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Abstract

Purpose—To accelerate dynamic MR imaging through development of a novel image 

reconstruction technique using low-rank temporal signal models pre-estimated from training data.

Theory—We introduce the MOdel Consistency COndition (MOCCO) technique that utilizes 

temporal models to regularize the reconstruction without constraining the solution to be low-rank 

as performed in related techniques. This is achieved by using a data-driven model to design a 

transform for compressed sensing-type regularization. The enforcement of general compliance 

with the model without excessively penalizing deviating signal allows recovery of a full-rank 

solution.

Methods—Our method was compared to standard low-rank approach utilizing model-based 

dimensionality reduction in phantoms and patient examinations for time-resolved contrast-

enhanced angiography (CE MRA) and cardiac CINE imaging. We studied sensitivity of all 

methods to rank-reduction and temporal subspace modeling errors.

Results—MOCCO demonstrated reduced sensitivity to modeling errors compared to the 

standard approach. Full-rank MOCCO solutions showed significantly improved preservation of 

temporal fidelity and aliasing/noise suppression in highly accelerated CE MRA (acceleration up to 

27) and cardiac CINE (acceleration up to 15) data.

Conclusions—MOCCO overcomes several important deficiencies of previously proposed 

methods based on pre-estimated temporal models and allows high quality image restoration from 

highly undersampled CE-MRA and cardiac CINE data.

Keywords

MRI; principal component analysis; iterative; image reconstruction; partial separability; low-rank 
matrices; subspace errors

Corresponding Author: Alexey Samsonov, 1111 Highland Av. Rm 1117, Madison WI, 53705, USA, samsonov@wisc.edu, Phone: 
608-265-2104. 

Part of this work has been presented at ISMRM 2012 (abstract #13).

HHS Public Access
Author manuscript
Magn Reson Med. Author manuscript; available in PMC 2016 November 01.

Published in final edited form as:
Magn Reson Med. 2015 November ; 74(5): 1279–1290. doi:10.1002/mrm.25513.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

MRI often has to contend with inherent acquisition speed limits to depict time-varying 

processes at the desired spatial resolution and coverage. Hence, incomplete sampling 

followed by application of specialized image reconstruction algorithms has long been a 

popular strategy to increase effectual MRI speed (1–8). In dynamic MRI, such dedicated 

image reconstruction approaches often rely on various kinds of prior information in spatial 

and/or temporal dimensions to enhance reconstruction fidelity in these domains (9–12). 

Prior knowledge-based reconstruction approaches have shown utility in applications with 

complex temporal dynamics, such as contrast-enhanced MR angiography (CE-MRA) 

(13,14), cardiac imaging (15,16), and perfusion imaging (17–19).

One popular acceleration strategy is to explore spatio-temporal correlations in MR image 

series for reformulation of the reconstruction problem in a lower dimensional subspace 

(20,21). Such techniques assume that temporal progression of each pixel is a linear 

combination of several pre-learned temporal basis functions. The resulting dimensionality 

reduction improves conditioning of the reconstruction problem and yields high quality, 

albeit low-rank image series. In such techniques (20,21), a low-dimensional model space is 

pre-estimated by performing principal component (PC) analysis on a training dataset taken 

as a low resolution image series from fully-sampled k-space center, and selecting several 

PCs to form this space’s basis. The described approach is at the foundation of many 

reconstruction techniques, which were demonstrated to be efficient in cardiovascular (22) 

and perfusion (23,24) imaging and phase contrast velocimetry (25). Alternatively, low-rank 

solutions may be recovered without pre-estimating temporal basis using low-rank matrix 

recovery approaches (26,27).

A low-rank solution can provide an accurate estimate only if the underlying image series 

admits a low-dimensional representation. Hence, loss of reconstruction fidelity may be 

expected in the cases when temporal dynamics is too complex to be described by a model of 

low rank (21). Selecting more PCs in the model (increasing model order) improves its 

approximation power, but simultaneously reduces the constraining efficiency of the model 

leading to increased noise and undersampling artifacts (28). The latter may be partially 

mollified by invoking an additional set of assumptions about the image series such as 

sparsity in some domains (21,28). However, it does not solve the important problem of 

reconstruction through dimensionality reduction, namely, its high sensitivity to errors due to 

low-rank modeling of complex temporal behaviors. As we demonstrate in the paper, this 

problem may be further complicated by existence of additional errors in the temporal models 

learned from a (low-resolution) subset of data, which reduces the model’s ability to 

represent the image series at full resolution.

