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Introduction
In this study, we use machine learning to bring together 
multiple global datasets from remote sensing, meteorology, 
and population density, together with hourly in situ PM2.5 
observations from 55 countries over the last two decades. This 
allowed the creation of a new global PM2.5 product at 10 km 
resolution from August 1997 to the present.1 This new dataset 
is specifically designed to support health impact studies. We 
show some examples of this global PM2.5 dataset, and finish 
by examining the mental health emergency room admissions 
in Baltimore, MD.

In March, 2014, the World Health Organization (WHO) 
released a report stating that seven million premature deaths 
annually are linked to air pollution (http://www.who.int/
mediacentre/news/releases/2014/air-pollution/en/). Airborne 
particulate matter is a significant component of this pollution. 
The wide range of health impacts (Table 1) of particulate mat-
ter (PM) with a diameter of 2.5 micrometers or less (PM2.5) 
depend in part on the PM2.5 abundance at ground level in 
the atmospheric boundary layer (Fig. 1), where they can be 
inhaled. These health outcomes range from general mortality 
to pulmonary effects, asthma and chronic obstructive pul-
monary disease (COPD), lung cancer, cardiovascular effects, 
reproductive effects, and even neurotoxic effects.

Our radically new approach1 uses a suite of more than 
40 NASA remote sensing and meteorological data products 
(Table 2) together with hourly ground-based observations of 
air quality from 8,329 measurement sites in 55 countries taken 
between 1997 and the present to train a proprietary machine 
learning algorithm to estimate the daily air quality from 1997 to 
the present. To the best of our knowledge, this is the most sys-
tematic and comprehensive study ever conducted. In addition, 
our PM2.5 product is the only one we know of that provides an 
uncertainty estimate. The PM2.5 data product is produced by a 
real-time processing system with a latency of 1 day and is then 
available for integration in a variety of health decision support 
tools. Our goal is learning from the past to inform the future.

Health impacts. Numerous studies have shown that 
among air pollutants PM2.5 has the strongest link with human 
health effects.3–6 Increased morbidity and mortality has been 
associated with exposure to PM2.5,7 thereby suggesting that 
improved life expectancy is possible by reducing the expo-
sure level.8 Not only in the US but also in European studies  
a significant number of premature deaths, including cardio-
pulmonary and lung-cancer deaths, were attributed to long-
term exposure to PM2.5.9–11

For more than half a century, researchers have been 
studying the impact of PM on health. Initially the attempt 
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Table 1. Particulate matter and health outcomes for Pm10, Pm2.5, and ultrafine particulates (UFPs) (modified from Ref. 2).

HEALTH oUTCoMES SHoRT-TERM STUdIES LoNG-TERM STUdIES

PM10 PM2.5 UfP PM10 PM2.5 UfP

Mortality

all causes XXX XXX X XX XX X

Cardiovascular XXX XXX X XX XX X

Pulmonary XXX XXX X XX XX X

Pulmonary effects

lung function, eg, PEF XXX XXX XX XXX XXX

lung function growth XXX XXX

Asthma and CoPd exacerbation

acute respiratory symptoms XX X XXX XXX

medication use X

Hospital admission XX XXX X

Lung cancer

Cohort XX XX X

Hospital admission XX XX X

Cardiovascular effects

Hospital admission XXX XXX X X

ECG-related endpoints

autonomic nervous system XXX XXX XX

myocardial substrate and vulnerability XX X

vascular function

Blood pressure XX XXX X

Endothelial function X XX X

blood markers

Pro-inflammatory mediators XX XX XX

Coagulation blood markers XX XX XX

Diabetes X XX X

Endothelial function X X XX

Reproduction

Premature birth X X

Birth weight XX X

iUr/sga X X

fetal growth

Birth defects X

infant mortality XX X

sperm quality X X

Neurotoxic effects

Central nervous system X XX

Notes: X, few studies. XX, many studies. XXX, large number of studies.
Abbreviations: UFP, ultrafine particle; PEF, peak expiratory flow; COPD, chronic obstructive pulmonary disease; IUG, intrauterine growth restriction; SGA, small 
for gestational age.

was to learn about the possible adverse effects, and then the 
focus shifted to investigating the exposure–response relation-
ships. Now with further advancement in technology and more 
awareness of health concerns, studies on composition-specific 
effects have emerged.12 With the implementation of compu-
tational fluid dynamics (CFD) models and digital imaging of 

organs, researchers have started to study the pathophysiology 
associated with PM to better understand the translocation of 
particulates in the human body after their deposition as well 
as the fate of these particulates in impacting health.

