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Abstract

Structure based virtual screening has largely been limited to protein targets for which either an 

experimental structure is available or a strongly homologous template exists so that a high-

resolution model can be constructed. The performance of state of the art protein structure 

predictions in virtual screening in systems where only weakly homologous templates are available 

is largely untested. Using the challenging DUD database of structural decoys, we show here that 

even using templates with only weak sequence homology (<30% sequence identity) structural 

models can be constructed by I-TASSER which achieve comparable enrichment rates to using the 

experimental bound crystal structure in the majority of the cases studied. For 65% of the targets, 

the I-TASSER models, which are constructed essentially in the apo conformations, reached 70% 

of the virtual screening performance of using the holo-crystal structures. A correlation was 

observed between the success of I-TASSER in modeling the global fold and local structures in the 

binding pockets of the proteins versus the relative success in virtual screening. The virtual 

screening performance can be further improved by the recognition of chemical features of the 

ligand compounds. These results suggest that the combination of structure-based docking and 

advanced protein structure modeling methods should be a valuable approach to the large-scale 

drug screening and discovery studies, especially for the proteins lacking crystallographic 

structures.
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1. Introduction

Virtual screening is a computational approach to detect potential leads from compound 

libraries that has become a standard technology in modern drug discovery pipelines [1]. The 

total number of potential ligands for drug development is much larger than what can be 
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feasibly tested. While estimates of the total number of synthetically accessible small 

molecules vary, even the smallest number indicates a drug-like chemical space that is much 

larger than what can be efficiently explored experimentally through blind screening. Given 

the common estimate that a single industrial lab can only test 10,000–100,000 compounds in 

a day with standard high throughput screening, the smallest estimate [2] of drug-like 

chemical molecules (1.5 × 107) still presents a formidable task for lead selection. If larger 

estimates of 1023–1060 possible drug-like molecules are considered [3], the total number of 

potential ligands for drug development is much larger than what can be feasibly tested 

experimentally. The main goal of virtual screening is therefore to identify a limited set of 

candidates to be synthesized for the much more expensive next step of experimentally 

examining their biological activities [1].

Historically, virtual screening approaches in the drug development process have been 

divided into structure- and ligand-based algorithms [4,5]. Structure-based computational 

modeling approaches such as molecular docking use the full three dimensional structure of 

the protein target for lead optimization and hit discovery [6]. The ligand-based approach, by 

contrast, ignores the structural details of the protein target and finds ligands with 

pharmacophores similar to known hits to generate a model of the pharmacodynamics of a 

potential hit, or to perform quantitative structure–activity relationship studies [5]. In 

principle, the structure-based methods might be expected to give better results than the 

ligand-based approaches, because they try to simulate the intrinsic character of protein–

ligand interactions [7]. However, a major drawback of the structure-based technique is a 

structural model of the protein, which usually needs to have high-resolution, must be 

available, which is frequently not the case for many protein families of interest in drug 

development. If a high-resolution structural model cannot be created, only ligand-based 

approaches may be used.

Although the amount of high-resolution protein structures has increased dramatically in 

recent years, the structures of some important protein targets implicated in the etiology of 

deadly diseases remain unsolved [8,9]. What can be done if the 3D protein structure of the 

drug target is not available? Fortunately, many computational methods have successfully 

predicted accurate 3D structures from only the amino-acid sequence of the target. Several 

methods have been used for protein structure prediction including homology modeling 

[10,11], threading [12,13], and ab initio folding [14–16].

Most virtual screening studies using predicted structures have been relied on homology 

modeling, which is based on the general observation that proteins with similar sequences 

can be expected to possess similar structures. Homology modeling of proteins consists of 

identification of related proteins with a known 3D structure that can serve as a template, 

followed by sequence alignment of the target and template, and the refinement of the 

structural model. Although there are specific cases where a template with low sequence 

similarity may adopt similar structure folds (e.g. 27 different homologous subfamilies from 

60 different enzyme classifications, which have no sequence similarity, have the same TIM 

barrel fold [17]), homologous templates generally refers to a known protein that shares 

strong sequence similarity to the target. Thus, the final quality of a homology model for 

virtual screening often depends on the level of sequence identity between the target and 
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template. Multiple studies have attempted to assess the degree of sequence identity needed 

for effective virtual screening for different classes of protein targets. As an approximate rule, 

≥50% sequence identity is believed to be sufficient for drug discovery [18–20], although this 

number varies widely among the target class and a strong correlation between sequence 

identity of the template and virtual screening success has not been verified for most targets 

at high sequence identity levels [21,22]. On the other hand, the accuracy of the structural 

model has been shown to correlate with virtual screening success [23]. The accuracy of 

homology modeling significantly declines when a template above 30% sequence identity 

cannot be found.

