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Abstract

Structure based virtual screening has largely been limited to protein targets for which either an
experimental structure is available or a strongly homologous template exists so that a high-
resolution model can be constructed. The performance of state of the art protein structure
predictions in virtual screening in systems where only weakly homologous templates are available
is largely untested. Using the challenging DUD database of structural decoys, we show here that
even using templates with only weak sequence homology (<30% sequence identity) structural
models can be constructed by I-TASSER which achieve comparable enrichment rates to using the
experimental bound crystal structure in the majority of the cases studied. For 65% of the targets,
the I-TASSER maodels, which are constructed essentially in the apo conformations, reached 70%
of the virtual screening performance of using the holo-crystal structures. A correlation was
observed between the success of I-TASSER in modeling the global fold and local structures in the
binding pockets of the proteins versus the relative success in virtual screening. The virtual
screening performance can be further improved by the recognition of chemical features of the
ligand compounds. These results suggest that the combination of structure-based docking and
advanced protein structure modeling methods should be a valuable approach to the large-scale
drug screening and discovery studies, especially for the proteins lacking crystallographic
structures.
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1. Introduction

Virtual screening is a computational approach to detect potential leads from compound
libraries that has become a standard technology in modern drug discovery pipelines [1]. The
total number of potential ligands for drug development is much larger than what can be
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feasibly tested. While estimates of the total number of synthetically accessible small
molecules vary, even the smallest number indicates a drug-like chemical space that is much
larger than what can be efficiently explored experimentally through blind screening. Given
the common estimate that a single industrial lab can only test 10,000-100,000 compounds in
a day with standard high throughput screening, the smallest estimate [2] of drug-like
chemical molecules (1.5 x 107) still presents a formidable task for lead selection. If larger
estimates of 1023-10%0 possible drug-like molecules are considered [3], the total number of
potential ligands for drug development is much larger than what can be feasibly tested
experimentally. The main goal of virtual screening is therefore to identify a limited set of
candidates to be synthesized for the much more expensive next step of experimentally
examining their biological activities [1].

Historically, virtual screening approaches in the drug development process have been
divided into structure- and ligand-based algorithms [4,5]. Structure-based computational
modeling approaches such as molecular docking use the full three dimensional structure of
the protein target for lead optimization and hit discovery [6]. The ligand-based approach, by
contrast, ignores the structural details of the protein target and finds ligands with
pharmacophores similar to known hits to generate a model of the pharmacodynamics of a
potential hit, or to perform quantitative structure—activity relationship studies [5]. In
principle, the structure-based methods might be expected to give better results than the
ligand-based approaches, because they try to simulate the intrinsic character of protein—
ligand interactions [7]. However, a major drawback of the structure-based technique is a
structural model of the protein, which usually needs to have high-resolution, must be
available, which is frequently not the case for many protein families of interest in drug
development. If a high-resolution structural model cannot be created, only ligand-based
approaches may be used.

Although the amount of high-resolution protein structures has increased dramatically in
recent years, the structures of some important protein targets implicated in the etiology of
deadly diseases remain unsolved [8,9]. What can be done if the 3D protein structure of the
drug target is not available? Fortunately, many computational methods have successfully
predicted accurate 3D structures from only the amino-acid sequence of the target. Several
methods have been used for protein structure prediction including homology modeling
[10,11], threading [12,13], and ab initio folding [14-16].

Most virtual screening studies using predicted structures have been relied on homology
modeling, which is based on the general observation that proteins with similar sequences
can be expected to possess similar structures. Homology modeling of proteins consists of
identification of related proteins with a known 3D structure that can serve as a template,
followed by sequence alignment of the target and template, and the refinement of the
structural model. Although there are specific cases where a template with low sequence
similarity may adopt similar structure folds (e.g. 27 different homologous subfamilies from
60 different enzyme classifications, which have no sequence similarity, have the same TIM
barrel fold [17]), homologous templates generally refers to a known protein that shares
strong sequence similarity to the target. Thus, the final quality of a homology model for
virtual screening often depends on the level of sequence identity between the target and
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template. Multiple studies have attempted to assess the degree of sequence identity needed
for effective virtual screening for different classes of protein targets. As an approximate rule,
>50% sequence identity is believed to be sufficient for drug discovery [18-20], although this
number varies widely among the target class and a strong correlation between sequence
identity of the template and virtual screening success has not been verified for most targets
at high sequence identity levels [21,22]. On the other hand, the accuracy of the structural
model has been shown to correlate with virtual screening success [23]. The accuracy of
homology modeling significantly declines when a template above 30% sequence identity
cannot be found.

