
RESEARCH ARTICLE

FuncTree: Functional Analysis and
Visualization for Large-Scale Omics Data
Takeru Uchiyama1, Mitsuru Irie1, Hiroshi Mori1, Ken Kurokawa1,2, Takuji Yamada1*

1 Department of Biological Information, Tokyo Institute of Technology, Tokyo, Japan, 2 Earth-Life Science
Institute, Tokyo Institute of Technology, Tokyo, Japan

* takuji@bio.titech.ac.jp

Abstract
Exponential growth of high-throughput data and the increasing complexity of omics informa-

tion have been making processing and interpreting biological data an extremely difficult and

daunting task. Here we developed FuncTree (http://bioviz.tokyo/functree), a web-based ap-

plication for analyzing and visualizing large-scale omics data, including but not limited to ge-

nomic, metagenomic, and transcriptomic data. FuncTree allows user to map their omics

data onto the “Functional Tree map”, a predefined circular dendrogram, which represents

the hierarchical relationship of all known biological functions defined in the KEGG database.

This novel visualization method allows user to overview the broad functionality of their data,

thus allowing a more accurate and comprehensive understanding of the omics information.

FuncTree provides extensive customization and calculation methods to not only allow user

to directly map their omics data to identify the functionality of their data, but also to compute

statistically enriched functions by comparing it to other predefined omics data. We have vali-

dated FuncTree’s analysis and visualization capability by mapping pan-genomic data of

three different types of bacterial genera, metagenomic data of the human gut, and transcrip-

tomic data of two different types of human cell expression. All three mapping strongly con-

firms FuncTree’s capability to analyze and visually represent key functional feature of the

omics data. We believe that FuncTree’s capability to conduct various functional calculations

and visualizing the result into a holistic overview of biological function, would make it an inte-

gral analysis/visualization tool for extensive omics base research.

Introduction
Recent advancement in high throughput DNA sequencing technology has lead to an exponen-
tial growth of omics information. Additionally, the recent development of methodology such
as metagenomic analysis, where biologists have to deal with the genetic information of multiple
organisms and various meta-data, instead of a single cell or an organism, has lead to the in-
crease complexity of omics information. As a result, in contrast to the advancement of high
throughput sequencing technology, comprehending omics data in order to develop further bio-
logical insights is becoming an increasingly difficult and daunting task.
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A key solution to this problem is data visualization. Transforming complex data in to visual
expression that is comprehensible to human cognition is essential for biologist to discover key
features and characteristics hidden in the data. Consequently, developing new visualization
methods that projects vast and complex omics information in to an intuitively comprehensible
visual expression is becoming increasingly important.

One field that we want to focus in this research is the field of functional genomics. Conven-
tional methods to visually express the biological functionality of an omics data, is to draw a pie
chart, bar graph, or to map the data onto a pre-defined molecular network map, such as chemi-
cal pathways[1,2]. The problem with these conventional methods is that visualization is only
limited to functions under a particular functional category, which are often times selected arbi-
trarily. As a consequence, it is difficult to overview the broad functional potential of a particular
omics data using conventional visualization techniques. This is particularly problematic when
you consider the fact that, different functional category may show different unique features de-
pending on the data, and we still do not have enough understanding to tell us, which functional
category to focus on, for a given type of data. In order to address this problem, we have devel-
oped a new data analysis and visualization tool, FuncTree, which aims to intuitively and holisti-
cally visualize the functional potential of large-scale omics data.

FuncTree overview
FuncTree is an open-access online web application for analyzing and visualizing the functional
potential of large-scale omics information, such as genomic, metagenomic, and transcriptomic
data. FuncTree achieves this by mapping the omics data onto a "Functional Tree", a pre-defined
hierarchical tree map, which visually represents the hierarchically classification of biological
functions defined in the KEGG database [3].

KEGG classifies biological functions into mainly three functional layers. The first is the
KEGG Orthology (KO), which consists of manually defined ortholog groups for all proteins
and functional RNAs. Most KOs are associated with a particular enzyme. The second layer is
the KEGGModule, which represents tight functional unit or chemical reaction. KOs that cata-
lyzes the chemical reaction defined by a particular module is grouped together and assigned to
it. The third layer is the KEGG Pathway, which is a collection of modules that drives similar
molecular interaction.

The Functional Tree is comprised of 28,505 KOs, which are assigned to all 676 modules,
and all 365 pathways. The 365 pathways and 676 modules are part of the existing KEGG
BRITE database, however the hierarchical relationship between module and pathway are not
explicitly shown in the BRITE hierarchy. Since the hierarchical relationship between module
and pathway can be inferred by looking at the inclusion relationship of pathway-KO and
module-KO, we have used this information to reconstruct the BRITE hierarchy, so that it in-
corporates the information of modules. Additionally the BRITE hierarchy does not contain the
information regarding KOs that are unassigned to pathways. Therefore, we have added 7,818
KOs (pre-existing in KEGG database) that were unassigned to pathways. For the 7,818 KOs
that were not assigned to any modules or pathways, the tree hides these visually, under "Unde-
fined Biological Category". However FuncTree does includes these hidden KOs for calculation
and normalization purposes. FuncTree represents all 37,364 biological functions as a node
within the Functional Tree. The edge connecting each node represents the hierarchical rela-
tionship between the different functions (Fig 1).

