming retroviruses. Even though these oncogenes do not contribute to virus 

replication in most cases, study of them has illuminated many aspects of biology. The genes 

acquired by retroviruses in nature are restricted to the existing repertoire of cellular genes, 

and selection is restricted to tumor formation. In principle, the use of artificial proteins and 

different selection schemes eliminate both of these limitations and will result in the isolation 

of proteins to probe many aspects of cell behavior.

Conclusions and Implications

Natural and artificial short transmembrane proteins display numerous biochemical and 

biological activities. Most viral miniproteins were discovered by viral genome sequencing. 

Proteomic analysis of infected cells or purified virions may be useful in future discovery or 

validation efforts. Ribosome profiling, which has identified novel translated ORFs in 

cytomegalovirus, will also be useful for identifying new miniproteins (45, 112).

A striking feature of viral miniproteins is the relatively flexible sequence requirements in the 

transmembrane domain. This flexibility is revealed by the ability of these proteins to tolerate 

many hydrophobic substitution mutations and by the finding that related viruses often 

encode sequence-divergent but interchangeable miniproteins. For example, influenza virus 

A/M2 and BM2 proteins share little sequence similarity, yet both act as proton channels, and 

SH proteins with opposite transmembrane orientations can replace one another. In some 
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cases, a few key conserved residues are embedded in a hydrophobic context whose sequence 

can drift, as illustrated by the histidine and tryptophan in M2 and the essential hydrophilic 

residues in fibropapillomavirus E5 proteins. Indeed, an inactive traptamer with a 

monotonous polyleucine transmembrane domain can be converted into an oncoprotein by 

introducing two specific amino acids into the polyleucine segment (95). This sequence 

flexibility suggests that sequence conservation is not the best criterion to assess the 

likelihood that miniproteins carry out similar functions.

Another striking property of these miniproteins is their high specificity. Transmembrane 

domains are not inert protein segments whose sole biological role is to anchor a protein in a 

membrane and separate its extracellular and intracellular domains so they can exist on 

opposite sides of the membrane. Rather, transmembrane domains can exert specific effects 

on cells. This is perhaps seen most clearly with the BPV E5 protein, a freestanding 

transmembrane domain that activates a particular cellular receptor. Such specificity could 

arise because natural selection weeded out nonspecific activities of the miniprotein that 

interfered with virus replication. However, the isolation of traptamers that are specific for 

the selected target and that ignore closely related proteins not encountered during in vitro 

selection suggests that small transmembrane proteins are intrinsically specific. Nevertheless, 

it is possible that some miniproteins recognize multiple targets or exert off-target effects.

Influenza A virus M2 is an antiviral drug target, and other viral miniproteins may provide 

novel therapeutic opportunities. Potential targets include the SH proteins of pathogenic 

paramyxoviruses, numerous miniproteins required for poxvirus replication, HIV Vpu, and 

small transmembrane proteins such as hepatitis C virus p7 processed from larger precursor 

proteins. Proteins residing in virus or cell membranes may be particularly accessible to 

hydrophobic molecules acting at the cell surface. The size and relatively simple structure of 

these proteins should facilitate rational drug design, and screening for molecules that inhibit 

the ion channel activity of viroporins may be a useful surrogate assay to identify compounds 

with antiviral activity (132).

Because up to 30% of cell proteins and many viral proteins span membranes (60), it may be 

possible to build small transmembrane proteins that regulate many cellular and viral 

processes. Artificial miniproteins may have activities that never arose during evolution or 

were lost during natural selection. Can traptamers instigate a constellation of signaling 

pathways that is distinct from that initiated by natural ligands? Traptamers have been 

isolated that inhibit the PDGF β receptor by altering which tyrosine residues are 

phosphorylated in response to PDGF, demonstrating that traptamers can indeed fine-tune 

receptor activity (89). Can traptamers be selected that form membrane channels with novel 

specificity or endow existing transmembrane proteins with activities that cells never found 

useful?