In this paper, we propose a novel method to reconstruct undersampled dynamic MRI data 

using pre-learned temporal representation systems. Unlike related techniques (20,21), our 

method avoids the strict assumption that true object dynamics is an exact linear combination 

of a set of predetermined basis functions. Instead, we utilize these basis functions to create a 

transform which is embedded into the minimization problem as a regularization term with 

robust l1 norm. This allows enforcing consistency with the pre-estimated model while 
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permitting deviations from it, and results in solutions of a higher rank than implied by the 

chosen temporal model. As we demonstrate in the paper, our approach reduces sensitivity to 

errors in the representation system caused by rank reduction and temporal model estimation 

from low-resolution data and thus allows efficient utilization of low-order models, and 

promotes an accurate restoration of temporal dynamics in highly accelerated regimes.

THEORY

Reconstruction through Dimensionality Reduction

For a discrete model of an image series s(t, x), we use both matrix S = (s(tk, xn)) ∈  and 

vector s = vec (S) = (s(tk, xn)) ∈  representations, where (tk) correspond to Nt sampled 

time instances and (xn) correspond to Np spatial grid locations (image pixels). MRI signal 

measurements may be modeled in the matrix form as

[1]

where m ∈  is the vector of k-space measurements from Nc coil elements contaminated 

by additive identically independently distributed (i.i.d.) Gaussian noise, and E is the 

encoding matrix consisting of the Fourier encoding and, if Nc > 1, coil sensitivity terms (6). 

As the data undersampling typically creates a poorly conditioned encoding matrix, a 

straightforward inversion of Eq. [1] is unstable and may result in unresolved aliasing and 

significant noise increase in the images. Availability of a sparse representation with a known 

sparsity pattern may help obtain a feasible solution to Eq. [1]. Indeed, if s admits a P-sparse 

representation (i.e., has no more than P non-zero entries), it can be written as an image of a 

P-dimensional vector c under action of transformation R ∈ ,

[2]

and the problem can be reformulated in the lower-dimensional space:

[3]

As the dimensionality reduction typically improves condition number of the encoding 

matrix, solving Eq. [3] may resolve undersampling artifacts and mitigate noise amplification 

compared to the solution of the original problem (Eq. [1]).

Transition from Eq. [1] to Eq. [3] using a sparsity-based rank-reducing transformation (Eq. 

[2]) is equivalent to the change of basis for the image series S, which is originally 

represented in the full basis of delta functions for both spatial and temporal dimensions. 

Generally, an image series cannot be expected to possess a truly sparse representation. 

However, if there are significant correlations in the image series, there may exist rank-

reducing transformations that closely approximate Eq. [2]. In particular, rank reduction may 

be often done efficiently in temporal dimension (20). Intuitively, this can be explained by 

existence of spatio-temporal correlations in the image series, i.e. having different spatial 

locations follow related time courses (waveforms). Following terminology of (20), 
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application of singular value decomposition (SVD) to S allows creating a partially separable 

representation of the image series:

[4]

where σl are non-zero singular values of the matrix S of rank L, U = (ul) ∈  and V = (vl) 

∈  are unitary matrices of left and right singular vectors or principal components (PCs), 

which provide separate temporal and spatial bases for the image series, respectively. Note 

that Eq. [4] attains form of Eq. [2] by assigning c = vec(ΣV*) and R = Ip ⊗ U, where Ip ∈ 

 is the identity operator and ⊗ is the Kronecker product. Although, as mentioned before, 

generally L cannot be expected to be less than Nt, the presence of temporal correlations in 

the image series implies that most energy is concentrated in several singular values. 

Truncating matrices in Eq. [4] to the first K columns (keeping the summands corresponding 

to the K largest singular values) provides the best rank K approximation SK to S in Frobenius 

(ℓ2) norm (29):

[5]

We will refer to the number of retained PCs K as the model order. If an estimate ŨK(t) of the 

target PCs UK(t) is available (e.g., from low-resolution images), an image series can be 

obtained in the form

[6]

with C̃
K determined by solving a quadratic minimization problem

[7]

We should note here that since the Fourier transform is a unitary operator, PCs for x-t space 

can be equivalently replaced by PCs for x-f space, where f denotes temporal frequency 

domain, as done in (21).

We introduce several error measures associated with the aforementioned approximations. 

