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Abstract

Behavioral scientists have historically relied on static modeling methodologies. The rise in mobile 

and wearable sensors has made intensive longitudinal data (ILD)—behavioral data measured 

frequently over time—increasingly available. Consequently, analytical frameworks are emerging 

that seek to reliably quantify dynamics reflected in these data. Employing an input-output 

perspective, dynamical systems models from engineering can characterize time-varying behaviors 

as processes of change. Specifically, ILD and parameter estimation routines from system 

identification can be leveraged together to offer parsimonious and quantitative descriptions of 

dynamic behavioral constructs. The utility of this approach for facilitating a better understanding 

of health behaviors is illustrated with two examples. In the first example, dynamical systems 

models are developed for Social Cognitive Theory (SCT), a prominent concept in behavioral 

science that considers interrelationships between personal factors, the environment, and behaviors. 

Estimated models are then obtained that explore the role of SCT in a physical activity 

intervention. The second example uses ILD to model day-to-day changes in smoking levels as a 

craving-mediated process of behavior change.

I. Introduction

Historically, accurately quantifying human behavior with respect to time had met with 

limited success. This is largely due to methodological challenges associated with frequent 

measurement of behavioral constructs, which helped lead to behavioral science research's 

reliance on tightly controlled laboratory or clinical settings and correlational 

epidemiological studies for studying behavior change. As a result, hypothesized mechanisms 

of behavior change have largely emerged from static analyses of cross-sectional data [1].

Recent advances in mobile technologies (e.g., smart phones) and wearable sensors (e.g., 

wearable accelerometers) have facilitated cost-effective collection of what behavioral 
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scientists call “intensive longitudinal data” (ILD)—frequent measurements of behavioral 

constructs (e.g., how long an individual engages in physical activity, levels of motivation to 

engage in physical activity), including continuous-time and real-time measurement of 

behaviors [2], [3]. With the rise in the availability of ILD, behavioral scientists have been 

increasingly pursuing opportunities to better understand how behaviors and related 

constructs change over time and how exogenous variables such as environmental factors and 

therapeutic interventions affect these dynamics. Furthermore, ILD offers a means to develop 

richer descriptions of theorized behavior change mechanisms, which could help validate and 

guide revisions to such hypothesized mechanisms.

Contrasting traditional statistical behavioral science methods, analytical frameworks have 

recently emerged that are better suited to model dynamic phenomena captured in ILD. 

Methods from engineering offer one such approach for characterizing dynamic behaviors as 

processes of change [1], [4], [5]. Specifically, continuous-time differential equation models 

that employ an input-output perspective—i.e., dynamical systems models—are well suited 

for such analyses. For example, recent work estimated low order differential equations to 

describe dynamics observed in pain management [4], smoking cessation [5], and physical 

activity intervention [1] studies. The dynamic models developed in these efforts draw from 

ILD and parameter estimation routines from system identification to estimate gains, which 

quantify the net response of a behavioral outcome variable (e.g., duration of daily physical 

activity, self-reported urge to smoke cigarettes) to unit changes in input variables (e.g., unit 

doses of behavioral counseling intended to promote healthy behaviors), time constants, 

which quantify the speed of the outcome variable's response, system zeros, which indicate 

shape of response, and more [6], [7]. Employing this approach to characterize time-varying 

behaviors benefits from the fact that system identification routines are reliable and mature, 

having been applied within engineering settings for decades [6], [7], and have been precoded 

in commercially-available products such as MATLAB [7], [8]. Furthermore, dynamical 

systems models often act as the basis for the design of control algorithms that seek to 

automate optimal operation of industrial systems; the connection to control theory suggests 

that incorporating this engineering modeling approach into behavioral science settings offers 

the opportunity to develop novel closed-loop behavioral interventions (see [1], [5] and 

articles referencing [4], [9]).

Through two case studies, this article summarizes the usefulness of dynamical systems 

modeling and system identification for leveraging ILD in order to better understand human 

behavior change: Section II outlines a dynamical systems approach for characterizing Social 

Cognitive Theory—an influential concept in behavioral science that is based in learning 

theory [10]—in the context of a physical activity intervention (described in detail in [1]); 

Section III describes use of an engineering approach for examining smoking behavior 

change and the role of statistical mediation—a hypothesized mechanism of change 

commonly studied in the social and behavioral sciences [11] (described in detail in [5]); 

finally, Section IV comments on future research.
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II. Case Study I: Social Cognitive Theory & Physical Activity Behaviors

Growing out of learning theory, Social Cognitive Theory (SCT) revolves around the idea of 

triadic reciprocity, which considers inter-relationships between personal factors (e.g., 

cognition, biology), the environment, and behaviors, seeking to explain how internal and 

external factors lead an individual to engage in target behaviors [1], [10]. Specifically, there 

are five fundamental components of SCT, which are seen as outputs in a dynamical systems 

sense (referred to as η1…6); SCT attributes changes in these components to eight external 

and internal factors, which are treated as exogenous inputs in dynamical systems models 

(represented as ξ1…8):

• Self-management skills (η1) - complex set of behaviors that increases an 

individual's potential for engaging in a target behavior, e.g., self-monitoring, goal 

setting.