However, approaches based on advanced algorithms including threading and ab initio 

folding can increase the success rate for modeling the structure of distantly- or non-

homologous protein targets [24]. The Iterative threading assembly refinement (I-TAS-SER) 

is one of such approaches that was designs to combine multiple pipelines of threading, ab 

initio folding and atomic-level structure refinement for full-length protein structure 

prediction [25]. In the recent community-wide blind structure prediction experiments, the 

Critical Assessment of Structure Prediction (CASP), I-TASSER has shown advantages over 

peer modeling programs in automated 3D structure predictions [26–30].

In this work, we tested the use of the I-TASSER models in large-scale structure-based 

virtual screening of the Directory of Useful Decoys (DUD) database [31]. The 3D structures 

of protein targets from the DUD database are first constructed by the I-TASSER program 

from the amino acid sequence alone, where template structures with a sequence identity 

>30% were excluded from the threading library. Next, atomic level refinement is performed 

by fragment guided molecular dynamics, FG-MD [32], to relax the predicted structures. The 

actual virtual screening is performed by molecular docking using the GRID score of DOCK 

6.3 [33,34] to measure the binding site complementarity. While the performance of virtual 

screening using I-TASSER models did not match that of virtual screening using the 

experimental crystal structure, good enrichment rates (~70%) relative to using crystal 

structures could be achieved in most cases (65% of the structures tested) using the automatic 

structure prediction and docking pipelines without human intervention. The rate of success 

correlates well with the accuracy of I-TASSER in predicting the global fold and local 

structure of the binding pockets of the proteins. These results suggest that 3D models built 

by the state of the art structure prediction methods can provide a useful starting point of 

structure based virtual screening for the many cases where neither an experimental structure 

nor a clearly homologous template is available.

2. Materials and methods

2.1. Target set of proteins and ligands for virtual screening

We used the Directory of Useful Decoys (DUD) [31], one of the largest freely available 

databases for evaluating docking based virtual screening methods, to benchmark the 

performance of both crystal structure and I-TASSER predicted model based virtual 

screening. The DUD database consists of 40 protein targets from the Protein Data Bank 

(PDB). For each protein target, there are on average 74 active compounds (or 2950 active 

compounds in total), where for each active compound there are on average 36 inactive 
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compounds (called decoys) with similar physical properties to the active compound but with 

dissimilar chemical topology [31]. Three out of the forty proteins in the DUD target set, 

including HIV-PR (1hpx), FXa (1f0r), HMGR (1hw8), are multi-chain proteins, the models 

of which should be constructed by the combination of I-TASSER with quaternary structure 

modeling tools [35]. Since the focus of this study is on automatic I-TASSER-based 

modeling and docking, these three proteins were removed from the test set. Finally, a crystal 

structure is not available for the kinase PDGFrb making a comparison impossible. The 36 

remaining proteins are listed in Table 1, along with the PDB codes of the proteins and the 

number of actives and decoys for each target. In this study, only the decoys associated with 

a target were docked to that target (DUD-self), rather than all decoys for all targets.

Crystallographic structures of the bound proteins were used without further refinement after 

removing water and heavy metal atoms and adding polar hydrogens with ANTECHAMBER 

[36]. AM1-BCC partial charges [37,38] were added to both the crystallographic structures 

and I-TASSER models with ANTECHAMBER.

2.2. Creation of protein models by I-TASSER

The predicted structure models used for virtual screening were generated by the automated 

I-TASSER pipeline [27]. While the I-TASSER method has been described in previous work 

[17,20], we give an outline of the pipeline below.