By incorporating this new visualization method, FuncTree is able to visualize the functional-
ity of omics data across different functional layers (KO, Module, Pathway), which allows users
to overview the broad functional potential of their data. Additionally, by mapping omics data
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onto the Functional Tree, user can accurately identify the expression of overlapping functions,
such as module and KO that are assigned to multiple different pathways. Conventionally, even
if the expression of certain modules and KOs were identified, it was difficult to infer to which
pathway those module/KO were assigned to, thus making it difficult to attach any broader
biological meaning to the expression of that module/KO. By mapping the omics data onto
the Functional Tree, user can view how many sub-functions (e.g. module, KO) are expressed
under each biological function (e.g. pathway, module), which allows users to accurately identi-
fy, for example, enriched pathway that has overlapping KOs with other pathways.

FuncTree also provides basic statistical analysis features, which enables user to conduct en-
richment analysis and seamlessly view the result using FuncTree alone.

UI and basic functionality
FuncTree provides basic panning and zooming control to navigate through the tree map.
Mouse-over on a node to open a tooltip showing further detailed information about the

Fig 1. Overview of the Functional Treemap. The Functional Tree is a circular dendrogram that represents
the hierarchical relationship of known biological functions defined in the KEGG database. Each layer of the
tree corresponds to each functional category, “Biological Category”, “Biological Process”, “KEGG Pathway”,
“KEGGModule”, and the outer most layer corresponds to “KEGGOrthology”. Each layer contains multiple
nodes that correspond to the biological functions that are assigned to that functional category.

doi:10.1371/journal.pone.0126967.g001
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function. Clicking the node will expand or collapse the children nodes assigned under it. This
allows users to manually customize the default tree map to suit their own data type. FuncTree
also allows user to customize the tree map to center on a particular node. This allows user to
focus on a particular functional category rather than viewing the entire Functional Tree. Func-
Tree also outputs the result in table format with basic sorting and searching mechanism. We
believe that this conventional analytical representation of omics data will be extremely useful
when combined with Functional Tree's more intuitive and graphical representation of omics
data’s functionality.

Omics data may be uploaded via plain text query or file upload. FuncTree expects a list of
node (biological function) name and an associated value. This value can represent various vari-
ables, such as the intensity of gene expression or a p-value showing the statistical significance
of the over-represented genes. FuncTree will draw a colored circle on the node, corresponding
the input node name, with a radius, corresponding to the input value.

FuncTree provides extensive visual customization options to achieve optimal visualization
for various data. Additionally to "value" or radius size, user can also define "color" and "opacity"
for each nodes. Optionally user can select different normalization methods to determine how
each value will be graphically represented. For example user can decide whether the node value
would be represented by the circle's radius length or area size. For further detail information
about input parameters and example data, and a full list of customization option, refer to Func-
Tree's online help page (http://bioviz.tokyo/functree/help).

FuncTree implements various node calculation options to achieve optimal functional recon-
struction. User input data can be a list of KO composition or a list of relevant genes, as Func-
Tree will be able to calculate and reconstruct the functional profile for the entire functional
hierarchy. User may also choose to conduct statistical testing between their input data and a
pre-defined background data to calculate each node's enrichment, in order to create a tree map
that shows the uniquely enriched functions of that omics data.

The customized option will be updated dynamically on to the tree map by default, and the
result mapping may be exported for download in graphical format. Currently, FuncTree can
export the tree map in SVG format, and we are expecting FuncTree to support several other
graphical formats in future update. FuncTree also allows user to download the Expression table
in plain text format.

Data Mapping
There are currently two types of input data format that FuncTree expects in order visualize the
data (Fig 2). The first is the “node-value association list”, which is a list containing node id on
the first row and a numerical value on the second row. Node id is the name or the identification
number of biological functions within the Functional Tree, including KO, module, and Path-
way. A full list of name and identification number of nodes assigned in the Functional Tree is
available for download from FuncTree’s online data page (http://bioviz.tokyo/functree/data).
The numerical value on the second row may represent various variables depending on the
user’s intended visualization. It may represent the p-value of an enrichment analysis, which
represents the statistical significance of that function, relative abundance of the function, or it
can simply represent the direct size of the circle that will be mapped onto the node. For exam-
ple, user may create an input data of a KO composition of metagenomic data, which is a list of
KO and its relative abundance, using the following process.

1. Acquire short read DNA sequence using high throughput DNA sequencing technology.
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2. Calculate the KO composition from the short read DNA sequence, using functional annota-
tion server such as MG-RAST [4] or KAAS [5].

Depending on the input data type and the option selected, FuncTree would conduct three
different types of mapping method.

1. Direct mapping: FuncTree will directly map the input value onto the designated node, and
will draw a circle with the size corresponding to the input value. Optionally user may nor-
malize the input value in order to fit it within a set range of pixel size to achieve optimal vi-
sualization. Additionally, the direct mapping allows user to assign additional attributes to
the input data, including color and opacity.