Rank reduction error eK is defined as the relative error of approximating the image series S 
by the first K PCs UK(t) learned from the ground truth data. On account of Eq. [5],

[8]

As UK(t) can be estimated only from fully-sampled data, we also refer to eK as error of 

approximation by High-Resolution-Learned (HRL) model. Similarly, by ẽK we denote the 

relative error of approximating S by an estimate ŨK (t) of UK (t). This measure is affected by 
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both rank reduction error and errors in the temporal subspace caused by Low-Resolution 

Learning (LRL). We refer to it as the total model approximation error or, equivalently, LRL 

model error. The relative contribution of the temporal subspace errors to the total error will 

be calculated as

[9]

In this paper, we will refer to the methods based on Eqs. [6],[7] as a PC-basis (PCB) 

approach (20,21). As the PCB approach constrains the solution to a pre-estimated K-

dimensional temporal subspace, the error of PCB-reconstructed image series is bounded 

from below by the total model approximation error, which depends on the model order K 

and parameters of LR-learning. However, the PCB reconstruction error may exceed the 

lower bound depending on the acceleration potential of the model (i.e., its ability to resolve 

undersampling artifacts with minimized noise amplification), which in turns affects the 

conditioning of the final reconstruction problem in Eq. [7]). Thus, the choice of K is faced 

with a tradeoff between representation accuracy and acceleration potential of the model. 

Indeed, approximation error monotonically decreases to zero as K increases since spans of 

UK, K = 1, …, L, form a nested sequence of subspaces with span (UL) span(S). On the other 

hand, a lower model order may be preferred, as for larger K spans of UK may expand well 

beyond the waveforms of S, increasing probability of fitting aliasing artifacts and noise by 

the model (28). Moreover, as we will demonstrate in Results section, in some cases higher 

order temporal basis elements may incur more errors than lower order ones due to low-

resolution learning. Therefore, it is desirable to formulate a reconstruction procedure that 

would be robust to errors in the representation system caused by either rank reduction or 

low-resolution learning.

Model Consistency Condition

We propose to condition the original problem by requiring consistency with the model rather 

than hard-constraining the solution to the associated subspace as performed in the PCB 

approach. Namely, we assume that most pixels generally adhere to a chosen temporal model 

but some pixels can have deviating behavior. More precisely, let (dk), k = 1, …, K, be the 

chosen temporal representation system. In this paper, we consider the representation system 

(dk) formed by the first K pre-estimated PCs, though, in general, it does not have to be 

orthogonal and may be obtained using other techniques (e.g., K-SVD-based dictionary 

compression (30)). We say that an arbitrary temporal waveform w ∈  satisfies the model 

exactly, if it can be written as a linear combination Σckdk with some coefficients ck. We also 

assume that (dk) is such that energy of any waveform is preserved by the inner product 

coefficients with respect to this system (i.e., it forms a tight frame (31)). Then, for any 

waveform that satisfies the model

[10]
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where 〈 w, d̄
k 〉 is the inner product of w and complex conjugate of dk. Let D denote the 

synthesis operator constructing a linear combination from the given coefficient vector (ck):

[11]

and D* denote the analysis operator mapping any waveform w to the vector of its 

coefficients with respect to the system (dk):

[12]

Then, the condition in Eq. [10] may be expressed as:

[13]

where It ∈  is the identity matrix, and DD* defines a projector on the K-dimensional 

linear subspace spanned by (dk). Note that when (dk) is an orthonormal system (e.g., formed 

by learned PCs), then D is the matrix with (dk) as its columns and D* is its Hermitian 

conjugate.

The operator Ψ introduced in Eq. [13] measures the “closeness” of the sought waveforms to 

the model and may be used to penalize solutions deviating from the null-space of this 

operator. An image series satisfying both this assumption (referred to as the MOdel 

Consistency COndition or MOCCO) and the data consistency condition may be obtained as 

follows:

[14]

where X is a chosen norm, and the Kronecker product constructs a block-diagonal matrix 

with operator Ψ on the main diagonal to apply the transform to temporal waveforms of each 

pixel individually. Quadratic (ℓ2) norm is a natural choice if the image series can be 

expected to satisfy the pre-estimated temporal model. However, if temporal waveforms for 

some pixels are not consistent with the chosen model (due to model errors), the resulting 

deviations will be excessively penalized by l2 norm, which may bias the solution. The 

proposed formulation (Eq. [14]) allows utilization of norms which are less sensitive to the 

mismatches between the model and actual temporal dynamics, such as l1 norm. As we 

demonstrate in the Results section, this promotes solutions which are not constrained to a K-

dimensional subspace but rather have full rank. In what follows, MOCCO by default will 

refer to Eq. [14] with l1 norm, with MOCCO (X), where X is a norm of choice, reserved for 

the cases where there is a possibility of confusion.