Given the versatility of transmembrane miniproteins, their repeated emergence during virus 

evolution, and the relative ease of constructing similar proteins in the laboratory, it seems 

likely that cells also adopted this biochemical strategy. In fact, bacteria make wide use of 

small regulatory transmembrane proteins such as the 30-amino-acid MgtR protein of 

Salmonella enterica, which binds to the inner membrane protein MgtC and stimulates its 
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degradation (3, 4, 28a, 46). We predict that many similar proteins will be discovered in 

various cells by using the approaches pioneered to identify viral miniproteins. Indeed, 

increasingly sophisticated bioinformatics and biochemical approaches are being used to 

identify short, expressed ORFs in various organisms, but the biological activity of the vast 

majority of them has not been assessed (e.g., 28a, 140b). It is also possible that somatic 

mutations may confer oncogenic activity on small transmembrane proteins and thus 

contribute to the development of cancer in humans. Thus, as has frequently been the case, 

studies of viruses are providing unexpected insights into how proteins work and how cells 

function.
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Summary Points

1. Many viruses encode small transmembrane proteins, some shorter than 50 

amino acids.

2. Viral miniproteins regulate many aspects of viral replication and cell 

physiology.

3. Viroporins, one class of miniproteins, oligomerize and form ion channels.

4. The BPV E5 oncoprotein and other miniproteins bind to viral or cellular 

transmembrane proteins and regulate their activity.

5. Artificial small transmembrane proteins that display a variety of biological 

activities can be constructed and selected.

6. Cells are likely to express similar proteins that have eluded detection.
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Figure 1. 
Structure of the M2 proton channel. (a) Lateral view of the transmembrane domains of the 

influenza A virus M2 protein tetramer (ribbons) bound to the inhibitor amantadine (purple), 

as determined by solid state nuclear magnetic resonance (NMR) spectrometry. One helix 

from the foreground of the M2 tetramer has been removed for clarity. Six water molecules 

(red spheres) from the high-resolution crystal structure are superimposed on the NMR 

structure. The essential histidine and tryptophan side chains are shown in stick 

representation (green and blue) in the bottom portion of the structure. (b) An end-on view of 

the M2 tetramer (main chain, ribbons; amino acid side chains, green and blue sticks), 

showing the central aqueous pore. Adapted with permission from Reference 132, copyright 

2011 American Chemical Society; and Reference 52, copyright 2008 National Academy of 

Sciences USA.
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Figure 2. 
Role of M2 in membrane scission. (a) In an in vitro model of membrane scission, giant 

unilamellar vesicles containing a low level of cholesterol were mock treated (top) or 

incubated with wild-type (WT, middle) or mutant (bottom) amphipathic helix peptide from 

M2. Note the appearance of many pinched-off, small vesicles in the sample treated with the 

wild-type peptide. Reprinted from Reference 99, copyright 2010, with permission from 

Elsevier. (b) MDCK-M2Stop70 cells were infected with an influenza A virus mutant lacking 

the M2 gene. After 12 hours, cells were imaged by transmission electron microscopy. 

Elongated filamentous budding virion structure is indicated by a thin arrow; beads-on-a-

string budding virion structure is indicated by a thick arrow. Host cell is at the bottom. 

Adapted from Reference 73 with permission from the American Society for Microbiology.
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Figure 3. 
Vpu antagonizes the antiviral effect of tetherin. (a) Unmodified 293T cells or cells 

expressing tetherin were infected with wild-type HIV or HIV with a deletion in Vpu 

(delVpu), and after a single-cycle infection, virus production was assessed by infecting 

HeLa-TZMbl indicator cells with the medium and measuring expression of the integrated 

HIV-responsive luciferase gene. (b) Unmodified HT1080 cells or cells expressing 

exogenous tetherin were infected with wild-type HIV or delVpu (ΔV) and examined two 

days later by transmission electron microscopy. Note the large number of delVpu virions 

associated with the surface of cells expressing tetherin. Abbreviations: RLU, relative light 

units; wt, wild type. Reprinted from Reference 79 with permission from Macmillan 

Publishers, Ltd.
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Figure 4. 
BPV1 E5 protein. A schematic representation of BPV1 E5 dimers embedded in a lipid 

bilayer. The transmembrane domain of the E5 protein is shown in red, with the disulfide-

bonded carboxy terminus at the top (in the extracellular/luminal space). The membrane 

phospholipids are represented as spheres and the fatty acids as spindles. Reprinted from 