In the first step of the I-TASSER modeling, the target sequences are threaded by LOMETS 

[39], a locally installed meta-server platform consisting of 8 threading proteins (FFAS [40], 

HHsearch [41], MUSTER [42], PPA [43], PRC [44], PROSPECT2 [45], SAM-T02 [46], 

SP3 [47], and SPARKS [48]), through a representative PDB library to search for possible 

folds or super-secondary structure segments matching the target sequence. In this 

benchmark test, all templates with a sequence identity >30% to the target are excluded to 

filter out homology contaminants. This cutoff corresponds to the “twilight zone” where 

structure prediction becomes significantly more difficult and therefore represents a 

challenging test where conventional homology modeling frequently fails [49].

Following the template detections, continuous fragments are excised from the LOMETS 

alignments, which are used to reassemble the full-length structure models. The threading 

unaligned regions (mainly loops and tails) are built by ab initio folding based on an on-

lattice system. The structural assembly procedure is implemented by the replica-exchange 

Monte Carlo simulation [50], with an optimized knowledge-based force field. The models 

with the lowest free-energy are identified by SPICKER that clusters all structure decoys in 

the MC simulations [51].

Because I-TASSER models were built on reduced models as specified by the C-alpha and 

side-chain center of mass and the SPICKER clustering procedure generates models by 

coordinate averaging which often result in atom overlaps, we conduct a fragment-guided 

molecule dynamic simulation, FG-MD [32], to add full-atom coordinates and to remove the 

local overlaps. In FG-MD, simulated annealing molecular dynamics simulations were 

implemented using a modified LAMMPS algorithm [52], where the force field consists of 

four energy terms from the distance map restraints from I-TASSER, explicit hydrogen 
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binding, a repulsive potential, and the AMBER99 force field [53]. To further improve the 

topology of the reduced I-TASSER models, substructures consisting of three consecutive 

secondary structure elements are excised from the I-TASSER models and used as probe to 

search through a non-redundant PDB library by TM-align [54] to detect the analogous 

structure fragments that are closest to the substructures. Spatial constraints were collected 

from these analogous fragments and used as an additional term to guide the FG-MD 

simulations. The final refined models from the FG-MD simulations were selected based on 

the sum of the Z-score of hydrogen bonds, the Z-score of the number of steric clashes, and 

the Z-score of FG-MD energy. This procedure was fully automated (http://zhang-

lab.ccmb.med.umich.edu/FG-MD/) with a running time for each refinement target of less 

than 2 h for a 2.4 GHz CPU.

As a control, a similar process of the FG-MD refinement simulation was also implemented 

on the experimental crystal structures to create a separate set of protein models for 

comparison, termed the relaxed crystal set. Because the X-ray structure often exists as a 

global fold with idealized local structure (e.g. free of overlaps), the application of the FG-

MD procedure to the crystal structures only results in a negligible change to backbone 

structure (<0.3 Å RMSD). But the side-chain packing is re-calculated, which may occupy 

the void formerly occupied by the ligand since the ligand is not included in the FG-MD 

relaxation.

2.3. Molecular docking

Virtual screening on the I-TASSER models and the experimental X-ray structures was 

performed by molecular docking using the DOCK 6.3 program, selected for its known 

accuracy and speed [33]. DOCK first generates a negative image of the receptor by making 

use of spheres that fill the binding pocket. The algorithm then attempts to superimpose the 

ligand atoms onto the centers of the spheres. For bound crystal structures, a receptor box 

centered on the bound ligand with an additional 5 Å boundary was used to define the active 

site for docking. For the I-TASSER predicted models a similar box was made by a 

superposition of the crystallographic structures onto the I-TASSER models. The DMS 

program distributed with DOCK 6.3 was used to generate the molecular surface for each 

receptor while the SPHGEN utility was then used to create the negative image of the surface 

with the sphere set for each complex composed of all spheres found within 10 Å of any 

ligand atoms. Scoring function potential grids for the receptor were pre-calculated prior to 

docking by the GRID utility to increase computational efficiency. Finally, the incremental 

anchor-and-grow strategy was used to incorporate ligand flexibility in the docking process 

[55]. Virtual screening with docking was carried out on a Linux Cluster Platform which 

contains 2200 CPUs (Inter(R) Xeon(R) 2.27 GHz) on 266 computing nodes.