However, approaches based on advanced algorithms including threading and ab initio
folding can increase the success rate for modeling the structure of distantly- or non-
homologous protein targets [24]. The Iterative threading assembly refinement (I-TAS-SER)
is one of such approaches that was designs to combine multiple pipelines of threading, ab
initio folding and atomic-level structure refinement for full-length protein structure
prediction [25]. In the recent community-wide blind structure prediction experiments, the
Critical Assessment of Structure Prediction (CASP), I-TASSER has shown advantages over
peer modeling programs in automated 3D structure predictions [26—30].

In this work, we tested the use of the I-TASSER models in large-scale structure-based
virtual screening of the Directory of Useful Decoys (DUD) database [31]. The 3D structures
of protein targets from the DUD database are first constructed by the I-TASSER program
from the amino acid sequence alone, where template structures with a sequence identity
>30% were excluded from the threading library. Next, atomic level refinement is performed
by fragment guided molecular dynamics, FG-MD [32], to relax the predicted structures. The
actual virtual screening is performed by molecular docking using the GRID score of DOCK
6.3 [33,34] to measure the binding site complementarity. While the performance of virtual
screening using I-TASSER models did not match that of virtual screening using the
experimental crystal structure, good enrichment rates (~70%) relative to using crystal
structures could be achieved in most cases (65% of the structures tested) using the automatic
structure prediction and docking pipelines without human intervention. The rate of success
correlates well with the accuracy of I-TASSER in predicting the global fold and local
structure of the binding pockets of the proteins. These results suggest that 3D models built
by the state of the art structure prediction methods can provide a useful starting point of
structure based virtual screening for the many cases where neither an experimental structure
nor a clearly homologous template is available.

2. Materials and methods

2.1. Target set of proteins and ligands for virtual screening

We used the Directory of Useful Decoys (DUD) [31], one of the largest freely available
databases for evaluating docking based virtual screening methods, to benchmark the
performance of both crystal structure and I-TASSER predicted model based virtual
screening. The DUD database consists of 40 protein targets from the Protein Data Bank
(PDB). For each protein target, there are on average 74 active compounds (or 2950 active
compounds in total), where for each active compound there are on average 36 inactive
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compounds (called decoys) with similar physical properties to the active compound but with
dissimilar chemical topology [31]. Three out of the forty proteins in the DUD target set,
including HIV-PR (1hpx), FXa (1f0r), HMGR (1hw8), are multi-chain proteins, the models
of which should be constructed by the combination of I-TASSER with quaternary structure
modeling tools [35]. Since the focus of this study is on automatic I-TASSER-based
modeling and docking, these three proteins were removed from the test set. Finally, a crystal
structure is not available for the kinase PDGFrb making a comparison impossible. The 36
remaining proteins are listed in Table 1, along with the PDB codes of the proteins and the
number of actives and decoys for each target. In this study, only the decoys associated with
a target were docked to that target (DUD-self), rather than all decoys for all targets.

Crystallographic structures of the bound proteins were used without further refinement after
removing water and heavy metal atoms and adding polar hydrogens with ANTECHAMBER
[36]. AM1-BCC partial charges [37,38] were added to both the crystallographic structures
and I-TASSER models with ANTECHAMBER.

2.2. Creation of protein models by I-TASSER

The predicted structure models used for virtual screening were generated by the automated
I-TASSER pipeline [27]. While the I-TASSER method has been described in previous work
[17,20], we give an outline of the pipeline below.