2. Internal Node Calculation: If the input data is a list with KO number on the first row and a
numerical value on the second row, FuncTree is able to calculate the value of the nodes in
the upper layer (Module/Pathway) by computing the average or summation of the value of
KOs assigned under it. For example, if the input data is a list of KO composition, FuncTree
is able to calculate and reconstruct the functional composition of the remaining functional
layer (Module/Pathway/Biological Process/Biological Category).

Fig 2. Flowchart for data mapping using FuncTree. FuncTree is a web-based application that is capable of analyzing and visualizing the functional
characteristic of large-scale omics data. As an input, FuncTree expects either a list of node-value association, which associates each node with a designated
value, or a list of genes. Value for each node would have to be calculated locally by user, and may represent a number of different variables such as relative
abundance. Gene list may represent a list of over-expressed genes in a microarray experiment. Depending on the Input, FuncTree is able to perform various
visualizations such as, (i) Direct mapping: directly map the value onto the designated node, (ii) Internal node calculation: Calculate the functional potential of
the upper four layer from KO composition, (iii) Statistical analysis: Conduct enrichment analysis for each layer from KO composition against a predefined
background data of several humanmetagenomic dataset, and (iv) Gene set enrichment analysis: Conduct enrichment analysis for each layer from gene list.

doi:10.1371/journal.pone.0126967.g002
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3. Statistical Analysis (Enrichment analysis): If the input data is a list of KO composition,
FuncTree is able to compute the statistical significance of the data, by comparing the data
against FuncTree’s pre-defined background dataset. Currently FuncTree allows user to
compare their metagenomic data against pre-defined metagenomic background data,
which was sampled from different human body sites, acquired by the Human Microbiome
Project [6].

The second type of input data format that FuncTree is able to process is a list of genes. For
example this list can be a list of over-expressed genes of a particular cell acquired in a microar-
ray experiment. FuncTree would conduct a gene set enrichment analysis to identify functions
that are enriched in that list, by statistically comparing it against the genome of the organism,
which that gene list originates from. Currently FuncTree expects the genes to be in KEGG gene
id format, however we are expecting FuncTree to be able to accept other format such as COG/
eggNOG, Uniprot, and NCBI gene ID in future update.

Results and Discussion
To evaluate the validity of FuncTree's mapping and analysis capability, we provide three
case stories to illustrate the use of FuncTree by mapping genomic, metagenomic, and tran-
scriptomic data.

Pan-genomic mapping: Functional enrichment of Escherichia,
Mycobacterium, and Streptomyces
The exponential growth of large-scale microbial genomic data has made it possible for biolo-
gists to explore organism's genetic information on a more comprehensive level. Analyzing pan-
genome, which is the total list of genes present in the same taxon (e.g. species or genus) across
different strains [7], has allowed biologists to explore the diverse variation of gene content
among different strains of the same bacterial species. Pan-genomic analysis has provided evolu-
tionary insights on various organisms including Escherichia coli [8] andHaemophilus influenza
[9], and has also proven effective in identifying strain-specific virulence factor of pathogenic
Legionella pneumophila [10]. Here we show FuncTree's application to pan-genomic analysis by
conducting functional enrichment analysis of three different types of bacterial genera, and visu-
alizing the biological functions that were uniquely enriched in each bacterium (Fig 3). Each
genus’s pan-genomic data were statistically compared against the genomic data of all remain-
ing prokaryotes to calculate enrichment (S1 Table).

Mycobacterium's ability to survive within the host macrophage is one of the major reasons
for it becoming a worldwide health problem [11]. Although the specific details and mechanism
of howMycobacterium survives within the host cell is yet unclear, recent study suggests that its
ability to catabolize cholesterol in the host cell plays an important role inMycobacterium sur-
vival and pathogenicity [12]. FuncTree was able to visually represent this by showing "Steroid
degradation (map00984)" as the most uniquely enriched pathway ofMycobacterium. Addition-
ally, a number of two-component signal transduction system such as, "DevS-DevR (redox re-
sponse) two-component regulatory system (M00482)", a hypoxic responsive module which is
crucial forMycobacterium survival during dormancy, and "PrrB-PrrA (intracellular multiplica-
tion) two-component regulatory system (M00462)", which is associated with intracellular mul-
tiplication in murine macrophage, were uniquely enriched modules ofMycobacterium.

The average chromosome size of Streptomyces is approximately 8~9 Mbp long, making it
one of the largest bacterial genome, and it is also known to be responsible for producing two-
thirds of clinically useful antibiotics. The mapping result shows two pathways responsible for
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antibiotic biosynthesis, "Clavulanic acid biosynthesis (map00331)" and "Penicillin and cephalo-
sporin biosynthesis (map00311)" being the uniquely enriched functions of Streptomyces. Cla-
vulnic acid is a β-Lactamase inhibitor that is often times used in combination with other
penicillin group antibiotics. Streptomyces clavuligerus is known to biosynthesize Clavulnic acid
from glyceraldehyde 3-phosphate and arginine [13].

Pan-genomic analysis is an integral approach to understand the general characteristic of
bacterial species, and to discover new evolutionary and functional insights. Here we have
shown an example that unifies multiple genomic data into pan-genomic data, and use Func-
Tree to visualize the general functional feature of three distinct types of bacterial genera in to a
single overview map. We believe FuncTree’s visualization capability to provide a holistic func-
tional overview will prove extremely useful in future pan-genomic analysis, such as identifying
functional differences between pathogenic and non-pathogenic strains.