2.4. Virtual screening and enrichment rate

For each target, compounds were sorted and ranked based on the docking pose with the 

lowest GRID energy. It is important to have an objective criteria for evaluating the quality 

of the protocol and the performance of an in silico virtual screening method. The enrichment 

rate is a practical statistic geared towards one of the main goals of virtual screening, 
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identification of rare potential lead compounds amongst a large set of similar but inactive 

compounds (decoys) [31]. The enrichment rate (ER) is defined as:

(1)

where  is the number of hits found at x% of the database screened,  is the 

number of compounds screened at x% of the database, Hitstotal is the number of actives in 

entire database, and Ntotal is the number of compounds in entire database. It can easily be 

seen that enrichment rate has a fixed maximum at any given percentage of the database 

screened. At 1%, the maximum is 100, at 2% the maximum is 50, and at 10% screened the 

maximum enrichment rate obtainable is 10. This enrichment rate reflects the capability of a 

screening application to detect active ligands (true positives) compared to random selection.

3. Results and discussion

3.1. Virtual screening and enrichment evaluation based on crystallographic structures of 
proteins

In the docking approach, the test molecules were docked with the target proteins and sorted 

according to their docking scores. The enrichment curve plot of the percentage of actives 

found for different levels of hypothetical database screening is shown in Fig. 1 with the 

enrichment curve docking against the crystallographic bound structure colored in blue and 

the enrichment curve for random screening colored in green. Random screening gives an 

enrichment value near 1, which is expected by consideration of the form of the enrichment 

factor.

It can be seen from Fig. 1 that docking against the crystal structure is a successful strategy 

for some proteins targets but not others, in agreement with other studies using docking-

based virtual screening [56]. To eliminate intractable targets, a threshold of 10 times the 

enrichment over random selection was selected as a cutoff for successful docking. This 

cutoff is roughly 2.5 times the enrichment rate usually obtained for ligand based virtual 

screening and 5 times that for virtual screening based on simple molecular descriptors like 

atom counting. This threshold was met for 20 out of the 36 proteins tested. Docking was 

judged to be unsuccessful for the remaining 16 out of the 36 proteins tested and these targets 

were eliminated for further consideration, as it is less likely (but not impossible) [21] that a 

predicted model will succeed in virtual screening where a high resolution experimental 

structure has failed.

3.2. Quality of I-TASSER based structure prediction on the DUD protein targets

The sequences of the remaining 20 protein targets were used to generate the 3D theoretical 

models by the I-TASSER program, to test how close the predicted models could reproduce 

the performance of experimental structures in docking-based virtual screening. In addition to 

RMSD, the similarly of the I-TASSER models with the target structure is assessed by TM-

score [57], which is in the range of [0,1] with a higher score indicating a better structural 

match. In general, a TM-score <0.17 is equivalent to a randomly selected protein pair with 
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gapless alignment taken from PDB while a TM-score >0.5 corresponds to protein pairs with 

similar folds [58]. Compared to the widely used RMSD measure, TM-score has been 

demonstrated to be more sensitive to the global fold by weighting residue pairs between 

structures at short distances at a higher weight, while RMSD is more sensitive to the local 

structure fluctuations.

Fig. 2 represents a summary of the first models generated by I-TASSER. In this plot, the 

lines and balls represent the TM-score (red) or RMSD (blue) of predicted model to the 

native structure, respectively, for each protein. Even with the limitations on structural 

templates imposed by the 30% sequence identity cutoff, only one target in the DUD 

database, Neuraminidase (na), a large 461-residue protein with a complex topology with 

many flexible loops, fails to meet the 0.5 TM-score cutoff indicative of a similar global fold 

as the native structure. The predicted models of the remaining proteins have similar global 

folds to the native with most proteins having TM-scores in the 0.7–0.9 range and RMSD 

values of 4 Å or less.

As a control, we tried to generate models using MODELLER [59], a standard tool for 

homology modeling, using the same threading templates. The TM-scores of the 

MODELLER models are lower than the I-TASSER models for all the targets, with the 

average RMSD of 2.4 Å higher than that of the I-TASSER models. Nevertheless, 13 out of 

the 20 targets have the correct fold by MODELLER with a TM-score >0.5, mainly due to 

the correct identification of the template structures by LOMETS.