Most short-term exposure impact studies on PM2.5, 
whether for morbidity or mortality, focus on cardiovascular/
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cardiopulmonary13 or respiratory14 conditions. Our dataset, 
with daily temporal scale, is suitable for such studies. We are 
already studying daily asthma-related hospital admissions 
associated with PM2.5 using our estimated data.

On the other hand, diseases such as lung cancer require 
study of the long-term exposure to PM2.5. Data generated from 
this study is expected to contribute to health impact assess-
ment (HIA) in different parts of the world concerning long-
term exposure to PM2.5. Currently, long-term PM values are 
not available in many localities, and in many instances PM2.5 
values are estimated from PM10 for long-term HIA.10 Stud-
ies also suggest that even low-level PM2.5 exposure can con-
tribute to serious health impacts.15–18 We have already created 
daily global estimates of PM2.5 with an associated uncertainty 
from 1997 to the present,1 providing an appropriate dataset 
for extended cohort studies for the areas with both high and 
low levels of ambient PM2.5. In addition, long-range trans-
portation of dust can provide potential vectors for bacteria.19,20 
With global coverage of this study, tracking PM2.5 transport 
is now easier for public health surveillance.

In recent years, researchers are finding it worthwhile to 
investigate a link of PM2.5 exposure with adverse birth out-
comes,21,22 epigenetic alteration,23–36 infant mortality,37–42 
athero sclerosis,43–45 stroke,46–50 rheumatic autoimmune disea-
ses,51,52 central nervous system disorders,53–57 and diabe-
tes.58–60 Since many of these health conditions are interlinked, 
comprehensive studies are required to better understand the 
impact of PM2.5. With increasing availability of electronic 
health records, reliable PM2.5 data with seamless temporal 
and geographic coverage can contribute to revealing many 
unknowns of PM2.5 impacts on health.

The type and degree of adverse effect greatly depends on 
the composition of the particulate matter. Particle composi-
tion is a function of both its primary source and any secondary 
chemical reactions and transformations that may occur during 
its atmospheric transport. Our current study does not provide 
information on the composition of PM2.5. However, this study 
can be extended to examine the potential of source apportion-
ment considering land use/land cover conditions and trans-
portation mechanism. Recent studies show specific adverse 
impacts of exposure to ultrafine particles (UFPs).

PM2.5 distribution. Various networks of ground-based 
sensors routinely measure the abundance of PM2.5. However, 
the spatial coverage has many large gaps, and in some coun-
tries no observations are made at all. Globally, more obser-
vations of PM10 are available than PM2.5. This paper focuses 
on PM2.5, which in the literature has been related to a wider 
variety of health conditions than PM10 or UFPs (Table 1).

Several studies have sought to overcome this limitation of 
spatial coverage by using remote sensing and satellite-derived 
aerosol optical depth (AOD) coupled with regression and/
or numerical models to estimate the ground-level abundance 
of PM2.5.61–80

Studies have shown that the relationship between PM2.5 
and AOD is not always suitable for simple regression models. 
Rather, it is determined by a multivariate function of a large num-
ber of parameters, including humidity, temperature, boundary 
layer height, surface pressure, population density, topography, 
wind speed, surface type, surface reflectivity, season, land use, 
normalized variance of rainfall events, size spectrum and phase 
of cloud particles, cloud cover, cloud optical depth, cloud top 
pressure, and the proximity to particulate sources.7172,75,78,80–99 
The picture is further complicated by the biases present in the 
satellite AOD products,100–104 the difference in spatial scales of 
the in situ point PM2.5 observations and the remote sensing data 
(several kilometers per pixel), and, finally, the sharp PM2.5 gra-
dients that can exist in and around cities.

The large number of datasets we use in our fully nonlin-
ear, nonparametric machine learning estimate of PM2.5 are 
shown in Table 2. Future studies are recommended to derive 
further size fractions beyond just PM2.5, particularly the UFPs 
in the submicrometer size range.

This study. Our approach and its validation are described 
elsewhere.1 The approach makes five incremental contributions.