In the first step of the I-TASSER modeling, the target sequences are threaded by LOMETS
[39], a locally installed meta-server platform consisting of 8 threading proteins (FFAS [40],
HHsearch [41], MUSTER [42], PPA [43], PRC [44], PROSPECT?2 [45], SAM-TO02 [46],
SP3 [47], and SPARKS [48]), through a representative PDB library to search for possible
folds or super-secondary structure segments matching the target sequence. In this
benchmark test, all templates with a sequence identity >30% to the target are excluded to
filter out homology contaminants. This cutoff corresponds to the “twilight zone” where
structure prediction becomes significantly more difficult and therefore represents a
challenging test where conventional homology modeling frequently fails [49].

Following the template detections, continuous fragments are excised from the LOMETS
alignments, which are used to reassemble the full-length structure models. The threading
unaligned regions (mainly loops and tails) are built by ab initio folding based on an on-
lattice system. The structural assembly procedure is implemented by the replica-exchange
Monte Carlo simulation [50], with an optimized knowledge-based force field. The models
with the lowest free-energy are identified by SPICKER that clusters all structure decoys in
the MC simulations [51].

Because I-TASSER models were built on reduced models as specified by the C-alpha and
side-chain center of mass and the SPICKER clustering procedure generates models by
coordinate averaging which often result in atom overlaps, we conduct a fragment-guided
molecule dynamic simulation, FG-MD [32], to add full-atom coordinates and to remove the
local overlaps. In FG-MD, simulated annealing molecular dynamics simulations were
implemented using a modified LAMMPS algorithm [52], where the force field consists of
four energy terms from the distance map restraints from I-TASSER, explicit hydrogen
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binding, a repulsive potential, and the AMBER99 force field [53]. To further improve the
topology of the reduced I-TASSER models, substructures consisting of three consecutive
secondary structure elements are excised from the I-TASSER models and used as probe to
search through a non-redundant PDB library by TM-align [54] to detect the analogous
structure fragments that are closest to the substructures. Spatial constraints were collected
from these analogous fragments and used as an additional term to guide the FG-MD
simulations. The final refined models from the FG-MD simulations were selected based on
the sum of the Z-score of hydrogen bonds, the Z-score of the number of steric clashes, and
the Z-score of FG-MD energy. This procedure was fully automated (http://zhang-
lab.ccmb.med.umich.edu/FG-MD/) with a running time for each refinement target of less
than 2 h for a 2.4 GHz CPU.

As a control, a similar process of the FG-MD refinement simulation was also implemented
on the experimental crystal structures to create a separate set of protein models for
comparison, termed the relaxed crystal set. Because the X-ray structure often exists as a
global fold with idealized local structure (e.g. free of overlaps), the application of the FG-
MD procedure to the crystal structures only results in a negligible change to backbone
structure (<0.3 A RMSD). But the side-chain packing is re-calculated, which may occupy
the void formerly occupied by the ligand since the ligand is not included in the FG-MD
relaxation.

2.3. Molecular docking

Virtual screening on the I-TASSER models and the experimental X-ray structures was
performed by molecular docking using the DOCK 6.3 program, selected for its known
accuracy and speed [33]. DOCK first generates a negative image of the receptor by making
use of spheres that fill the binding pocket. The algorithm then attempts to superimpose the
ligand atoms onto the centers of the spheres. For bound crystal structures, a receptor box
centered on the bound ligand with an additional 5 A boundary was used to define the active
site for docking. For the I-TASSER predicted models a similar box was made by a
superposition of the crystallographic structures onto the I-TASSER models. The DMS
program distributed with DOCK 6.3 was used to generate the molecular surface for each
receptor while the SPHGEN utility was then used to create the negative image of the surface
with the sphere set for each complex composed of all spheres found within 10 A of any
ligand atoms. Scoring function potential grids for the receptor were pre-calculated prior to
docking by the GRID utility to increase computational efficiency. Finally, the incremental
anchor-and-grow strategy was used to incorporate ligand flexibility in the docking process
[55]. Virtual screening with docking was carried out on a Linux Cluster Platform which
contains 2200 CPUs (Inter(R) Xeon(R) 2.27 GHz) on 266 computing nodes.