3.3. Comparison of virtual screening performance using I-TASSER models versus 
crystallographic structures

The enrichment curve using predicted I-TASSER models is presented in Fig. 3 in 

comparison with the performance using the crystallographic structures in docking-based 

virtual screening. In order to compare the performance of virtual screening based on 

experimental crystallographic structures and I-TASSER predicted models quantitatively, we 

checked the number of actives that were ranked in the top 1%, 5%, 10% of the compounds 

chosen, and calculated the corresponding enrichment rates (Table 2). The percentage of the 

I-TASSER models that reach or exceed the virtual screening performance of either the 

crystallographic structures or the crystal structures relaxed in the unbound form by FG-MD 

using these screening thresholds is shown in Table 3.

A few trends are apparent from the data. The first is the acceptable virtual screening 

performance of the I-TASSER models when compared with virtual screening using either 

the bound or relaxed crystallographic structures. For only three proteins (ampc, mr and rxr) 

does the virtual screening with I-TASSER models fail completely and give enrichment rates 

near random performance (colored in green in Fig. 3). Two of these proteins (mr, rxr) are in 

the difficult nuclear hormone receptor class (Table 1) for which docking using the 

experimental crystal structure failed for 6 out of the 8 targets in this class (Fig. 1). For the 

remaining proteins (ace, cdk2, comt, egfr, fgfr1, hivrt, inha, p38, pde5, pnp, thrombin, 

vegfr2), the I-TASSER models perform relatively well in virtual screening.
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More quantitatively, for 13 targets (65% of the total) the I-TAS-SER models were able to 

reach 70% or better of the enrichment value using the experimental bound crystal structure. 

75% of the I-TASSER models can achieve half of the performance of virtual screening 

using the experimental crystal structures when the top 1% of the database is ranked. 

Interestingly, I-TASSER compares slightly more favorably when compared to the structures 

relaxed in the unbound form by FG-MD, in agreement with the improvement in docking for 

most protein targets when using experimental holo-structures [60]. The I-TASSER models 

of five proteins (fgfr1, inha, pnp, comt, vegfr2) are actually significantly better in virtual 

screening than the bound crystallographic structures in virtual screening, although, except 

for comt, they perform similarly to the relaxed experimental crystal structures. This finding 

suggests the improvement of the I-TASSER models over the bound crystal structures in 

these cases is a result of the rigid conformation of the protein used in docking during 

screening, which prevents reorganization of the binding site during docking to accommodate 

an active ligand with a different conformation than the bound conformation [60]. The 

relaxed crystal structures and I-TASSER models in these cases have more open binding sites 

and can therefore accommodate a greater diversity of ligands.

As a control, we used the MODELLER models in the same structure-based docking 

screening. There are only 7 cases (35% of the total) that were able to reach 70% or better of 

the enrichment value by the experimental bound crystal structure. The average enrichment 

values by the MODELER models are 35%, 26% and 28% lower than that using the I-

TASSER models at the top 1%, 5% and 10% of compounds selected, respectively. These 

data demonstrate an impact of the structure prediction methods on the performance of the 

structure-based visual screening.

3.4. Correlation between enrichment rate and quality of protein models

The above I-TASSER data in comparison with the control models by MODELLER has 

indicated the dependence of the performance of virtual screening on the accuracy of the 

target protein structures. To have a more quantitative examination on the problem, we 

present in Fig. 4 the correlation of enrichment rate and the quality of the target models, with 

focus on the proteins for which I-TASSER models faithfully reproduced the fold of the 

protein (TM score >0.7) and were successful replacements for the crystal structures in 

virtual screening (60% of the ER10% of the bound crystal structure). 14 out of the 20 targets 

met this criterion. If the outlier thrombin target is excluded, there is a Pearson correlation 

between the ERs and the TM-score with R value 0.728 and p-value (0.01), suggesting a 

relationship does exist between the fidelity of the receptor models to the native and the 

success in virtual screening.

Nevertheless, there are cases where the performance of virtual screening demonstrates 

somewhat contradictive correlation to the global quality of the I-TASSER models. For 

instance, neuraminidase (NA) is the only target where I-TASSER failed to generate a correct 

fold (with a TM-score <0.5) as shown in Fig. 2. However, the enrichment rate at 10% 

compound is 40.82 using the I-TASSER model, which is 61% of that using the bound 

crystal structure. A detailed examination on this case found that the local binding pocket of 

the I-TASSER model is very close to the bound crystal structure although the global fold of 
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the other regions has a very low resolution (Fig. 5). In this example, since the docking box 

(colored in black) has been correctly identified, the incorrectness of the structure outside the 

binding pocket does not have a strong impact on the final performance of the virtual 

screening. This data partly highlights the sensitivity of the docking screening on the local 

quality of protein structure predictions.