METHODS

To ensure equivalency of assumptions (availability of a pre-estimated temporal model), we 

compared the basic versions of PCB (Eq. [7]) and MOCCO (Eq. [14]), although both 

methods may be enhanced by regularization terms exploiting other sources of prior 

Velikina and Samsonov Page 6

Magn Reson Med. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



knowledge (21,28). We used the following sampling schemes with fully sampled k-space 

center for LR learning: 1) Randomized variable density (VD) 2D Cartesian sampling (fully 

sampled 11×11 central area (21), density decreasing linearly towards the edges of k-space), 

and 2) Temporally interleaved radial k-space sampling with bit-reversed scheduling (32). To 

ensure consistency between the learned model and output of the optimization procedure in 

cases of multicoil data reconstruction, the training image series was created from low-

resolution coil images via sensitivity-weighted coil combination as used in iterative 

reconstruction algorithm (33). The performance of the methods was compared using 

normalized root-mean-square error nRMSE = ||s − sref||2/||sref||2. Regularization parameter in 

MOCCO was manually adjusted to minimize nRMSE.

Implementation

All algorithms were implemented in Matlab (MathWorks, Inc., Natick, MA, USA). 

MOCCO (Eq. [14]) was applied with both quadratic (X = l2) and robust (X = l1) norms. The 

l1 problem was solved using a standard iteratively reweighted least squares (IRLS) 

algorithm which alternates between inversion of a weighted least squares problem and 

update of the weighting matrix (34). We employed a practical (differentiable) variant of l1 

norm defined by

[15]

with σ = 0.6·std(x) as suggested in (35). The conjugate gradient algorithm was applied to 

perform the least squares inversion step of the algorithm as well as to solve quadratic 

problems (PCB and MOCCO with l2). The iterations were continued until relative norm of 

k-space residual fell below a preset tolerance (τ) or maximal number of iterations (N) was 

reached (noisy data: τ/N=1e-7/200; noise-free data τ/N=1e-16 (numerical precision)/2000) 

(36).

Digital Phantom Simulations

Contrast agent propagation in CE-MRA was modeled by a numerical phantom (matrix size 

128 × 128 × 32) consisting of several circles with decreasing radii on a non-zero background 

(Fig. 1a). Temporal waveforms of the structures were modeled by a gamma-variate function 

(37) (Fig. 1b). Undersampled radial data (acceleration factor R=6) were generated to 

simulate a single coil acquisition both without and with noise (standard deviation of 5% of 

the maximal signal value).

Physical Phantom

A carotid bifurcation physical phantom was scanned on a 3.0 T clinical scanner 

(Discovery ™ MR750, GE Healthcare, Waukesha, WI) using a single channel head coil. The 

data were acquired after injection of gadolinium contrast agent followed by saline flush (fast 

gradient echo Cartesian sequence, matrix size 256×72, 4 slices, 2 s/frame, 48 time frames, 

TE/TR=1.8/6.7 ms). Fully sampled images were retrospectively undersampled onto a 2D 

VD Cartesian trajectory (net R=4.2).
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In Vivo Experiments

An informed consent was obtained from all human subjects. The methods were first studied 

in a time-resolved contrast-enhanced exam from an intracranial aneurysms patient. The 

patient was scanned on a 3.0 T clinical scanner (Discovery ™ MR750, GE Healthcare, 

Waukesha, WI) with an 8-channel head coil using a hybrid radial (in-plane)/Cartesian 

(through-plane) acquisition during a contrast injection (TE/TR=1.5/4 ms, FA=25°, BW=125 

kHz, 20 slices, 256×256 matrix, 0.86×0.86×2 mm3 voxel). Coil sensitivities were estimated 

using fully sampled pre-contrast images (6). The images were reconstructed from 15 

projections/slice (R=27, 1.2 s/frame).

Performance of MOCCO and PCB was further studied in cardiac CINE exams from two 

patients. Human subjects were scanned on a Siemens Aera 1.5T scanner (Siemens AG, 

Healthcare Sector, Erlangen, Germany) using a prospectively triggered bSSFP breath-held 

segmented acquisition with a 32-channel cardiac array (360×210 matrix size, FOV 360×360 

mm, TE/TR=1.56/3.1 ms, 26 and 30 cardiac phases). In the first dataset, all coil channels 

were combined into a single-channel time series using the method of Walsh et al (38) to 

study sensitivity of the model-based methods to model errors independently of parallel MRI. 