Metagenomic mapping: Functional variability and enrichment of human
gut microbiome
The human intestinal tract is one of the most intensively studied environments in the field of
metagenomic, for its microbial and functional composition is suggested to have significant im-
pact on human health and diseases. Here we show FuncTree's application to metagenomic data

Fig 3. Pan-genomic mapping: Functional enrichment of Escherichia,Mycobacterium, and Streptomyces. Color node represents biological functions
that were uniquely enriched in the pan-genomic data of Escherichia (green),Mycobacterium (red), and Streptomyces (blue). Node size corresponds with the
inverse p-value calculated usingWilcoxon signed-rank test, representing how “uniquely” enriched that function was. “Lipopolysaccharide biosynthesis
(map00540)”, “Flagellar assembly (map02040)”, and “D-Allose transport system (M00217)” were uniquely enriched for Escherichia, "Steroid degradation
(map00984)", "DevS-DevR (redox response) two-component regulatory system (M00482)", and "TrcS-TrcR two-component regulatory system (M00463)" for
Mycobacterium, "Clavulanic acid biosynthesis (map00331)", "Xylobiose transport system (M00619)", and "N-Acetylglucosamine transport system (M00205)"
for Streptomyces.

doi:10.1371/journal.pone.0126967.g003
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by analyzing functions that were variant among fecal samples from different individuals
(Fig 4), and conducting functional enrichment analysis to identify biological functions that
were uniquely enriched in the intestinal environment (Fig 5).

Functional variability of human gut microbiota
Node size represents the standard deviation of each KO’s relative abundance assigned to each
biological function, across 1,267 samples of gut metagenome (Fig 3). "Other glycan degradation
(map00511)" which is responsible for degrading N-glycan and Ganglioside was highly variant
among different samples (S2 Table). Bifidobacterium is known to degrade and remove N-
glycan from diary products such as milk [14], while Ganglioside is known to inhibit bacterial
toxin and virus from binding with intestinal epithelium [15]. Variability in this pathway may
be representing the variability among human's ability to digest dairy products, and difference
in immunity against pathogenic bacteria and viruses. Module responsible for "Pectin degrada-
tion (M00081)" was also highly variant among samples. Pectin is a heteropolysaccharide that
are often times found in cell walls of plants. 70 ~ 90% of Pectin are degraded into butyric acid
and short-chained fatty acid by gut microbes to be utilized as energy source of the host species.

Fig 4. Functional variability of human gut microbiota.Color node represents biological functions that were highly variant among fecal samples from
different individuals. Node size corresponds to the value of standard deviation of the KO’s relative abundance assigned to that function. “Other glycan
degradation (map00511)”, “Glycosaminoglycan degradation (map00531)”, and “Bacterial chemotaxis (map02030)” showed high variability among the KEGG
Pathway layer, while “Pectin degradation (M00081)”, "Peptides/nickel transport system (M00239)", "Ribose transport system (M00212)", and "ABC-2 type
transport system (M00254)" showed high variability among the KEGGModule layer. The difference in variability pattern between the KEGG Pathway layer
and KEGGModule layer in this mapping illustrate the potential problem of focusing on a particular functional category, and shows the necessity for
overviewing the broad functional potential across different functional layers.

doi:10.1371/journal.pone.0126967.g004
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Variability of this module could represent the difference among individuals to digest and utilize
dietary fibers. Many of the "ABC transporter" modules including, "Peptides/nickel transport
system (M00239)", "Ribose transport system (M00212)", and "ABC-2 type transport system
(M00254)" were also highly variant among samples. ATP transporters are membrane transport
protein, which utilize ATP energy to translocate various substances across intra- and extracel-
lular membrane, and are responsible for carrying out various cellular processes. Variability in
these functions could be representing the broad difference of biological processes, such as dif-
ference in ability to digest certain substance as nutrients, and the difference in biological re-
sponse against pathogens and drugs, among different gut microbiome. It should be noted that
the variability pattern differs between Pathways and Modules. This may be due to the limita-
tion of KEGG's manual categorization, where some pathway contains no defined modules (e.g.
map00511), whereas other pathways are not categorized enough and contains too many mod-
ules (e.g. map02010). This leads to a situation where concentrating on a single functional layer
can lead to loss of information or misinformation. When you concentrate on the module layer,
it shows that functions categorized under "ABC transporters" and "Two component system"

Fig 5. Functional enrichment of human gut microbiota.Color node represents biological functions of the human gut microbiota that were uniquely
enriched compared to microbiota of other human body sites. For the KO functional layer, node size corresponds to the inverse p-value of Wilcoxon signed-
rank test, and for the remaining functional layers, node size corresponds to the inverse p-value of Fisher’s exact test. Pathways that were uniquely enriched
in the human gut microbiota were, “Flagellar assembly (map02040)”, “Bacterial chemotaxis (map02030)”, “Methane metabolism (map00680)”, and
“Glycosaminoglycan degradation (map00531)”. Modules including “Type III secretion system (map03070)” and “Cobalamin biosynthesis, cobinamide = >
cobalamin (M00122)” were shown to be highly enriched on the KEGGModule layer, but not so on the KEGG Pathway layer, which exemplifies a situation
where the enrichment pattern differs based on different functional layer, thus supporting the importance for a broad visual overview of the data.

doi:10.1371/journal.pone.0126967.g005
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are the most variant functions. However this seems only so because certain functions such as
"Other glycan degradation (map00511)" and "D-Alanine metabolism (map00473)" do not have
any defined modules categorized under it, and there is no module to represent these functions.
As a matter of fact, when you concentrate on the pathway layer, you can see that "ABC Trans-
porters" and "Two component system" are relatively less variant. FuncTree's ability to visualize
the result across multiple functional layers thus provides a more accurate and holistic under-
standing of the data, compared to conventional visualization method, where you only concen-
trate on a single functional layer.

