Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Jul 19;91(15):6963–6966. doi: 10.1073/pnas.91.15.6963

A scheme for sequencing large DNA molecules by identifying local nuclear-induced effects.

I Kelson 1, S Nussinov 1
PMCID: PMC44318  PMID: 8041730

Abstract

An experimental scheme for sequencing large DNA molecules is proposed where DNA strands are replicated, with all nucleotides of a given kind marked with radioactive 32P. The marked strands are affixed to an appropriate substrate and are kept until most 32P atoms decay. The local damage caused by the decay is expected to allow the identification of the sites occupied by that particular nucleotide, using atomic scale microscopy (scanning tunneling or atomic force microscopy). Quantitative aspects and methodological considerations associated with the proposed scheme are discussed.

Full text

PDF
6963

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arakawa H., Umemura K., Ikai A. Protein images obtained by STM, AFM and TEM. Nature. 1992 Jul 9;358(6382):171–173. doi: 10.1038/358171a0. [DOI] [PubMed] [Google Scholar]
  2. Biggin M. D., Gibson T. J., Hong G. F. Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci U S A. 1983 Jul;80(13):3963–3965. doi: 10.1073/pnas.80.13.3963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Driscoll R. J., Youngquist M. G., Baldeschwieler J. D. Atomic-scale imaging of DNA using scanning tunnelling microscopy. Nature. 1990 Jul 19;346(6281):294–296. doi: 10.1038/346294a0. [DOI] [PubMed] [Google Scholar]
  4. Dunlap D. D., Bustamante C. Images of single-stranded nucleic acids by scanning tunnelling microscopy. Nature. 1989 Nov 9;342(6246):204–206. doi: 10.1038/342204a0. [DOI] [PubMed] [Google Scholar]
  5. Engel A. Biological applications of scanning probe microscopes. Annu Rev Biophys Biophys Chem. 1991;20:79–108. doi: 10.1146/annurev.bb.20.060191.000455. [DOI] [PubMed] [Google Scholar]
  6. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  7. Mullis K. B., Faloona F. A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–350. doi: 10.1016/0076-6879(87)55023-6. [DOI] [PubMed] [Google Scholar]
  8. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. White T. J., Arnheim N., Erlich H. A. The polymerase chain reaction. Trends Genet. 1989 Jun;5(6):185–189. doi: 10.1016/0168-9525(89)90073-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES