Skip to main content
. 2015 May 14;11(5):e1004232. doi: 10.1371/journal.pcbi.1004232

Table 2. x. functions on the lines y = 0 and z = 0 for each type of S-MIG. Here, f(x) and g(x) are defined in Eq (5).

Type f(x) g(x)
P −1−δ(1−x)+μδx 0
R −1−δx+μδx δ
P+R −1−δ+2μδx δ
PP −1−δ(1−x)+μδxδ 2(1−x)2+μδ 2 x(1−x) 0
PR −1−δ(1−x)+μδxδ 2 x(1−x)+μδ 2 x(1−x) 0
PB −1−δ(1−x)+μδxδ 2(1−x)+2μδ 2 x(1−x) 0
RP −1−δx+μδxδ 2 x(1−x)+μδ 2 x 2 δδ 2(1−x)+μδ 2 x
RR −1−δx+μδxδ 2 x 2+μδ 2 x 2 δδ 2 x+μδ 2 x
RB −1−δx+μδxδ 2 x+2μδ 2 x 2 δδ 2+2μδ 2 x
P+RP −1−δ+2μδxδ 2 x(1−x)+μδ 2 x 2 δδ 2(1−x)+μδ 2 x
P+RR −1−δ+2μδxδ 2 x 2+μδ 2 x 2 δδ 2 x+μδ 2 x
P+RB −1−δ+2μδxδ 2 x+2μδ 2 x 2 δδ 2+2μδ 2 x
PP+R −1−δ+2μδxδ 2(1−x)2+μδ 2 x(1−x) δ
PR+R −1−δ+2μδxδ 2 x(1−x)+μδ 2 x(1−x) δ
PB+R −1−δ+2μδxδ 2(1−x)+2μδ 2 x(1−x) δ
PP+RP −1−δ+2μδxδ 2(1−x)+μδ 2 x δδ 2(1−x)+μδ 2 x
PP+RR −1−δ+2μδxδ 2[x 2+(1−x)2]+μδ 2 x δδ 2 x+μδ 2 x
PP+RB −1−δ+2μδxδ 2[1−x(1−x)]+μδ 2 x(x+1) δδ 2+2μδ 2 x
PR+RP −1−δ+2μδx−2δ 2 x(1−x)+μδ 2 x δδ 2(1−x)+μδ 2 x
PR+RR −1−δ+2μδxδ 2 x+μδ 2 x δδ 2 x+μδ 2 x
PR+RB −1−δ+2μδxδ 2 x(2−x)+μδ 2 x(x+1) δδ 2+2μδ 2 x
PB+RP −1−δ+2μδxδ 2(1−x)(x+1)+μδ 2 x(2−x) δδ 2(1−x)+μδ 2 x
PB+RR −1−δ+2μδxδ 2[1−x(1−x)]+μδ 2 x(2−x) δδ 2 x+μδ 2 x
PB+RB −1−δ+2μδxδ 2+2μδ 2 x δδ 2+2μδ 2 x