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Abstract

Key message Overview of pollen transcriptome studies.

Pollen development is driven by gene expression, and

knowledge of the molecular events underlying this process

has undergone a quantum leap in the last decade through

studies of the transcriptome. Here, we outline historical

evidence for male haploid gene expression and review the

wealth of pollen transcriptome data now available.

Knowledge of the transcriptional capacity of pollen has

progressed from genetic studies to the direct analysis of

RNA and from gene-by-gene studies to analyses on a ge-

nomic scale. Microarray and/or RNA-seq data can now be

accessed for all phases and cell types of developing pollen

encompassing 10 different angiosperms. These growing

resources have accelerated research and will undoubtedly

inspire new directions and the application of system-based

research into the mechanisms that govern the development,

function and evolution of angiosperm pollen.

Keywords Pollen � Male gametophyte � Transcriptome �
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Introduction

The haploid male gametophyte (or pollen) of flowering

plants is a well-understood and intriguing cell system in

which to study gene expression and its regulation, as its

development involves single-cell ontogeny and the coop-

eration of two-cell lineages to enable double fertilisation

(Twell 2011). Pollen develops from haploid microspores

that are produced following meiosis within the anthers

(Fig. 1). The four haploid microspores are initially associ-

ated in a tetrad, but typically separate and undergo vacuo-

lation and expansion, with the microspore nucleus migrating

towards the cell wall. In this polarised arrangement, pollen

mitosis I (PMI) results in a bicellular pollen (BCP) grain

composed of a generative cell (representing the male

germline) enclosed within the vegetative cell cytoplasm. The

vegetative cell exits the cell cycle, but the generative cell

elongates and divides at pollen mitosis II (PMII), giving rise

to a pair of sperm cells. Upon pollination of a receptive

stigma, pollen grains hydrate and germinate to produce a

pollen tube. The pollen tube grows through the pistil by tip

extension, guided by sporophytic and female gametophyte-

derived signals, to deliver the sperm cells into the ovule

where double fertilisation takes place.

In this review, we provide a brief survey of historical

advances in understanding of gene expression in the male

gametophyte and review the scale and diversity of the

transcriptome data that have accumulated in the past dec-

ade. Some allied topics of importance including meiosis,

pollen proteome studies, and the emerging role of small

RNAs are not covered in detail, and the reader is referred to

other recent and topical reviews (Le Trionnaire and Twell

2010; Twell 2011; Baroux et al. 2011; Feng et al. 2013;

Dukowic-Schulze and Chen 2014; Fu and Yang 2014;

Kawashima and Berger 2014).
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Pollen gene expression in the pre-genomic era

The first evidence for haploid gene expression in pollen can

be traced back to the first half of the twentieth century. In

1921, Parnell observed that half of the pollen from rice

plants, which were heterozygous for the recessive glutinous

(or waxy) endosperm phenotype, stained reddish, rather

than dark blue, with iodine (Fig. 2). The phenotypic seg-

regation of the Waxy locus, which is responsible for

amylose synthesis and encodes granule bound starch syn-

thase I (Hirano and Sano 1991), thus provided genetic

evidence for gene activity in pollen. Similar observations

were made for waxy maize pollen and endosperm by Brink

and MacGillivray (1924), who observed reduced pollen

transmission of waxy alleles and hypothesised that this may

be caused by reduced pollen tube growth, ‘by the action of

certain factors active in the tube nucleus’. Male-biased and

distorted Mendelian segregation ratios have been detected
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Fig. 1 Distinct cytological stages that accompany male gametophyte

development in Arabidopsis. Diploid pollen mother cells undergo

meiotic division to produce a tetrad of haploid microspores.

Microspores released from the tetrad undergo a highly asymmetric

cell division (pollen mitosis I) to produce a bicellular pollen grain

with a small generative (germline) cell within the cytoplasm of the

larger vegetative cell. The generative cell undergoes a further mitotic

division (pollen mitosis II) during pollen maturation to produce a pair

of sperm cells

Fig. 2 Images from an original plate by Parnell (1921) showing

segregation of F1 pollen into starchy (dark) and glutinous (light)

types. Anther (left) and free pollen (right). Parnell describes the result

as follows: ‘With a view to distinguishing the two genetic types, the

pollen was treated with iodine. The result was most satisfactory—two

distinct types became evident, one giving the dark blue reaction of

ordinary starch and the other the reddish reaction of amylodextrine’.