Functional enrichment of human gut microbiota
The color nodes represent functions that were uniquely enriched in gut microbiome (Fig 4).
Metagenomic data of human intestine were statistically compared against metagenomic data of
other human body sites (e.g. oral, nasal, skin, urogenital). For the KO functional layer, node
size represents inverse p-value of Wilcoxon signed-rank test, and for the remaining functional
layers, node size represents inverse p-value of Fisher’s exact test.

The result visualization shows that pathway for "Methane metabolism (map00680)" was
among the most uniquely enriched functions of the human gut microbiota (S2 Table). In par-
ticular modules responsible for methanogenesis (M00356, M00357, M00563, M00567) were
highly enriched. It is suggested that methanogenic archaea, which is responsible for synthesiz-
ing methane, plays an important role in the gut ecosystem, by metabolizing hydrogen, which
are produced as a result of fermentation of carbohydrate, and oxidize them into methane. In
the human gut,Methanobrevibacter smithii is known to be the predominant archaeon re-
sponsible for oxidizing hydrogen, produced during the digestion of polysaccharides, thus in-
creasing the efficiency of energy and nutrient uptake [16]. Recent study also suggests that
methane produced by intestinal methanogen may have an influence on the pathogenesis of
constipation, irritable bowel syndrome, and obesity [17]. Although certain species ofMetha-
nobrevibacter, such asM. oralis, were isolated from non-gut human environment [18],
Methanobrevibacter such asM. smithii andM. ruminantium are often times isolated from the
human gut. This could explain why "Methane metabolism" was identified as a unique func-
tion of the gut environment.

"Glycosaminoglycan degradation (map00531)" was also identified as one of the uniquely en-
riched function of the gut environment, with all three modules assigned under it, also being
highly enriched. This result was consistent with the result of metabolic reconstruction of the
gut metagenome, using the HUMAnN pipeline [19]. Glycosaminoglycan (GAG) are muco-
polysaccharides that are often found in connective tissues of animals. The three modules that
were enriched were, "Heparan sulfate degradation (M00078)", "Chondroitin sulfate degrada-
tion (M00077)", and "Dermatan sulfate degradation (M00076)". All of three modules were in-
volved with the degradation of animal proteoglycan for carbohydrate utilization for microbes.
Past study has also reported that glycosaminoglycan degradation was identified as enriched
function among the Bacteroides species [20], which are one of the predominant bacterial gen-
era of the gut microbiome.

Numerous studies have shown strong association between the human gut microbiota and
various human diseases. It is expected that the number of gut metagenomic data will keep in-
creasing exponentially, and a strong platform for functional analysis of metagenomic data is
becoming increasingly important. We believe that FuncTree would become an indispensible
part of the initial phase of future comparative metagenomic analysis, by providing holistic
overview of functional similarities and differences between multiple metagenomic datasets.
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Transcriptomic mapping: Functional enrichment mapping, reconstructed
from mRNA expression data of two types of human cell
Advancement of sequencing technology has allowed biologists to comprehensively explore the
entire RNA transcripts expressed in a specific cell under specific conditions. Here we show
FuncTree's application to transcriptomic data, by mapping mRNA expression data from "epi-
thelial cell of small intestine" and "alternatively activated macrophage", to visualize biological
functions which were enriched in each cell (Fig 6).