A 2D VD Cartesian data were simulated from the data in each case (net acceleration factor 

R=4.2 in the first case, R=15 in the second case); its central fully-sampled square was used 

for low-resolution (LR) learning. True (HRL) model was obtained by applying PCA to the 

fully sampled data.

Analysis of Model Errors

Figure 2 compares the relative contribution of the temporal subspace error εK (Eq. [9]) to the 

total model approximation error for the test datasets with available ground truth (digital and 

physical phantom CE MRA and cardiac CINE datasets). For the prototype CE MRA data, 

model error is dominated by rank reduction error. In contrast, model error for cardiac 

datasets is significantly affected by temporal subspace errors due to LR learning. Hence, 

cardiac data were used to study sensitivity of methods to both rank-reduction and temporal 

subspace errors, while methods’ performance on the digital and physical phantom datasets 

reflected primarily sensitivity to rank reduction errors.

RESULTS

Digital Phantom Simulations

Figure 3 illustrates performance of the dimensionality reduction by PCA for the digital 

phantom. Each one of ten linearly independent waveforms (including non-zero background) 

can be represented exactly as a linear combination of ten PCs. However, since the PCs are 

ordered to reflect the best l2 approximation for a fixed model order K, more prevailing 

temporal behaviors (as determined by l2 norm of the corresponding region) can be 

approximated by a smaller number of PCs. Therefore, as illustrated in Fig. 3, the ability to 

represent a particular waveform with a given model (K=2,5,8) decreases with the circle area. 

While the dominating waveform is represented well by 5 and 8 PCs, more deviations are 

seen for the intermediate waveform. The trend of providing a better approximation to more 

prevailing temporal dynamics is especially obvious for the waveform of the smallest circle, 
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which encounters a visible error even with 8 PCs and necessitates the use of higher order 

models.

Figure 4 shows dependence of the model and MOCCO/PCB reconstruction errors on the 

model order K in the digital phantom simulations. For noiseless data (Fig. 4a), model 

approximation error decreases monotonically reaching zero only for the full range of PCs 

(K=10). In this example, model approximation error ẽK (Figs. 4a,b) is predominantly due to 

the rank reduction (Fig. 2, εK < 0.018 for all values of K). It sets a lower bound for PCB 

reconstruction error, which follows it closely for K ≤ 5, but deviates for larger K and 

increases for K>8. This behavior juxtaposes inherent representation error of lower order 

models and diminished utility of higher order models for accelerated imaging. While 

MOCCO demonstrates a similar performance for larger K, it attains better approximation for 

K ≤ 6 due to its reduced sensitivity to model approximation errors. The usefulness of models 

of lower order is further illustrated in simulations with noise (Fig. 4b), where the error grows 

rapidly for K > 5 due to additional noise amplification (see next paragraph). Using MOCCO 

with lower model order (K=5) results in minimized errors from noisy data as well.

Figure 5 shows image errors for several model orders, which correspond to minimized 

nRMSE including K = 5 (MOCCO for both noisy and noise-free and, PCB for noisy data) 

and K = 8 (PCB for noise-free data) (Figs. 4a,b)). Enforcing the model consistency using l1 

norm produces a good estimate of the images (top rows in Fig. 5b,c) although model of 

order K = 5 cannot fully describe all temporal dynamics (Fig. 3). The latter translates into a 

larger PCB error. A higher order model (K = 8) improves representation of temporal 

waveforms (decreases lower bound for PCB error), but still leads to elevated PCB 

reconstruction errors (Fig. 5b,c) due to poorer problem conditioning. Plots in Fig. 5d 

compare the least represented waveform (calculated by averaging over the circular ROI #9) 

reconstructed from the noisy data by the three approaches. For K = 5, MOCCO estimates the 

waveforms accurately, while PCB attains similar restoration (with the exception of early 

time frames) only with K = 8 at the expense of higher noise levels (Fig. 5c).