• Outcome expectancy (η2) - perceived likelihood that performing a target behavior 

will result in specific outcomes.

• Self-efficacy (η3) - perceived ability to engage in a target behavior.

• Behavior (η4) - target action of interest.

• Behavioral outcomes (η5) - results of target behavior, e.g., weight loss due to 

increased physical activity.

• Cue to action (η6) - trigger to engage in a behavior.

• Skills training (ξ1) - activities that alter an individual's self-management abilities.

• Observed behavior (ξ2) - learning resulting from observing the results of others' 

behaviors.

• Perceived social support (ξ3).

• Cues to action (ξ4, ξ8) - internal and external triggers, respectively, that influence 

engagement in a behavior.

• Perceived obstacles (ξ5).

• Intrapersonal states (ξ6) - physical, mental, and emotional states that influence 

self-efficacy.

• Environmental context (ξ7).

Dynamical systems models describing behavior change via an SCT-based mechanism stem 

from a connection to production-inventory systems [1], [4], [9]: Fig. 1 depicts SCT in terms 

of a fluid analogy [1]. Here, the five outputs, η1…6, are represented as fluid inventories 

(tanks), which accept inflow streams of fluid. The manner in which the level of fluid in an 

inventory changes in response to changes in inflows represents the way in which Self-

efficacy, Behavior, etc., respond to changes in the respective factors that influence them. The 

specific inflows to each individual inventory depicted in Fig. 1 reflect the relationships that 

formally define SCT (see [10]). For example, the Self-management skills inventory (η1) 

accepts three inflow streams: Skills training (ξ1), which is an external input to the overall 
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system and is represented as an exogenous input stream flowing at a known and controlled 

rate; a portion of the outflow stream from the Behavior inventory, which reflects the inter-

relationship between the Self-management skills and Behavior constructs; and the 

disturbance input ζ1, which represents the unmodeled factors that influence Self-

management skills. Altogether, the six inventories in Fig. 1 are inter-connected to reflect the 

triadic reciprocity proposed in [10].

An engineering model of SCT is developed by applying the conservation of mass principle 

(which is used as a general accounting principle here) to the inventories and assuming the 

dynamic response of each output to changes in inputs are adequately represented by first 

order differential equations. The result is a system of differential equations:

(1)

(2)

(3)

(4)

(5)

(6)

where the left hand side of the equations are transition terms (units of η), i.e., the change in 

the level of an inventory (dη [units of η]) over some time (dt [units of time]), is related to the 

speed at which the inventory level responds to a unit change in the tank's inflows and 

outflows (time constant, τ); ηi and ξi are the output and input variables, respectively, that are 

fundamental to SCT; γij is the gain between input variable ξi and output variable ηj; βmn is 

the gain for the interrelationship between variable ξm and ξn; and ζi is an unmodeled 

disturbance that affects output ηi [1].

SCT is among the most influential theories in behavioral science, and has been recently 

examined in the context of a physical activity intervention [1]. Specifically, estimated 

dynamic models were obtained using averaged ILD from six participants in the Mobile 

Interventions for Lifestyle Exercise and Eating at Stanford (MILES) study [12]. These 

models focused on a two-input, two-output problem: Self-efficacy, as recorded on a 1-11 

point scale by participants via smart phone, and Behavior, the total number of steps taken 
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per day as measured by an accelerometer, were the outputs of interest. The two inputs were 

intervention components: Skills training, consisting of tips for engaging in a target behavior 

delivered as reading material via the ‘mtrack’ smart phone application (recorded as seconds 

spent reading the tips), and external cues, consisting of smart phone reminders to set new 

physical activity goals (recorded as the number of reminders sent to a participant in a given 

period of time) [1], [12].

For model estimation, Eqs. (1) through (6) were substituted, rearranged, and transformed to 

give a state-space representation of the two-input, two-output problem. From this semi-

physical structure, a prediction-error estimation approach (the idgrey command in 

MATLAB, which allows a user to specify a state-space model structure in which only 

certain elements of the matrices are estimated [8]) and the MILES data, the following 

parameter estimates were obtained:

Depicted in Fig. 2, these estimates together correspond to model fits—determined using a 

normalized root mean square error calculation [8]—equal to 49.54% for Self-Efficacy and 

34.95% for Behavior (where 100% would indicate the model explains all of the variance 

observed in the data) [1]. Because these estimates and fit percentages were obtained in 

secondary analysis of data with limited construct measurements and for a small number of 

individuals, these percentages and the model predictions in Fig. 2 are encouraging; a more 

informative data set will likely further elucidate the role of SCT in physical activity behavior 

change, i.e., result in better predictive ability and fit percentages.