3.5. Impact of physicochemical similarity filter of decoy compounds

In addition to the quality of the protein structure predictions, the selection of appropriate 

compounds can also result in an impact on the performance of the virtual screening. To 

examine the possibility, we used the ROCs 2.2 software from OpenEye (http://

www.eyesopen.com) to filter the actives of each protein before docking screening. ROCs is 

a fast shape comparison application software, which ranks molecules on the basis of their 

similarity to a known active molecule (reference ligand) in 3D shape space, using atom-

centered Gaussian functions to allow rapid maximization of molecular overlap (volume and 

atomic). Here we used all the actives of each DUD target to match with the crystal reference 

ligands on the target, with the actives ranked by the TanimotoCombo score. All the active 

compounds, which have the TanimotoCombo lower than 0.6, were discarded. The final 

screening results after the Tanimoto filter are summarized in Table 2 as the ‘TC2 data’.

As a result, the enrichment rates are increased by the Tanimoto filter for all cutoffs (ER1%, 

ER5%, ER10%) using both crystal and predicted structures. The largest improvement is from 

the screening experiment using the I-TASSER models, where the ER1% was increased by 

35%, compared to that using the original DUD compound sets. These data demonstrate the 

potential to improve the performance by considering physicochemical features of the ligand 

compounds during virtual screening.

4. Conclusion

Considering the accelerated pace of genome sequencing and the much slower rate of 

experimental protein structure determination, it is unlikely that three-dimensional structures 

will be soon available for all the potential drug targets. Therefore, modern drug development 

at the proteome level must rely on modeled structures provided by protein structure 

prediction techniques. The results of this study showed that docking-based virtual screening 

with computational protein models, built by the start of the art modeling methods, emerges 

as a useful compound prioritization technique applicable to the early stages of proteome-

scale drug screening projects, even when no closely homologous templates exist. The 

computational models produced by the I-TASSER program demonstrated a similar 

enrichment rate in the identification of active compounds from a set of decoys as the crystal 

structures for the majority of protein targets in the test. Nevertheless, the performance of the 

virtual screening can be further enhanced by the improvement of the receptor structure 

modeling quality and appropriate pre-selection of ligand compound using the 

physicochemical feature filtering. Thus, these data demonstrated that the combination of 

structure-based docking and advanced protein structure modeling methods represents a 

valuable approach to the forthcoming large-scale drug screening and discovery studies, 

especially for the proteins lacking crystallographic structures.
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Fig. 1. 
The enrichment curves using the experimental X-ray crystal protein structures in the virtual 

screening (blue) compared to random selection (green) and 10 times the performance of 

random selection (black).
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Fig. 2. 
Summary of I-TASSER structure predictions on the 20 DUD proteins in comparison to the 

experimental crystal structures.
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Fig. 3. 
Enrichment curves in virtual screening using the experimental bound crystal structure (blue), 

experimental crystal structure relaxed in the unbound form by FG-MD (black), and the I-

TASSER model (red) compared to random selection (green).
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Fig. 4. 
Correlation between ER10% and TM-score of the receptor models when I-TASSER models 

successfully predicted the native structure (TM-score ≥0.7) and the virtual screening was 

successful, i.e. with 60% of the ER10% from the bound crystal structure. The outlier 

thrombin was removed from the correlation analysis.
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Fig. 5. 
Ligand docking on the neuraminidase protein. (A) Superposition of the crystallographic 

structures (green) and I-TASSER model (blue) of the target protein with the binding pocket 

residues highlighted in red spheres. (B) The initial docking box (black) generated by DOCK 

6.3 is overlaid on the protein structure before self-docking. (C) Overlay of the ligand 

structure from the native (purple) and that by docking using bound crystal structure of the 

protein (green). (D) Overlay of the ligand structure from the native (purple) and that by 

docking using I-TASSER model of the protein (green).
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