With kind permission from Springer Science ? Business Media

74 Plant Reprod (2015) 28:73–89

123



repeatedly and include examples where mutant alleles af-

fect pollen development, germination, or pollen tube

growth (reviewed in Ottaviano and Mulcahy 1989; Twell

1994).

More recently, the directed isolation of developmental

mutants and their associated genes has provided insight

into the spatiotemporal expression of important genes in

the male gametophyte. An innovation in the search for such

genes was the use of the fluorescent DNA stain 40,6-di-
amidino-2-phenylindole (DAPI) to screen for abnormal

pollen in mutagenised populations of Arabidopsis by

fluorescence microscopy. This approach was used to

identify the LOB domain family protein SIDECAR POL-

LEN (SCP), required for correct timing and organisation of

PMI (Chen and McCormick 1996; Oh et al. 2010); the

MAP215–family GEMINI POLLEN1 (GEM1), required

for microspore polarity and asymmetric division at PMI

(Park et al. 1998; Twell et al. 2002), as well as the TWO-

IN-ONE (TIO) fused kinase required for pollen cytokinesis

(Oh et al. 2005, 2010) and the germline-specific tran-

scription factor DUO POLLEN1 (DUO1) (Durbarry et al.

2005; Rotman et al. 2005). A second strategy made use of

T-DNA or transposon-derived resistance markers in seg-

regation distortion screens for deviations in the ratio of

resistant to sensitive progeny from 3:1 to B1:1. They de-

livered developmental mutants, such as limpet pollen in

which the germ cells remain attached to the pollen wall

(Howden et al. 1998), and progamic phase mutants af-

fecting pollen tube growth and/or guidance (Procissi et al.

2001; Lalanne et al. 2004; Johnson et al. 2004). Ara-

bidopsis mutants affecting all stages of pollen develop-

ment, from the development of the microspore to the pollen

tube as well as male–female gamete interactions, have now

been isolated (reviewed by Twell 2011; Mori et al. 2014).

While segregating pollen mutants provided compelling

evidence for developmentally regulated haploid gene ex-

pression, the first steps towards describing the RNA land-

scape of pollen began with the characterisation of different

classes of RNA. Studies in Tradescantia, Lilium, and to-

bacco showed the rate of accumulation of rRNA and tRNA

to be dynamic and variable between species (see Mas-

carenhas 1990). In Tradescantia and Lilium, rRNA and

tRNA levels peaked around PMI, while in tobacco, levels

of rRNA, tRNA, and mRNA increased progressively after

PMI (Schrauwen et al. 1990). The detection of large

amounts of mRNA in mature pollen further suggested that

transcripts are stored for use during pollen germination and

tube growth.

Initial studies to explore the composition of mRNA

populations involved in vitro translation of mRNA from

developing pollen of tobacco and Lilium (Schrauwen et al.

1990). For both species, the resulting 2D protein profiles

revealed the presence of different transcripts before and

after PMI, with the greatest number of new transcripts

appearing in mature pollen. These and similar findings in

maize added weight to the evidence for post-meiotic

transcription, based on the accumulation profiles of cloned

pollen-expressed and pollen-specific transcripts, such as

actin and the familiar tomato late pollen gene LAT52, re-

spectively (Stinson et al. 1987; Twell et al. 1989). Two

major groups of genes were recognised: ‘early’ genes first

expressed in the microspore, which decreased in abundance

before pollen maturation, and ‘late’ genes expressed after

PMI, which accumulated until maturity, although more

complex patterns were apparent (reviewed by Mascarenhas

1990, 1992; Twell 1994, 2002). A further level of cell-

specific control of transcription was recognised when the

tomato LAT52 promoter was linked to a nuclear-targeted

GUS fusion protein gene, which revealed that the LAT52

promoter was active in the vegetative nucleus, but not in

the generative cell (Twell 1992).

The first predictions of pollen transcriptome size were

based on poly(A)RNA–cDNA association kinetic (R0t)

analysis, from which maize and Tradescantia pollen were

estimated to express around 20,000 different transcripts,

representing around 30 % fewer than in shoots (Willing

and Mascarenhas 1984; Willing et al. 1988). It is only in

the past decade, however, that genomic platforms have

been used to validate these estimates and to explore the full

repertoire of genes expressed throughout the different

phases of pollen development. Some of the important ad-

vances are charted in Fig. 3, together with the remarkable

increase in the annual rate of publications reporting on

pollen and transcription.