III. Case Study II: Mediation & Smoking Cessation

Statistical mediation considers a multivariate relationship in which the level of an outcome 

variable, Y, is determined by the level of an independent variable, X, and a mediator 

variable, M, where the level of M is also affected by X. Behavioral scientists typically model 

mediation with the following static structural equations:

(7)

(8)

where β01 and β02 are intercepts, e1 and e2 are error terms, and a, b, and c′ quantify the net 

effect X has on M, M on Y, and X directly on Y, respectively [11]; in dynamical systems 

terms, a, b, and c′ are the steady-state gains [5].

Considering X, M, and Y as continuous-time constructs (i.e., X,M, and Y = f(t)), each 

relationship in (7) and (8) can be examined as individual input-output processes. Developed 
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in detail in [5], dynamical systems models describing a process of behavior change 

according to a mediational mechanism are represented in algebraic form via Laplace-

transform as:

(9)

(11)

where Pa, Pb, and Pc′ represent the individual processes by which changes in X(t) lead to 

changes over time in M(t), changes in M(t) lead to changes in Y(t), and changes in X(t) lead 

directly to changes in Y(t), respectively. With the appropriate ILD, Pa(s), Pb(s), and Pc′(s) 

transfer functions can be estimated to describe mediated behavior change.

A University of Wisconsin study collected such ILD. Fig. 3 depicts group average ILD 

(dash-dot red) for Craving (average craving level reported by participants on a given day) 

and CPD (total number of cigarettes smoked per day), collected nightly via personal digital 

assistant from approximately 100 subjects who received no active cessation therapy from 

two weeks pre-target quit date (pre-TQD) through the first four weeks of a quit attempt [13]. 

Using this data, a set of transfer function models were estimated to examine Craving-

mediated cessation in which Quit(t) is treated as X(t), reflecting initiation of a quit attempt 

(Quit = 0,t < TQD, = 1,t ≥TQD), group average Craving(t) ILD is M(t), and group average 

CPD(t) ILD is Y(t). The pem command in MATLAB (a prediction-error approach using 

sophisticated regression routines that fit a user-specified, low order, continuous-time 

differential equation to discrete-time data [7], [8]) was used to estimate the parameters in a 

two step procedure: first, Pa(s) was estimated as a single-input, single-output problem, with 

Quit as the input and Craving as the output; next, Pb(s) and Pc′(s) were estimated 

simultaneously in a two-input, one-output problem with Craving and Quit as the inputs and 

CPD as the output. This resulted in the following estimated transfer functions:

(11)

As indicated by the quit attempt simulated using these models (dotted brown in Fig. 3) and 

the 64.7% fit for Craving and 84.38% fit for CPD, these models quantify the mediational 

relationship hypothesized to be at play within smoking cessation behavior change. 

Examining these equations suggest the direct X(t) → Y(t) path models the immediate 

reduction in CPD that occurs on TQD, while the X(t) → M(t) → Y(t) path—i.e., Pa and Pb in 

series— models the small and slow resumption of smoking post-TQD. The parameter 

estimates also reflect the inverse response in Craving (initial increase before ultimately 

settling to reduced levels, reflected in the negative Pa gain and zero term values), the fast 

reduction in smoking on TQD (there are no time constants or derivative terms required by 

Pc′), and the small resumption in smoking (small Pb gain, equal to -0.30) [5].
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IV. Summary & Future Work

The case studies presented in this paper illustrate the potential of a dynamical systems 

approach for describing theorized behavior change mechanisms. Specifically, stemming 

from a connection between production-inventory management in supply chains [4], [9], 

differential equation models were presented that leverage ILD to describe behavior change 

according to SCT and mediational processes in the context of a physical activity intervention 

and smoking cessation. While promising, both of the case studies presented entail secondary 

analysis of existing data, which were not obtained through experiments designed with 

dynamical systems modeling in mind. In the future, high fidelity models with greater 

predictive ability could be estimated using more informative data collected through novel 

trials that are better suited for this analytical approach. Notably, experiment-design 

principles from system identification could be used to develop novel input signals [1], [4]. 

For these experiments, the value of the adjustable input signal of interest would be varied 

over time such that the input signal is more persistently excited in order to promote a greater 

range of dynamics and variability in the outputs [7]. As the processes examined in these 

experiments involve human subjects, these protocols must adhere to strict practical, ethical, 

and medical constraints. For example, [4] describes a “patient-friendly” clinical trial 

protocol which varies the dose of a pharmaceutical for a pain-management intervention on a 

biweekly basis, and repeats the dose schedule so that the first set of measurements can be 

used for estimation and the second set for validation. Ultimately, more rigorous estimation 

and validation of dynamical systems models should draw from data obtained in such novel 

clinical trials in order to more reliably quantify the dynamics of SCT and mediational 

processes.
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Fig. 1. 
Fluid analogy describing behavior change according to the mechanism constituting SCT.
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Fig. 2. 
Average data (solid blue) used for estimation of the two-input, two-output SCT problem and 

the resulting model predictions (dotted black).
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Fig. 3. 
Averaged Craving and CPD ILD (dash-dot red) used to model Craving-mediated changes in 

CPD during a quit attempt; model predictions depicted as dotted brown lines.
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