Reference 140a, copyright 2010, with permission from Elsevier.
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Figure 5. 
Model for E5-induced PDGF receptor activation. (a) Surface representation of monomeric 

inactive PDGF β receptor, showing the extracellular ligand-binding domain, the single 

transmembrane domain (shown as a single helical ribbon), and the intracellular kinase 

domain in an inactive, closed conformation. (b) PDGF receptor activation induced by PDGF 

binding. Pre formed PDGF dimer (center) binds to the extracellular domains of two PDGF 

receptor monomers and thereby facilitates dimerization via tight contacts, which allow one 

of the intracellular kinase domains to maintain an active, open conformation, ready to 

catalyze transphosphorylation. (c) PDGF receptor activation induced by BPV E5 binding. 

Instead of imposing PDGF receptor dimerization through ligand binding as seen in (b), BPV 

E5 (two transmembrane helixes) promotes receptor dimerization through direct contacts 

with the receptor transmembrane segments. The following structures were used to generate 

these models: crystal structure of PDGF-BB in complex with the ligand-binding domains of 

PDGF β receptor (108a), crystal structures of the ectodomain of c-Kit before and after SCF 

binding (140c), and 3-D cryoEM reconstruction of the entire c-Kit transmembrane receptor 

in complex with SCF (82a). Abbreviations: PDGF, platelet-derived growth factor; SCF, 

stem cell factor. Figure prepared by Yarden Opatowsky (Bar-Ilan University) and adapted 

from Reference 108 (copyright 2010 National Academy of Sciences, USA) and Reference 

140c (copyright 2007 Elsevier), with permission.
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Figure 6. 
Poxvirus membrane formation. Numerous viral transmembrane miniproteins are required for 

proper poxvirus membrane biogenesis, infectivity, and/or virulence. This transmission 

electron micrograph shows incomplete viral membranes (pseudocolored red) forming from 

endoplasmic reticulum (ER) membranes (purple) in cells infected with vaccinia virus 

lacking the A30.5 miniprotein. Adapted from Reference 71 with permission from the 

American Society for Microbiology.
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Figure 7. 
Effects on SH proteins on virus replication and apoptosis.(a) Permissive BSR-T7 cells were 

infected with wild-type recombinant simian virus 5 (SV5) or an SV5 mutant lacking the SH 

gene (SV5ΔSH), and plaque formation was assessed. (b) MBDK cells were mock infected, 

infected with wild-type SV5, infected with SV5ΔSH, or coinfected with SV5ΔSH and wild-

type mumps virus (MuV), which express MuV SH protein (ΔSH + MuV). Photomicrographs 

were taken five days later. Note the marked cytopathic effect in cells infected with SV5ΔSH 

but not in the coinfected cells. (c) L929 cells were mock infected or infected with wild-type 

SV5 or SV5ΔSH. One day later, localization of NF-κB p65 was determined by 

immunofluorescence in permeabilized cells. Note nuclear translocation of NF-κB in cells 

infected with SV5ΔSH. Adapted from Reference 140 with permission from the American 

Society for Microbiology.
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Figure 8. 
Divergent sequences of traptamers. The sequences of the wild-type BPV1 E5 protein and the 

indicated traptamers are shown, together with their cellular targets. The randomized segment 

of each traptamer is shown in blue. In TC2-3, the transmembrane domain of E5 was 

replaced with a randomized transmembrane domain. TM36-4 contains an N-terminal poly-

His tag, and BY1PC2 contains an N-terminal HA tag. Note the divergent sequences of the 

traptamers that recognize the same target. Abbreviations: EPO, erythropoietin; PDGF, 

platelet-derived growth factor.
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