Physical Phantom Simulations

Results of experiments with the carotid phantom data exhibit trends similar to the digital 

simulations (Fig. 6). As in the digital phantom case, model approximation error is primarily 

due to rank reduction (Fig. 2, εK < 0.035 for all K). MOCCO provides an accurate image 

series estimate with minimized nRMSE (5.8%) for K = 2, even though the dynamics of 

contrast propagation cannot be closely approximated by only two PCs (approximation error 

image for K = 2 in Fig. 5a, nRMSE=11.1%). These errors are visible in the PCB results (K = 

2, nRMSE=11.4%). The smallest model order, for which model approximation error reaches 

the level of the MOCCO reconstruction error is K = 7 (nRMSE=5.6%, rightmost column in 

Fig. 6a). While model error sets a lower bound for the PCB reconstruction error, the latter 

shows a much higher nRMSE (13.7%) due to noise amplification (Fig. 5a, also manifesting 

itself as a noise floor effect distortion in Fig. 6b). Models with K > 7 give rise to higher PCB 

reconstruction errors (results not shown here). Figure 6b further confirms higher accuracy of 

MOCCO compared to PCB in representation of temporal waveforms.
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In-Vivo Experiments

Figure 7 illustrates performance of the methods in intracranial time-resolved CE-MRA. The 

iterative SENSE images exhibit reduced spatial resolution due to inability of parallel 

imaging to restore high spatial frequencies at high accelerations (Fig. 7a). At the same time, 

these images represent a low-resolution estimate of temporal ground truth and may be used 

to gain initial insights about the bolus propagation dynamics. PCB with low model order (K 

= 3) erroneously produces an early enhancement of a pre-contrast frame compared to 

SENSE estimate (Fig. 7a, white arrows), while reconstruction with ten principal components 

(as suggested in (21)) leads to excessive noise amplification. MOCCO with quadratic norm 

(l2) results in a similar enhancement of the pre-contrast time frame as the quadratic norm 

penalizes heavily deviations from the model (outliers). At the same time, MOCCO (l1) 

preserves the filling pattern seen in the SENSE images while improving spatial resolution 

and keeping noise low. These effects may be further appreciated in Fig. 7b. The image 

differences show that, compared to SENSE (low-resolution ground truth), MOCCO 

primarily restores missing high spatial frequency content. At the same time, PCB causes 

error in larger structures (lower spatial frequency) indicating loss of temporal fidelity. Figure 

7c compares waveforms in artery and adjacent aneurysm. The large size of the aneurysm 

allowed placing ROI away from its edges thereby minimizing the effect of resolution loss in 

SENSE on the estimation of reference temporal waveform. The aneurysm erroneously 

enhances earlier and reaches enhancement peak later in PCB (K = 3) than in the reference 

and MOCCO waveforms, which coincide almost exactly. Although using a higher model 

order theoretically should improve approximation accuracy, PCB waveform for K = 10 

suffers from a distorted shape due to increased noise. A similar situation can be observed for 

arterial ROI (Fig. 7d), except now the loss of spatial resolution in SENSE causes 

underestimation of its waveform in the narrowly shaped artery.

Figure 8 compares the effects of using HRL model (containing rank reduction error only) vs. 

LRL model (comprising both rank reduction and temporal subspace errors) on a single coil 

cardiac CINE dataset. LRL model error significantly exceeds that of HRL model (Fig. 8a), 

thereby increasing a lower bound for PCB reconstruction error. Figure 8b shows error of 

approximating each HRL basis function by the subspace spanned by the first six LRL PCs 

vs. the size of calibration area. These errors characterize the mismatch between the ranges of 

the LRL- and HRL-estimated subspaces. (This approach gives a more adequate estimation 

of LRL model error than comparison of individual PCs since PCA does not produce a 

unique basis for each subspace.) As expected, the difference between LRL and HRL models 

reduces as the size of the calibration area (resolution of the training images) increases. 

However, for lower order PCs (K ≤ 3) the error is smaller and decreases at a much faster rate 

than for higher order PCs (K ≥ 4), which supports observations of Fig. 2 that the range of 

basis functions describing prevailing temporal behavior is more likely to be preserved in LR 

learning, while higher order PCs incur larger error.

Propagation of LRL model errors into reconstructed images can be visually appreciated in 

Fig. 9. For K = 3, both LRL and HRL models cannot provide an accurate representation of 

temporal dynamics, therefore corresponding model errors and, consequently, error of PCB 

reconstruction is high in these regimes. As MOCCO is more robust to errors in both 
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representations, it reconstructs image series with significantly higher accuracy. A notable 

contribution of temporal subspace errors to the total model approximation errors for K = 6 

may be appreciated comparing corresponding LRL and HRL model errors. In this case, HRL 

model diminishes rank-reduction errors and improves representation of the image series. 

Nevertheless, PCB error is elevated due to noise amplification and aliasing artifacts, which 

are further exacerbated by temporal subspace errors still present in the LRL model. These 

drawbacks are mitigated in MOCCO reconstruction, although one can also note a slightly 

elevated noise in the high model order regime.