First, we believe that we have used the most compre-
hensive training dataset to date for a study that empirically 
relates hourly in situ PM2.5 observations to remote sensing, 
meteorological, and other contextual environmental data. This 
is important because the local context of the various PM2.5 
observations varies widely, and to have a robust estimation 
of the global PM2.5 distribution we must be able to have 
representative observations over a wide range of conditions. 
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figure 1. (left) a schematic of the atmospheric boundary layer, which is the layer of the atmosphere closest to the earth’s surface. (right) schematic 
representation of how the height of the boundary layer changes through the day.
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Hourly PM2.5 observations were acquired from 1997 to the 
present from across the world. In this study, we used hourly 
PM2.5 data from 8,329 measurement sites in 55 countries.

Second, we believe that we have used the widest range of 
contextual variables to date (over 30, these variables identified 
from the literature presented in the last section) in our analy-
sis of the measured multivariate, nonlinear, nonparametric 
relationship between ground-based observations of PM2.5 and 
remote sensing observations, meteorological observations, and 
associated contextual information.

Third, we have used the most suitable multivariate, non-
linear, nonparametric machine learning approach currently 
available (briefly described in the next section), which has not 
been used previously for investigating the empirical relationship 
between hourly in situ PM2.5 observations and remote sensing, 
meteorological, and other contextual environmental data.

Fourth, we not only estimate the PM2.5 abundance but 
also provide an uncertainty estimate.

Fifth, we cover the longest time period, estimating the 
PM2.5 abundance on a daily basis from September 1, 1997, up 
to the present.

Many studies have shown that the relationship between 
PM2.5 and AOD is a multivariate function of a large number 
of parameters.71,75,78,80,98 Further, many of these relationships 
are nonlinear, some are of unknown functional form, and 
many have non-Gaussian distributions. Therefore, any success-
ful description of the relationship between PM2.5 and AOD 
needs to be multivariate, nonparametric (we do not know the 
functional form from theory), and able to deal with nonlinear 
behavior and non-Gaussianly distributed variables. This would 
suggest that a machine learning algorithm should be used.

A useful validation of the new PM2.5 data product is to 
survey the key features of the global PM2.5 distribution and 
see if they capture what we expect to find and what has been 
reported in the literature.

examples. As an example, Figure 2 shows the monthly 
average of our machine learning PM2.5 product (µg m–3) for 
August 2001. The average of the observations at a given site 
is overlaid as color filled circles when observations were avail-
able for at least a third of the days. Notice the good agree-
ment between the PM2.5 product and the observations. Also, 
as would be expected, in summer, the eastern US has much 
higher PM2.5 abundance than the western US. Central Val-
ley and LA are clearly visible in California. Inset panel (a) is 
of Alaska and highlights common fire areas associated with 
elevated PM2.5. Insets (b) and (c) show the good agreement 
between our product and observations. Inset (d) shows the 
elevated PM2.5 with the heavily agricultural Central Valley 
in California, the highly populated Los Angeles metro area, 
the Sonoran desert (one of the most active dust source regions 
in the US), the Four Corners power plants (some of the larg-
est coal-fired generating stations in the US), and the Great 
Salt Lake Desert. Note the fine scaled features visible in this 
product.

Figure 3 shows a very different kind of example, this time 
for Indonesia during October 2005 and October 2006. In 
Equatorial Asia, the El Nino phase of the El Nino Southern 
Oscillation (ENSO) is linked to extended periods of drought 
lasting a few months to a year, particularly in areas undergo-
ing land-use conversion to more fire-susceptible regimes, such 
as the peatlands of Sumatra and Borneo.105 Fire emissions 
in these areas have been observed to be as much as 30 times 

Table 2. Datasets used in this study.

EARTH obSERvATIoN  
dATA, ModEL, ANd TooL

PRodUCT  
(NAME ANd RESoLUTIoN)

vARIAbLES RELATIoN To PM2.5  
AbUNdANCE

nasa gmao gEos 5 mErra thirty-eight surface layer and land surface  
variables are used, including the height of  
the planetary boundary layer, precipitation,  
the surface humidity, wind speed,  
temperature, and density

Factors related to the production,  
dispersion, or removal of  
boundary layer Pm2.5

mErra
1979 to present

2/3° × 1/2°
(lat., long.)