2.4. Virtual screening and enrichment rate

For each target, compounds were sorted and ranked based on the docking pose with the
lowest GRID energy. It is important to have an objective criteria for evaluating the quality
of the protocol and the performance of an in silico virtual screening method. The enrichment
rate is a practical statistic geared towards one of the main goals of virtual screening,
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identification of rare potential lead compounds amongst a large set of similar but inactive
compounds (decoys) [31]. The enrichment rate (ER) is defined as:

Hitsz% d X Ntotal

sample

% .
INEZ° ted X Hitsotar

samp

ER, 9=

0]

where Hitsfﬁ’,,,p,ed is the number of hits found at x% of the database screened, IV, ff,“,,,lded is the
number of compounds screened at x% of the database, Hitsqt is the number of actives in
entire database, and N;qg is the number of compounds in entire database. It can easily be
seen that enrichment rate has a fixed maximum at any given percentage of the database
screened. At 1%, the maximum is 100, at 2% the maximum is 50, and at 10% screened the
maximum enrichment rate obtainable is 10. This enrichment rate reflects the capability of a

screening application to detect active ligands (true positives) compared to random selection.

3. Results and discussion

3.1. Virtual screening and enrichment evaluation based on crystallographic structures of
proteins

In the docking approach, the test molecules were docked with the target proteins and sorted
according to their docking scores. The enrichment curve plot of the percentage of actives
found for different levels of hypothetical database screening is shown in Fig. 1 with the
enrichment curve docking against the crystallographic bound structure colored in blue and
the enrichment curve for random screening colored in green. Random screening gives an
enrichment value near 1, which is expected by consideration of the form of the enrichment
factor.

It can be seen from Fig. 1 that docking against the crystal structure is a successful strategy
for some proteins targets but not others, in agreement with other studies using docking-
based virtual screening [56]. To eliminate intractable targets, a threshold of 10 times the
enrichment over random selection was selected as a cutoff for successful docking. This
cutoff is roughly 2.5 times the enrichment rate usually obtained for ligand based virtual
screening and 5 times that for virtual screening based on simple molecular descriptors like
atom counting. This threshold was met for 20 out of the 36 proteins tested. Docking was
judged to be unsuccessful for the remaining 16 out of the 36 proteins tested and these targets
were eliminated for further consideration, as it is less likely (but not impossible) [21] that a
predicted model will succeed in virtual screening where a high resolution experimental
structure has failed.

3.2. Quality of I-TASSER based structure prediction on the DUD protein targets

The sequences of the remaining 20 protein targets were used to generate the 3D theoretical
models by the I-TASSER program, to test how close the predicted models could reproduce
the performance of experimental structures in docking-based virtual screening. In addition to
RMSD, the similarly of the I-TASSER models with the target structure is assessed by TM-
score [57], which is in the range of [0,1] with a higher score indicating a better structural
match. In general, a TM-score <0.17 is equivalent to a randomly selected protein pair with
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gapless alignment taken from PDB while a TM-score >0.5 corresponds to protein pairs with
similar folds [58]. Compared to the widely used RMSD measure, TM-score has been
demonstrated to be more sensitive to the global fold by weighting residue pairs between
structures at short distances at a higher weight, while RMSD is more sensitive to the local
structure fluctuations.

Fig. 2 represents a summary of the first models generated by I-TASSER. In this plot, the
lines and balls represent the TM-score (red) or RMSD (blue) of predicted model to the
native structure, respectively, for each protein. Even with the limitations on structural
templates imposed by the 30% sequence identity cutoff, only one target in the DUD
database, Neuraminidase (na), a large 461-residue protein with a complex topology with
many flexible loops, fails to meet the 0.5 TM-score cutoff indicative of a similar global fold
as the native structure. The predicted models of the remaining proteins have similar global
folds to the native with most proteins having TM-scores in the 0.7-0.9 range and RMSD
values of 4 A or less.

As a control, we tried to generate models using MODELLER [59], a standard tool for
homology modeling, using the same threading templates. The TM-scores of the
MODELLER models are lower than the I-TASSER models for all the targets, with the
average RMSD of 2.4 A higher than that of the I-TASSER models. Nevertheless, 13 out of
the 20 targets have the correct fold by MODELLER with a TM-score >0.5, mainly due to
the correct identification of the template structures by LOMETS.