Figure 10 compares the methods in highly undersampled (R = 15) multi-coil cardiac CINE 

dataset. Zero-filled reconstruction and, to lesser degree, SENSE parallel imaging result in 

deteriorated image quality (Fig. 10a). The results are shown for the model orders minimizing 

nRMSE of MOCCO (K = 3) and PCB (K = 5), and the value suggested in (21) for PCB 

reconstruction of cardiac CINE data (K = 10). The PCB errors (Fig. 10c) for both LRL and 

HRL models exceed the lower bound set by the corresponding model approximation errors 

(Fig. 10b). Remarkably, MOCCO errors are much smaller than the model approximation 

errors. NRMSE-optimized PCB results (K = 5) show a visible loss of temporal fidelity and 

increased error compared to nRMSE-optimized MOCCO (K = 3). Although PCB with K = 

10 improves temporal profiles, its application at such high acceleration increases noise and 

residual aliasing (Fig. 10c) leading to elevated nRMSE. Singular value plots in Fig. 10d 

show that best PCB and MOCCO solutions are of low- and full-rank, respectively.

DISCUSSION

In this paper, we proposed a novel method for accelerated dynamic MRI, termed MOCCO, 

which utilizes pre-estimated (data-driven) models of temporal signal evolution. The use of 

such models in the context of standard dimensionality reduction approaches may face 

several challenges when high undersampling factors are targeted. First, as demonstrated here 

and in (28), constraining the solution to a lower-dimensional subspace may create a dilemma 

of choosing between representation and acceleration capabilities of the model (i.e., the 

model order). Second, such solution may be sensitive to errors in the model caused by pre-

estimation from low-resolution images, especially for higher order models (Figs. 2,8). 

Instead of hard constraining through dimensionality reduction, MOCCO uses temporal 

models to regularize the solution search in the native (full-dimensional) image space, which 

results in full-rank solutions. While performance of MOCCO also depends on the 

availability of an adequate representation system, its application with robust (l1) norm is 

more forgiving to model shortcomings caused by its low rank and/or temporal subspace 

errors from low-resolution learning. MOCCO decreases image noise due to the use of low 

order models, while still recovering dynamic features accurately described only by higher 

order models. The reduced sensitivity to inaccuracies of low-resolution learning may relax 

requirements on the minimum size of calibration areas facilitating higher overall 

acceleration.

It may be noted that if randomized trajectories are used, MOCCO with l1 norm (Eq. [14]) 

may be considered a compressed sensing (CS)-type technique (39) in which the pre-

estimated model is used not to constrain the solution but to design a sparsifying transform 
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given by (Ip ⊗ Ψ) in Eq. [14]. Thus, MOCCO combines advantages of both PCB and CS 

theories for an accurate reconstruction. Although MOCCO achieves a more accurate 

reconstruction and stable performance without invoking additional assumptions about 

sparsity of the solution in domains other than the model space, it may further benefit from 

augmenting its minimization problem with k-t SENSE (9) or k-t FOCUSS (11) 

regularizations often used with PCB approaches (21,28), and/or spatial-temporal differences 

(40).

An automated selection of model order remains an open problem for both PCB and 

MOCCO approaches. At the same time, MOCCO is less sensitive to model order selection 

for lower model orders (the preferred regime for MOCCO) while approaching the 

performance of PCB for higher order models (Fig. 4). One standard approach is to base 

model order selection on the analysis of l2 approximation error (given by the energy of 

truncated singular values). However, it may not always be optimal for both PCB and 

MOCCO approaches given the significant differences between optimal (HR) and LR 

learning, especially in cardiac CINE imaging, though these differences are less pronounced 

in lower-order model regime preferred by MOCCO (Figs. 2,8). Another limitation of the l2 

norm-based metric is its well-known mismatch with visual image quality perception (41,42).

Full-rank solutions of MOCCO showed significant advantages over low-rank PCB 

reconstruction for time-resolved CE MRA and cardiac CINE imaging. The major 

improvement with MOCCO was attained in high acceleration regimes with lower model 

orders (e.g., Fig. 10), which reduce ill-conditioning of the problem. However, further multi-

patient studies are warranted for a detailed comparison of these techniques in clinical 

settings for each particular application and desired acceleration factors. For example, 

MOCCO is expected to be less advantageous in applications with simpler temporal 

dynamics, which can be accurately approximated by a low-rank solution. In such cases, 

higher constraining power of PCB reconstruction is expected to improve image quality 

without inducing model-associated bias. Another scenario is adhering to lower accelerations 

where the high constraining power of lower order models is not required.