seaWiFs
1997–2010

Deep Blue
0.5° × 0.5°

aerosol optical depth, angstrom exponent,  
single scattering albedo, viewing geometry,  
illumination geometry, surface reflectivity,  
and assorted flags

measure of total aerosol  
abundance in a vertical  
atmospheric profile

moDis terra & aqua
2000–present
2002–present

moD04
mYD04
Collection 5.1
10 km × 10 km

Deep Blue and standard retrievals of aerosol  
optical depth, viewing geometry, illumination  
geometry, surface reflectivity, and assorted  
flags

measure of total aerosol  
abundance in a vertical  
atmospheric profile

moDis
2000–present

mCD43C3
0.05° × 0.05°

Seven wavelength band surface reflectance related to surface sources of  
Pm2.5 and aoD biases

moDis
2000–present

mCD45a1
500 m

gridded burned area product, which contains  
burning and quality information on a per-pixel  
basis

Fires are a major source of Pm2.5

Abbreviations: AOD, aerosol optical depth; GMAO, global modeling and assimilation office; MERRA, modern-era retrospective analysis for research and 
applications; MODIS, moderate resolution imaging spectroradiometer; SeaWIFS, sea-viewing wide field-of-view sensor.
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higher during El Nino compared to La Nina years.106 Com-
parison of our PM2.5 product for October 2005 (panel a) and 
October 2006 (panel b) shows monthly average enhancements 
in surface PM2.5 concentrations during the 2006 El Nino 
event of more than 30 µg m–3. The large regions of burning 
are clearly visible in October 2006.

Finally, Figure 4 shows that our machine learning 
approach (background colors) well reproduces the US PM2.5 
seasonal cycle when compared to climatology observations 
(overlaid color filled circles).

Limitations. A unique strength of this study is the daily 
global coverage from 1997 to the present. However, as a con-
sequence of having a wide array of point sources, the PM2.5 
abundance can contain high spatial variability on small 
scales. The spatial resolution of our study is 10 km × 10 km 
(approximately 0.1° × 0.1°) determined by the spatial reso-
lution of the MODIS collection 5 aerosol products. Spa-
tial variability on scales smaller than 10 km is present but 
unresolved in our data product. In addition, there are data 
gaps due to both cloud coverage and the difficulty that the 
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figure 2. the monthly average of our machine learning Pm2.5 product (µg m–3) for august 2001. the average of the observations at a given site is 
overlaid as color filled circles when observations were available for at least a third of the days. Notice the good agreement between the PM2.5 product and 
the observations. also, as would be expected, in summer, the eastern Us has much higher Pm2.5 abundance than the western Us. Central valley and la 
are clearly visible in California. inset panel (A) is of Alaska and highlights common fire areas associated with elevated PM2.5. insets (b) and (C) show the 
good agreement between our product and observations. inset (d) shows the elevated Pm2.5 with the heavily agricultural Central valley in California, the 
highly populated los angeles metro area, the sonoran desert (one of the most active dust source regions in the Us), and the Four Corners power plants 
(some of the largest coal-fired generating stations in the US), and the Great Salt Lake Desert. Note the fine scaled features visible in this product, which 
are in marked contrast to the airnow product.
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figure 3. an example of our machine learning Pm2.5 product (µg m–3) for indonesia during october 2005 and october 2006. in Equatorial asia, the El nino 
phase of the El nino southern oscillation (Enso) is linked to extended periods of drought lasting a few months to a year, particularly in areas undergoing 
land-use conversion to more fire-susceptible regimes, such as the peatlands of Sumatra and Borneo.105 Fire emissions in these areas have been observed 
to be as much as 30 times higher during El nino compared to la nina years.106 Comparison of our Pm2.5 product for october 2005 (panel A) and october 
2006 (panel b) shows monthly average enhancements in surface Pm2.5 concentrations during the 2006 El nino event of more than 30 µg m–3.
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figure 4. monthly average Pm2.5 climatology (in µg m–3) for 1997–2014 estimated using machine learning. The overlaid color filled circles are a 
climatology of available observations.

standard MODIS retrieval algorithm has with retrievals 
over bright surfaces.

In MODIS collection 5.1 Deep Blue Terra data is not 
available after 2007. When collection 6 is released, this should 
be remedied, and there will be greater Deep Blue data cov-
erage and higher spatial resolution. Collection 6 will include 
various refinements to Deep Blue, including extended cov-
erage to vegetated and bright land surfaces, improved cloud 
screening and surface reflectance, and aerosol microphysical 

models. Many of these improvements were developed during 
the recent application of Deep Blue to SeaWiFS data.