3.3. Comparison of virtual screening performance using I-TASSER models versus
crystallographic structures

The enrichment curve using predicted I-TASSER models is presented in Fig. 3 in
comparison with the performance using the crystallographic structures in docking-based
virtual screening. In order to compare the performance of virtual screening based on
experimental crystallographic structures and I-TASSER predicted models quantitatively, we
checked the number of actives that were ranked in the top 1%, 5%, 10% of the compounds
chosen, and calculated the corresponding enrichment rates (Table 2). The percentage of the
I-TASSER models that reach or exceed the virtual screening performance of either the
crystallographic structures or the crystal structures relaxed in the unbound form by FG-MD
using these screening thresholds is shown in Table 3.

A few trends are apparent from the data. The first is the acceptable virtual screening
performance of the I-TASSER models when compared with virtual screening using either
the bound or relaxed crystallographic structures. For only three proteins (ampc, mr and rxr)
does the virtual screening with I-TASSER models fail completely and give enrichment rates
near random performance (colored in green in Fig. 3). Two of these proteins (mr, rxr) are in
the difficult nuclear hormone receptor class (Table 1) for which docking using the
experimental crystal structure failed for 6 out of the 8 targets in this class (Fig. 1). For the
remaining proteins (ace, cdk2, comt, egfr, fgfrl, hivrt, inha, p38, pde5, pnp, thrombin,
vegfr2), the I-TASSER models perform relatively well in virtual screening.
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More quantitatively, for 13 targets (65% of the total) the I-TAS-SER models were able to
reach 70% or better of the enrichment value using the experimental bound crystal structure.
75% of the I-TASSER models can achieve half of the performance of virtual screening
using the experimental crystal structures when the top 1% of the database is ranked.
Interestingly, I-TASSER compares slightly more favorably when compared to the structures
relaxed in the unbound form by FG-MD, in agreement with the improvement in docking for
most protein targets when using experimental holo-structures [60]. The I-TASSER models
of five proteins (fgfrl, inha, pnp, comt, vegfr2) are actually significantly better in virtual
screening than the bound crystallographic structures in virtual screening, although, except
for comt, they perform similarly to the relaxed experimental crystal structures. This finding
suggests the improvement of the I-TASSER models over the bound crystal structures in
these cases is a result of the rigid conformation of the protein used in docking during
screening, which prevents reorganization of the binding site during docking to accommodate
an active ligand with a different conformation than the bound conformation [60]. The
relaxed crystal structures and I-TASSER models in these cases have more open binding sites
and can therefore accommodate a greater diversity of ligands.

As a control, we used the MODELLER models in the same structure-based docking
screening. There are only 7 cases (35% of the total) that were able to reach 70% or better of
the enrichment value by the experimental bound crystal structure. The average enrichment
values by the MODELER models are 35%, 26% and 28% lower than that using the I-
TASSER models at the top 1%, 5% and 10% of compounds selected, respectively. These
data demonstrate an impact of the structure prediction methods on the performance of the
structure-based visual screening.

3.4. Correlation between enrichment rate and quality of protein models

The above I-TASSER data in comparison with the control models by MODELLER has
indicated the dependence of the performance of virtual screening on the accuracy of the
target protein structures. To have a more quantitative examination on the problem, we
present in Fig. 4 the correlation of enrichment rate and the quality of the target models, with
focus on the proteins for which I-TASSER models faithfully reproduced the fold of the
protein (TM score >0.7) and were successful replacements for the crystal structures in
virtual screening (60% of the ER g, Of the bound crystal structure). 14 out of the 20 targets
met this criterion. If the outlier thrombin target is excluded, there is a Pearson correlation
between the ERs and the TM-score with R value 0.728 and p-value (0.01), suggesting a
relationship does exist between the fidelity of the receptor models to the native and the
success in virtual screening.

Nevertheless, there are cases where the performance of virtual screening demonstrates
somewhat contradictive correlation to the global quality of the I-TASSER models. For
instance, neuraminidase (NA) is the only target where I-TASSER failed to generate a correct
fold (with a TM-score <0.5) as shown in Fig. 2. However, the enrichment rate at 10%
compound is 40.82 using the I-TASSER model, which is 61% of that using the bound
crystal structure. A detailed examination on this case found that the local binding pocket of
the I-TASSER maodel is very close to the bound crystal structure although the global fold of
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the other regions has a very low resolution (Fig. 5). In this example, since the docking box
(colored in black) has been correctly identified, the incorrectness of the structure outside the
binding pocket does not have a strong impact on the final performance of the virtual
screening. This data partly highlights the sensitivity of the docking screening on the local
quality of protein structure predictions.