Fig 6. Transcriptomic mapping: Epithelial cell of small intestine and alternatively activatedmacrophage.Color node represents biological functions
that were enriched in the “Epithelial cell of small intestine”(Blue) and “Alternatively activated Macrophage”(Red). Node size corresponds to inverse p-value of
enrichment analysis, based on Fisher’s exact test, of the 590 over-expressed genes for “Epithelial cell of small intestine” and 309 over-expressed genes for
“Alternatively activated Macrophage”, detected in microarray experiment. Digestive functions including "Fat digestion and absorption (map04975)", "Vitamin
digestion and absorption (map04977)", "Mineral absorption (map04978)", "Bile secretion (map04976)", and "Pancreatic secretion (map04972)" were
uniquely enriched, validating our knowledge about intestinal epithelium. Pathways under the category “Transports and catabolism” including "Lysosome
(map04142)" and "Phagosome (map04145)" were uniquely enriched in “Alternatively activated Macrophage”, Pathways categorized under "Digestive
system", including "Fat digestion and absorption (map04975)", "Vitamin digestion and absorption (map04977)", "Mineral absorption (map04978)", "Bile
secretion (map04976)", and "Pancreatic secretion (map04972)" were significantly enriched in "Epithelial cell of small intestine", which validates our
knowledge that intestinal epithelium is where many of the digestive process takes place (S3 Table). Another characteristic of this cell was the enrichment of
pathways categorized under "Endocrine system" including, "PPAR signaling pathway (map03320)", "Leukocyte transendothelial migration (map04670)",
"Renin-angiotensin system (map04614)", "Insulin secretion (map04911)", "Ovarian steroidogenesis (map04913)", "Melanogenesis (map04916)", and
"Thyroid hormone synthesis (map04918)". This also is consistent with known knowledge, that the epithelium of the small intestine is also comprised of
enteroendocrine cell which produces gastrointestinal hormones to initiate digestive response and protective function against harmful substances [21].
Functions that characterize the “Alternatively activated macrophage” were pathways categorized under "Transports and catabolism" which includes,
"Lysosome (map04142)", "Phagosome (map04145)", "Cell adhesion molecules (map04514)", and "Cytokine-cytokine receptor interaction (map04060)".
“Lysosome (map04142)” and “Phagosome (map04145)” plays a crucial role during the process where macrophage ingests target pathogens.

doi:10.1371/journal.pone.0126967.g006
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Analyzing gene expression patterns is essential in comprehending complex functions of bio-
logical mechanism, which would further contribute to our understanding of diseases such as
cancers and diabetes. Here we have shown FuncTree’s application to transcriptomic analysis
by mapping two different types of human cell expression data. We believe that FuncTree’s flex-
ibility to map various types of omics data would make it an integral platform for future large-
scale omics analysis.

Comparison with other tools
In order to quantify the unique key features of FuncTree, we have compared FuncTree’s calcu-
lation and visualization capability against three other visualization applications including,
iPath v2.0 [1], KEGG Atlas [22], and PathwayProjector [2], using several functional categories
including, (i) User interface, (ii) Visual customization, (iii) Functional calculation, (iv) Input
data type, (v) Data output, and (vi) Functional visualization (Table 1). All tools provides inte-
grated pathway map with pan/zoom functionality and basic mapping capability. FuncTree
instead provides a more holistic map of the entire functional hierarchy, which not only incor-
porates the information of each pathway, but also the information of each module and ortho-
log, and further provides information about the hierarchical relationship of each function.
Additionally, FuncTree provides powerful functional calculation methods to reconstruct the
functional profile of a given dataset, or to conduct statistical enrichment analysis against a dif-
ferent background data. We believe that this integration of visual and analytical capability into
a uniformed web application is what makes FuncTree unique from other similar web services.

Table 1. Comparison of FuncTree’s key features with other visualization tools.

Function category Functions subcategory Web server

Functree iPath 2.0 KEGG Atlas PathwayProjector

User Interface zoom/pan o o o o

mouse over popup o o o o

Visual customization Size o o o

Color o o o o

opacity o o

Functional calculation Functional reconstruction o

Statiscal enrichment o

Input data type KEGG orthology o o o o

KEGG pathway o o o

KEGG module o o o

KEGG gene o

COG/eggNOG o

UniProt o

NCBI gene ID o

Multi-point data - o

Data output SVG o o o o

Table o

Functional visualization Hierarchical Overview o

Pathway o o o o

Module o o o

KO o o o

doi:10.1371/journal.pone.0126967.t001
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Taken together, the three mapping application and the comparative uniqueness of FuncTree
strongly confirms the ability of FuncTree for functional visualization. We believe FuncTree’s
ability to map various types of large-scale omics data will make it an indispensible visualization
tool for biologists.

Method

Construction of Functional Tree
The Functional Tree: a circular dendrogram mapping background, which visualize the hierar-
chical classification of known biological functions, was created using data from KEGG Brite
Database ver. 2013-9-27 [3]. Since the specific hierarchical relationship of biological functions
between different functional layer were mostly undefined, we have first parsed through all of
the 28,505 KEGG Orthology and manually defined the hierarchical relationship between them.
As a result, 20,687 KOs were hierarchically assigned to 676 modules and 365 pathways. The re-
maining 7,818 KOs that could not be hierarchically assigned to any upper functional layer,
were assigned under "Undefined Biological Category". The resulting hierarchically classified bi-
ological functions were output in JSON format. Finally, the JSON data was visualized into a cir-
cular dendrogram by using D3.js, a javascript library for data visualization. Data mapping and
statistical calculation was implemented using Javascript and CGI application.

Pan-genomic mapping: Functional enrichment of Escherichia,
Mycobacterium, and Streptomyces
Original pan-genomic data for each bacterium were downloaded using REST-style KEGG API
(Fig 7). Using the KEGG API, gene list of all 2,655 bacteria were downloaded. For each node
(biological function) in the Functional Tree, Wilcoxon signed-rank test was used to calculate
the difference in distribution of gene numbers of the tested bacterial genera (Escherichia,Myco-
bacterium, Streptomyces) that was assigned to that function, and the gene number of the re-
maining bacteria that was assigned to that function. The first group was an array of gene
number that is assigned to the tested bacterial genera (Escherichia,Mycobacterium, Streptomy-
ces) and is associated with the biological function. The second group was an array of gene num-
ber that is assigned to remaining bacteria (gene list for all prokaryote minus the gene list of the
tested bacterial genera) and is associated with the biological function. The two groups were sta-
tistically compared using Wilcoxon signed-rank test, with Bonferroni correction.