MODIS collection 6 is about to be released and will 
help address several of these issues. Collection 6 will have a 
3-km resolution and greater Deep Blue data coverage. Collec-
tion 6 will include various refinements to Deep Blue, includ-
ing extended coverage to vegetated and bright land surfaces, 
improved cloud screening and surface reflectance, and aerosol 
microphysical models. In addition, any satellite instrument 
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304 305 305.01 305.5 305.51 305.6 305.9 305.91 307.81 309 309.9 311 312.9 313.81

1 0.2 0.51 0.41 −0.088 0.67 0.76 0.43 −0.094 0.76 0.25 0.33 0.66 −0.27 −0.018

0.53 0.093 0.19 0.79 0.017 0.0038 0.16 0.77 0.0044 0.44 0.29 0.019 0.39 0.95

212 2011 233 296 126 146 641 318 285 141 242 2187 323 134

Co −0.19 −0.5 −0.55 0.02 −0.59 −0.64 −0.55 −0.12 −0.71 −0.03 −0.43 −0.75 0.017 −0.04

0.56 0.099 0.061 0.95 0.044 0.024 0.065 0.7 0.01 0.93 0.16 0.0054 0.96 0.9

212 2011 233 296 126 146 641 318 285 141 242 2187 123 134

no2 −0.047 0.11 −0.33 0.016 −0.47 −0.091 −0.2 −0.15 −0.36 0.26 −0.41 −0.23 −0.63 −0.097

0.88 0.73 0.3 0.96 0.13 0.78 0.53 0.64 0.25 0.42 0.19 0.48 0.027 0.76

212 2011 233 296 126 146 641 318 285 141 242 2187 323 134

Pm2.5 0.22 0.42 0.18 0.071 0.75 0.41 0.15 −6.28 0.89 0.0057 0.11 0.45 -0.3 −0.32

0.5 0.17 0.58 0.83 0.0053 0.19 0.64 0.38 0.00013 0.99 0.73 0.14 0.34 0.31

212 2011 233 296 126 146 641 318 285 141 242 2187 323 134
 

Table 3. Correlation between the iCD-9-Cm diagnosis codes (column) and the environmental variables (row) temperature (t), carbon monoxide 
(Co), nitrogen dioxide (no2), and Pm2.5. For each correlation there are three numbers: first, the correlation coefficient; second, the P-value; and 
third the number of data points. The numbers in bold are entries with a correlation coefficient of 0.5.

291.81 292 295.3 295.7 295.9 296.2 296.33 296.7 296.9 298.9 300 300.01 300.9

t 0.6 0.87 0.44 0.033 0.57 0.22 0.33 −0.13 −0.12 −0.11 0.41 0.66 0.49

0.04 0.00025 0.16 0.92 0.055 0.5 0.3 0.69 0.72 0.74 0.19 0.018 0.1

192 618 153 202 397 266 132 439 232 386 936 209 625

Co −0.43 –0.71 −0.28 0.012 –0.3 –0.17 –0.37 0.068 0.0074 −0.023 −0.23 −0.52 −0.46

0.16 0.0091 0.37 0.97 0.35 0.61 0.24 0.83 0.98 0.94 0.48 9.08 0.14

192 618 153 202 397 266 132 439 232 386 936 209 625

no2 −0.17 –0.4 −0.065 0.35 0.081 –0.082 0.034 −0.51 −0.57 −0.23 −0.074 –0.24 0.027

0.6 0.2 0.84 0.27 0.8 0.8 0.92 0.091 0.054 0.48 0.82 0.45 0.93

192 618 153 202 397 266 132 439 232 386 936 209 625

Pm2.5 0.71 0.8 0.43 0.12 0.61 0.055 0.23 0.28 −0.081 0.15 0.08 11.51 0.12

0.0096 0.002 0.16 0.72 0.035 0.86 0.48 0.38 0.8 0.65 0.8 0.087 0.71

192 618 153 202 397 266 132 439 232 386 936 209 625

has a finite life, and both MODIS satellites are aging. We 
hope that data continuity will be provided by the recently 
launched Visible Infrared Imaging Radiometer Suite (VIIRS) 
on the Suomi National Polar-Orbiting Partnership weather 
satellite. When data quality from VIIRS becomes acceptable, 
that data can also be used.