3.5. Impact of physicochemical similarity filter of decoy compounds

In addition to the quality of the protein structure predictions, the selection of appropriate
compounds can also result in an impact on the performance of the virtual screening. To
examine the possibility, we used the ROCs 2.2 software from OpenEye (http://
www.eyesopen.com) to filter the actives of each protein before docking screening. ROCs is
a fast shape comparison application software, which ranks molecules on the basis of their
similarity to a known active molecule (reference ligand) in 3D shape space, using atom-
centered Gaussian functions to allow rapid maximization of molecular overlap (volume and
atomic). Here we used all the actives of each DUD target to match with the crystal reference
ligands on the target, with the actives ranked by the TanimotoCombo score. All the active
compounds, which have the TanimotoCombo lower than 0.6, were discarded. The final
screening results after the Tanimoto filter are summarized in Table 2 as the “TC2 data’.

As a result, the enrichment rates are increased by the Tanimoto filter for all cutoffs (ER 1,
ERso,, ER1004) Using both crystal and predicted structures. The largest improvement is from
the screening experiment using the I-TASSER models, where the ER1¢, Was increased by
35%, compared to that using the original DUD compound sets. These data demonstrate the
potential to improve the performance by considering physicochemical features of the ligand
compounds during virtual screening.

4. Conclusion

Considering the accelerated pace of genome sequencing and the much slower rate of
experimental protein structure determination, it is unlikely that three-dimensional structures
will be soon available for all the potential drug targets. Therefore, modern drug development
at the proteome level must rely on modeled structures provided by protein structure
prediction techniques. The results of this study showed that docking-based virtual screening
with computational protein models, built by the start of the art modeling methods, emerges
as a useful compound prioritization technique applicable to the early stages of proteome-
scale drug screening projects, even when no closely homologous templates exist. The
computational models produced by the I-TASSER program demonstrated a similar
enrichment rate in the identification of active compounds from a set of decoys as the crystal
structures for the majority of protein targets in the test. Nevertheless, the performance of the
virtual screening can be further enhanced by the improvement of the receptor structure
modeling quality and appropriate pre-selection of ligand compound using the
physicochemical feature filtering. Thus, these data demonstrated that the combination of
structure-based docking and advanced protein structure modeling methods represents a
valuable approach to the forthcoming large-scale drug screening and discovery studies,
especially for the proteins lacking crystallographic structures.
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Fig. 1.

The enrichment curves using the experimental X-ray crystal protein structures in the virtual
screening (blue) compared to random selection (green) and 10 times the performance of
random selection (black).
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Summary of I-TASSER structure predictions on the 20 DUD proteins in comparison to the
experimental crystal structures.

Methods. Author manuscript; available in PMC 2015 May 14.



1duosnue Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Du et al.

30
20

60
40
20

40

20

Fig. 3.

Enrichment curves in virtual screening using the experimental bound crystal structure (blue),
experimental crystal structure relaxed in the unbound form by FG-MD (black), and the I-
TASSER model (red) compared to random selection (green).
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Correlation between ER gy, and TM-score of the receptor models when I-TASSER models

successfully predicted the native structure (TM-score =0.7) and the virtual screening was
successful, i.e. with 60% of the ER1qq, from the bound crystal structure. The outlier
thrombin was removed from the correlation analysis.
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Fig. 5.

Ligg]]and docking on the neuraminidase protein. (A) Superposition of the crystallographic
structures (green) and I-TASSER model (blue) of the target protein with the binding pocket
residues highlighted in red spheres. (B) The initial docking box (black) generated by DOCK
6.3 is overlaid on the protein structure before self-docking. (C) Overlay of the ligand
structure from the native (purple) and that by docking using bound crystal structure of the
protein (green). (D) Overlay of the ligand structure from the native (purple) and that by
docking using I-TASSER model of the protein (green).
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