While MOCCO is robust to rank reduction and subspace estimation errors, theoretically it 

cannot be efficient in handling errors caused by a global mismatch with the pre-estimated 

model. Such mismatch may be generated by systematic measurement errors, for example, 

due to trajectory errors in non-Cartesian imaging. In this case, a separate measurement and 

modeling of these processes would be an important pre-requisite for a stable performance of 

the algorithm. Another limitation of MOCCO, as with any data-driven model pre-estimation 

technique, is the availability of a fully sampled area for model learning, which may not exist 

in certain types of undersampled trajectories such as uniformly undersampled spirals (43). In 

such cases, the trajectory should be modified to allow low-resolution learning (e.g., by 

utilizing variable density sampling (44)). As MOCCO accepts any (e.g., nonorthogonal or 

linearly dependent) model, it opens up a possibility to incorporate other types of learning 

(30,45). MOCCO may be potentially appealing for accelerated model-based parameter 

mapping (46,47), with preliminary results reported in (48).
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CONCLUSIONS

We proposed a new method (MOCCO) for model-based reconstruction of undersampled 

dynamic MRI data, which overcomes deficiencies of techniques based on pre-estimated 

temporal models. MOCCO was shown to be robust to common sources of errors for such 

techniques associated with both rank reduction and low-resolution learning. MOCCO 

demonstrated significant image quality and temporal fidelity improvements in several 

dynamic MRI applications such as time-resolved CE MRA and cardiac CINE imaging. We 

conclude that MOCCO is a preferred way to utilize temporal models for reconstruction of 

highly accelerated dynamic MRI data in applications with complex temporal dynamics.
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Figure 1. 
Digital CE MRA phantom. Circular structures of decreasing radii (a) are assigned distinct 

temporal waveforms simulating contrast propagation dynamics (b).
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Figure 2. 
Comparison of the relative contribution of the temporal subspace errors to the total model 

approximation error for the test datasets.
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Figure 3. 
Approximation of three representative waveforms from the digital phantom data (Fig. 1) by 

models of different orders K. Note that higher model orders are needed to approximate less 

represented waveforms (as determined by the object energy).
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Figure 4. 
Dependence of PCB and MOCCO reconstruction errors and model approximation errors on 

the model order in digital phantom simulations for noiseless (a) and noisy (b) cases.
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Figure 5. 
Performance of PCB and MOCCO reconstruction approaches in digital phantom 

simulations. a: Ground truth time frames. b: Image errors for noiseless simulations. c: 
Image errors for noisy simulations. d: Recovery of the least represented waveform.
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Figure 6. 
Results of reconstruction of contrast agent bolus propagation in carotid bifurcation phantom. 

a: Fully sampled images, image errors of MOCCO and PCB for different model orders for 

several representative time frames capturing contrast arrival and washout, and errors of 

approximation of fully sampled dataset by the model. b: Waveforms measured in the 

bifurcation ROI shown in (a).
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Figure 7. 
Reconstruction results for intracranial CE MRA exam. a: A pre-contrast (top) and early 

arterial (bottom) time frames. b: Magnified ROI in the time series reconstructed by SENSE, 

MOCCO, and PCB (K=3), and corresponding image differences. c,d: Contrast enhancement 

waveforms measured in the aneurysm and its feeding artery indicated by dashed and solid 

arrows in (b), respectively.
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Figure 8. 
Comparison of representation powers of low-resolution learned (LRL) and high-resolution 

learned (HRL) temporal models (single-coil cardiac CINE dataset). a: Dependence of the 

model approximation error on the model order; b: Error of approximation of a given HR-

learned temporal basis function (PC #1–6) by LR-learned models (K=6) for varying 

calibration area.
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Figure 9. 
Illustration of sensitivity of PCB and MOCCO to representation errors caused by rank 

reduction both without (HRL model) and with temporal subspace estimation (LRL model) 

errors on the example of systolic (left) and diastolic (right) frames of a single coil cardiac 

CINE data.
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Figure 10. 
Illustration of the methods’ performance on 15×-accelerated multi-coil cardiac CINE 

dataset. Each sub-figure contains images of a representative time frame, temporal profiles 

with 2× magnified errors, and corresponding value of nRMSE (in %). a: Ground truth 

images and reconstructions by standard zero-filling and SENSE. b: Results of 

approximation of the full dataset by the models. c: PCB and MOCCO reconstruction results. 

d: Plots of singular values for ground truth images series and reconstructed with PCB and 

MOCCO.
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