Although, to our knowledge, we have used more training 
data than any other studies of PM2.5 estimation, there are yet 
certain parts of the world from where we are still collecting 
training data. This lack of uniformity in training data may 
cause some inconsistency in data product quality. However, as 
we make progress in acquiring more ground PM2.5 data from 
different parts of the world having gaps, quality of our dataset 
will improve for those parts of the world as well.

emergency room Admissions for Mental Health 
Issues in baltimore
Epidemiological studies have consistently shown an asso-
ciation between air pollution and respiratory and cardio-
vascular conditions (Table 1). In this analysis, we extend  

this to cover psychologically and mentally related health 
issues. By combining ambient air quality data and noncon-
fidential ambulatory care emergency department admissions 
in Maryland for 2002, we examined the hypothesis that the 
number of admissions to Baltimore City emergency rooms 
with psychologically and mentally related issues increase 
when the level of air pollution increases. The study yielded 
some interesting results, showing a correlation between cer-
tain air pollutants (ie, particulate matter) and specific types 
of schizophrenia (ICD 9 Code 295.9). Table 1 summarizes 
the key health impacts associated with airborne particulates. 
However, there is little published work on the relationship 
between air pollution and mental health. It is time to consider 
the impact of atmospheric pollution on mental health.

It is disturbing to see various psychiatric and psychological 
conditions on the rise [ie, depression, anxiety, post-traumatic 
stress disorder (PTSD), and suicide]. Moreover, the incidence 
of psychological disorders and mental illnesses is much higher 
in highly populated cities than in other parts of the country.107 
Stress of a busy city life plays a role,108 and can serve as a trigger  
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for undesirable genetic predisposition. Psychotic disorders 
include various types of schizophrenias. As with other men-
tal illnesses, their concentration is high in the bigger cities. 
Symptoms of schizophrenia may include delusions, hallucina-
tions, disorganized speech, grossly disorganized or catatonic 
behavior, negative symptoms [ie, affective flattening, alogia 
(inability to speak), or avolition (inability to make decisions)]. 
Schizophrenia is divided into subtypes such as paranoid, dis-
organized, catatonic, undifferentiated, and residual.109 It is 
now known that unless a person has a genetic predisposition 
for schizophrenia, he or she cannot develop the illness.110 Not 
all people who are genetically predisposed develop an acute 
form of schizophrenia. Although socioeconomic factors have 
been found to play an important role in the development of 
schizophrenia,111 the precise origins remain unknown.

Interestingly, many symptoms present in mental disor-
ders can be induced chemically, through administration of 
intravenous injection or inhaling. For many disorders, DSM 
(the Diagnostic and Statistical Manual) includes a section for 
“chemically induced” conditions, thereby attributing the eti-
ology to chemical exposures. It is important to consider the 
different possible factors that contribute to the development of 
schizophrenia. For example, what role might heavy air pollu-
tion play in this process, considering that both pollution and 
mental illness are concentrated in large cities?

Mental health and air pollution. How are people at risk 
of schizophrenia affected by air pollution? Family history of 

schizophrenia is the strongest and the best established risk factor 
for the disease at the individual level.112 Pedersen has shown that 
the risk for schizophrenia increased with increasing levels of all 
air pollution variables and traffic density but only significantly 
for benzene, CO, and traffic.113 It has also been shown that the 
higher the levels of traffic, CO, and benzene, the greater was the 
risk of schizophrenia, while the levels of NOx and NO2 had no 
impact. However, only the level of traffic at birth had a signifi-
cant effect. It was found that children born in an urban area had 
a greater risk of schizophrenia than those born in rural areas.

While previous studies have hinted at a link between air 
pollution and physiological conditions, we were interested to 
see whether there is a correlation between air pollution and 
psychological states. Krabbendam and van Os107 in more than 
10 studies have consistently shown that around one-third of all 
schizophrenia incidence may be related to unknown but likely 
unconfounded environmental factors operating in the urban 
environment that have an impact on developing children and 
adolescents to increase, relatively specifically, the later expres-
sion of psychosis-like at-risk mental states and overt psychotic 
disorders.

We used the nonconfidential ambulatory care file for 
emergency department admission data for 2002 in Maryland. 
The emergency room admissions data for the entire state of 
Maryland during 2002 consisted of 1,684,008 admissions. Of 
these, a total of 348,883 were for Baltimore City. To provide 
more reliable sample sizes, the data for mental disorders was 
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considered in monthly increments. For 2002, the total number 
of cases classified under the category of mental disorders in 
Baltimore City was 13,163.