In order to adjust the inequality between functions, depending on the number of KO as-
signed under it, coverage for node j (function) was calculated using the following calculation.

covj;k ¼
KOexp; j;k

KOtotal; j

ð1Þ

Where KOtotal,j is the total number of KO assigned under node j, and KOexp,j,k is the number of
KO that is associated with the tested bacterial genera: bacteria k. A KO was considered to be as-
sociated with the bacteria k if even one gene of bacteriak was assigned to that KO. If the null hy-
pothesis was dismissed (p< 0.05) after the statistical analysis, value for node j (function) was
calculated using the following equation.

valj;k ¼ log
1

Pwilcox;j;k

� covj;k ð2Þ

Where Pwilcox,j,k is the resulting p-value of the Wilcoxon signed-rank test with Bonferroni cor-
rection, computing the statistical significance of gene number assigned to bacteriak, that was
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associated as part of node j. The list of node name and value was uploaded to FuncTree to
finalize visualization.

Metagenomic mapping: Functional variability of human gut microbiota
KO composition of 1,267 human gut metagenome samples [23], were used to visualize the
functional variability of gut microbiota. For each node (biological function) in the Functional
Tree, the standard deviation of relative abundances of KOs assigned to that function across
1,267 samples was calculated. In order to adjust the inequality between functions, depending
on the number of KO assigned under it, node coverage was calculated using the following
equation.

covj;human gut ¼
KOexp; j;human gut

KOtotal; j

ð3Þ

Where KOtotal,j is the total number of KO assigned under node j, and KOexp,j,human_gut is the
number of KO that is associated with the human gut. A KO was considered to be associated
with the human gut if even one sample of the human gut metagenome was assigned to that

Fig 7. Flowchart for pan-genomic mapping.Gene list of 2,655 prokaryotic organisms were downloaded from the KEGG database (http://www.genome.jp/
kegg/). Using the hierarchical structure of the “Functional tree”, each nodes enrichment were calculated by conductingWilcoxon signed-rank test between,
genes of the tested bacterial genera (Escherichia,Mycobacterium, Streptomyces) that was assigned to that node, and the genes of the remaining
prokaryotes assigned to that node. Each node’s value was corrected using node coverage to produce the input data. Final visualization and normalization
was conducted using FuncTree.

doi:10.1371/journal.pone.0126967.g007
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KO. Value for node j (biological function) was calculated using the following equation.

valj;human gut ¼ sj � covj;human gut ð4Þ

Where σj is the standard deviation of relative abundances of KOs assigned to node j, and σj is
the coverage value for node j. The list of node name and value was uploaded to FuncTree to
finalize visualization.

Metagenomic mapping: Functional enrichment of human gut microbiota
KO composition of 1,267 human gut metagenome samples were used to visualize the function-
al enrichment of gut microbiota (Fig 8). As for the original data, we have used the KO composi-
tion constructed from the integrated gene catalogue of the human gut metagenome, which
comprise of 9,879,896 genes [23]. In order to identify the enriched functions of the human gut
microbiota, this data was statistically compared against KO composition of other non-gut

Fig 8. Flowchart for human gut metagenomic mapping. KO composition for gut environment and non-gut environment were downloaded from the BGI
database (http://meta.genomics.cn) and HMP DACC (http://www.hmpdacc.org/). Calculation of enriched KO was conducted usingWilcoxon signed-rank test
between relative abundance of the gut environment and the relative abundance of non-gut environment. Using the hierarchical structure of the “Functional
tree”, calculation for the enrichment of the remaining four layers was conducted using Fisher’s exact test. Final visualization and normalization was
conducted using FuncTree.

doi:10.1371/journal.pone.0126967.g008
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human metagenome (oral, nasal, skin, urogenital) acquired from HMP DACC [6]. For each
node (biological function) in the Functional Tree, statistical calculation was conducted to eval-
uate whether the human gut metagenome's collective relative abundance of the questioned
function was significantly larger than the non-gut metagenome's collective relative abundance
of the questioned function. For the KO functional layer, Wilcoxon signed-rank test was used to
calculate the difference in distribution between the relative abundance of the gut and non-gut
body sites, to identify KOs that were enriched. For the remaining functional layers, Fisher’s
exact test was used to calculate the statistical significance of each function using the following
equation.

Pfisher; j ¼
ðPKOj; e þ

P
KOj; �eÞ!ð

P
KO�j; e þ

P
KO�j ; �eÞ!ð

P
KOj; e þ

P
KO�j; eÞ!ð

P
KOj; �e þ

P
KO�j ; �eÞ!