The number of admissions in each month for each of the 
disorders was then correlated with air quality observations in 
Baltimore City. The EPA data were considered for every hour 
of every day of 2002. The monthly average of the daily maxima 
was used. In this study, we considered temperature (T), car-
bon monoxide (CO), nitrogen dioxide (NO2), and particulate 
matter with a diameter of less than 2.5 micrometers (PM2.5).

Analysis. Correlation is obviously not causation. How-
ever, we found that the number of people diagnosed with 
unspecified schizophrenia (ICD-9-CM Diagnosis 295.9) was 
significantly related to particulate matter (r = 0.61, p = 0.03) 
and temperature (r = 0.56, p = 0.05). The number of people 
diagnosed with unspecified schizophrenia had no correlation 
with CO or NO2. Paranoid schizophrenia (ICD-9-CM Diag-
nosis 295.3) and schizo-affective type schizophrenia (ICD-
9-CM Diagnosis 295.7) had no significant relation to the air 
pollutants we had data for.

Other types of schizophrenia had insufficient rates of 
admission to ascertain any effect. Other mental disorders 
were correlated with particulate matter. Drug psychosis was 
related to PM2.5 (r = 0.8, p = 0.001) and T (r = 0.87, p = 0002). 
Nondependent abuse of drugs was related to PM2.5 (r = 0.75, 
p = 0.004) and T (r = 0.67, p = 0.01). Alcoholic psychosis was 
correlated to PM2.5 (r = 0.7, p = 0.009) and T (r = 0.6, p = 0.04). 
Neurotic disorders (r = 0.66, p = 0.01) and depressive disor-
der not elsewhere classified (r = 0.67, p = 0.01) were related 
to temperature. There is an extraneous factor with regard to 
CO that acted as a confounder for this study. Carbon monox-
ide is strongly negatively correlated with temperature. Thus, 
the highest levels of CO are observed in winter months. CO,  
a chemical poisonous to humans, is unlikely to have any causal 
relationship with decreased emergency room admissions of 
patients with mental disorders.

This analysis has yielded some interesting results, espe-
cially with regard to the correlation between PM2.5 and several 
mental disorders. However, it is important to keep in mind the 
possibility of other factors. For example, when we talk about a 
correlation between air pollution and drug-related disorders, 
it is possible that significant results are due to a third unknown 
factor. For example, major sporting events in Baltimore city, 
which might increase the pollution level due to heavy traffic, 
also might increase the number of emergency room admis-
sions with alcohol or drug problems as a consequence of the 
event. As we think about the diagnosis of unspecified schizo-
phrenia by the emergency room, another question arises: Are 
there coding issues here? Is there a bias toward giving a coding 
of unspecified schizophrenia, perhaps due to a lack of psycho-
logical expertise in the emergency room department.

Nonetheless, this study clearly demonstrates a correlation 
between PM2.5 and a number of psychological conditions. This 
air pollutant is not well known for associations with mental 

health, nor has it been studied extensively with regard to men-
tal health. In view of our findings, further research might be 
conducted in the area of mental health and air pollution.

conclusions
A new approach to use ground-based observations of particu-
late matter together with a suite of remote sensing and meteo-
rological data products to train a machine learning algorithm 
to estimate the daily distributions of PM2.5 has been demon-
strated. This new PM2.5 daily global data product reproduces 
global observations and spans an unprecedented 16 years from 
1997 to the present. The correlation coefficient for each of the 
five training datasets is 0.96 or greater, and the correlation 
coefficient for each of the independent validation datasets is 
0.52 or greater. This implies that the PM2.5 abundance inferred 
using machine learning agrees well with the ground truth 
from in situ observations. The quality varies slightly with the 
satellite, with the best fits obtained from Terra data, followed 
by Aqua, and SeaWIFS. In all cases, the shape of PM2.5 data 
product reproduces the observations between the 25th and 
75th quantiles. The machine learning PM2.5 data product is 
useful for human health studies because it resolves both spa-
tial and temporal variability. PM2.5 appears to have a role not 
just in health outcomes such as cardiovascular and respiratory 
conditions, but also has an impact on some aspects of mental 
health. An example of this is the statistically significant asso-
ciation of emergency room admissions we found during 2002 
for unspecified schizophrenia and airborne particulate matter 
in Baltimore, MD.
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