ðPKOj; e þ
P

KOj; �e þ
P

KO�j ; e þ
P

KO�j; �eÞ!
P

KOj; e!
P

KOj; �e !
P

KO�j ; e!
P

KO�j; �e !
: ð5Þ

Where Pfisher,j is the resulting p-value for node j (function), SKOj,e is the total number of en-
riched KO that were assigned to node j,

P
KOj;�e is the total number of non-enriched KO that

were assigned to node j,
P

KO�j; e s the total number of enriched KO that were not assigned to

node j,
P

KO
�j;
�e is the total number of non-enriched KO that were not assigned to node j. Final-

ly, the input value for node j was calculated using the following equation.

valj ¼ log
1

Pfisher=wilcox

ð6Þ

Where Pfisher/wilcox is the resulting p-value for Wilcoxon signed-rank test, for the KO functional
layer, and Fisher’s exact test for the remaining functional layers. The list of node name and
value was uploaded to FuncTree to finalize visualization.

Functional enrichment mapping, reconstructed from mRNA expression
data of two different types of human cell
Raw expression data of two distinct cell type: "alternatively activated macrophage" and "epithe-
lial cell of small intestine" was acquired from GEO microarray repository [24]. Probe data of
the two cell types were statistically compared with that from other cell expression data in order
to construct a list of genes that was over-expressed in each cell type. We have identified 309
over-expressed genes in "alternatively activated macrophage" and 590 over-expressed genes in
"epithelial cell of small intestine" (S4 Table). In order to conduct functional enrichment analy-
sis, the entire list of genes assigned toHomo sapiens was also downloaded from the KEGG da-
tabase. For each node (biological function) in the Functional Tree, statistical calculation was
conducted to evaluate whether the number of genes, which was expressed in a particular cell
type, and was associated as part of the questioned biological function, was significantly larger
than the number of genes, which is coded in the human genome, and was associated as part of
the questioned biological function. Fisher's exact test with Bonferroni correction was used to
calculate the statistical significance of each biological function.

Pfisher;j;k ¼
ðP gj;k þ

P
gj;�kÞ!ð

P
gj;k þ

P
g�j;kÞ!ð

P
gj;�k þ P

g�j ;�kÞ!ð
P

g�j;k þ
P

g�j;�kÞ!
ðP gj;k þ

P
gj;�k þ

P
g�j;k þ

P
g�j;�kÞ!

P
gj;k!

P
gj;�k !

P
g�j;k!

P
g�j;�k !

ð7Þ

Where Sgj,k is the total number of genes expressed in cell-type k that was associated with node
j (function),

P
gj;�k is the total number of genes coded in the human genome but not expressed

in cell-typek that was associated with node j,
P

g�j; k is the total number of genes expressed in
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cell-type k but was not associated with nodej, and
P

g
�j;
�k is the total number of genes coded in

the human genome but not expressed in cell-type k that was not associated with nodej.
In order to adjust the inequality between functions, depending on the number of KO as-

signed under it, node coverage was calculated using similar methods as the pan-genomic map-
ping. If the null hypothesis was dismissed (p< 0.05) after the statistical analysis, value for node
j and cell-type k was calculated using the following equation.

valj;k ¼ log
1

Pfisher; j;k

� covj;k ð8Þ

Where covj,k is the coverage value for node j with cell-type k, and Pwilcox,j,k is the resulting p-
value of the Wilcoxon signed-rank test with Bonferroni correction, computing the statistical
significance of gene number, which was expressed in cell-type k, and was associated as part of
node j. The list of node name and value was uploaded to FuncTree to finalize visualization.

Conclusion
The dramatic increase in quantity and complexity of high-throughput data is increasing the de-
mand for a visualization method that uncovers key features of large-scale omics information.
Here we provide FuncTree, a functional analysis and visualization web-application, which in-
corporates a novel visualization method and statistical calculation capability in order to analyze
and visualize the functional potential of diverse types of omics information.

As the main feature of FuncTree, we have implemented a novel visualization method by
constructing the Functional Tree map, a circular dendrogram representing the hierarchical re-
lationship of biological functions defined in the KEGG database. This hierarchical visualization
of biological functions provides two main advantages over conventional visualization methods.
Firstly, users are able to overview the functional potential of the omics data, across multiple dif-
ferent functional layers, such as pathway, module, and KO. This allows user to view different
functional patterns across different functional layers, which allows them to accurately strate-
gize their approach for further detailed analysis of the omics data. Secondly, users are able to
accurately identify the expression of overlapping functions, such as module and KO that are as-
signed to multiple different pathways.

We further validated FuncTree’s analysis and visualization capability by mapping pan-
genomic, metagenomic, and transcriptomic data respectively. All three mapping showed that
FuncTree was able to facilitate discovery by rearranging the omics data, strongly confirming
FuncTree’s capability for functional analysis and visualization. Furthermore, mapping the func-
tional variability of the human gut metagenome using FuncTree has identified that functional
patterns of a given data may differ depending on different functional layer, thus confirming our
point that a broad overview of all of the functional layer is necessary for a comprehensive under-
standing of the data. The metagenomic mapping of the human gut using FuncTree, was able to
identify unique key functions associated with the gut environment.

The integration of the analytical capability to conduct functional reconstruction and enrich-
ment, and the visual capability to visualize the broad functional potential of a data, will make
FuncTree an integral tool for various kinds of omics base research. We are planning the update
FuncTree’s visualization capability to allow it to visualize multi-point data, to accommodate
for things such as time-series RNA-seq analysis. We also plan to develop an API, which will
allow programmable access to FuncTree by end user and other applications.
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