Pollen gene expression in the post-genomic era

By the turn of this century, gene-by-gene studies had

identified around 150 different pollen-expressed genes as-

sociated with a range of functions, including cell wall

metabolism, cytoskeleton, transcription, and signalling (see

Twell 2002). The plants investigated were numerous ([28

species) and diverse contrasting with the studies of the

subsequent decade, which initially were focussed on the

model Arabidopsis thaliana. The obvious limitations of

gene-by-gene studies were overcome with advances in

transcriptome profiling, which included serial analysis of

gene expression (SAGE) and microarray technology, al-

lowing users to simultaneously monitor the expression of

thousands of genes. For example, the first-generation

Affymetrix Arabidopsis AG array or 8-K GeneChip har-

boured probe sets for around 8100 genes, approximately

one-third of the Arabidopsis gene models known from EST

collections and cDNA libraries (Richmond and Somerville

2000).
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The transcriptome of mature pollen was first investi-

gated in three studies, which provided a coherent overview

of pollen gene expression, two utilising 8-K microarrays

(Honys and Twell 2003; Becker et al. 2003) and the third

SAGE technology (Lee and Lee 2003). The microarray

studies led to the identification of 992 (Honys and Twell

2003) and 1587 (Becker et al. 2003) genes expressed in

mature pollen estimating the total number of pollen-ex-

pressed genes in Arabidopsis between 3500 and 5500. The

pollen transcriptome showed a unique profile and was en-

riched for genes involved in signalling, cell wall metabo-

lism, and the cytoskeleton, but under-represented for

energy metabolism, transport, transcription, and transla-

tion. The presence of transcripts for a large number of cell

wall-associated proteins (e.g. glycoside hydrolases, poly-

galacturonases, and cellulases) and cytoskeletal compo-

nents (e.g. actin and profilin), highlighted a significant role

for storage and translation of mRNAs after pollination,

where pollen germination and tube growth require sig-

nificant modifications to the cell wall and dynamic

regulation of the actin cytoskeleton (Honys and Twell

2003). The enrichment of signalling components in the

pollen transcriptome was also in accordance with the im-

portant role of pollen–pistil interactions and female ga-

metophytic signals, which support and guide the pollen

tube to the ovule (reviewed by Palanivelu and Tsukamoto

2012).

With the release of the Arabidopsis genome, the second-

generation ATH1 Genome Array (Affymetrix) was

developed, harbouring probe sets for around 24,000 genes

(Redman et al. 2004). However, around 3000 genes had no

representation on the ATH1 platform, including important

regulators, such as the male germline-specific transcription

factor DUO1 (Rotman et al. 2005; Brownfield et al. 2009a,

b). The ATH1 platform represented a major advance and a

substantial body of data now exists for sporophyte-free

Arabidopsis pollen, with[130 raw data files available in

Gene Expression Omnibus and ArrayExpress (Tables S1

and S2). These data have not only provided the essential

raw materials required to decipher the contribution of in-

dividual genes and gene families to male gametophyte

development, but also guided the design of reverse genetics

approaches and the analysis of gametophytic pollen mu-

tants (Table S1). For example, pollen developmental tran-

scriptome data were initially exploited for the analysis of

cation/H? exchanger proteins (Sze et al. 2004) and more

widely for all putative transporters (Bock et al. 2006),

enabling functionally redundant proteins, such as CHX21

and CHX23, required for pollen tube guidance to the

ovules to be identified (Lu et al. 2011).

Given that near-comprehensive transcriptome data sets

have been generated in Arabidopsis for different phases of

pollen development, including the germline and progamic

phase (Table 1), we review these to highlight the major

advances, followed by a discussion of the impact of

comparative pollen transcriptome studies (see previous

reviews by Twell et al. 2006; Becker and Feijo 2007;

Schmidt et al. 2012).

Fig. 3 A timeline charting some of the important advances in male

gametophyte transcriptome studies. The developmental stage, cell

type, technique, species, and associated publications are indicated.

The remarkable increase in the rate of published work associated with

the terms ‘pollen’ and ‘transcript*’ is illustrated by the line graph

indicating the numbers of publications per year (Web of ScienceTM

version 5.16)
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The Arabidopsis pollen transcriptome

Several groups have provided independent estimates of the

number of genes expressed in mature pollen, which range

from 3954 to 7235 genes, with an average of 6044 genes

(Honys and Twell 2004; Pina et al. 2005; Schmid et al.

2005; Borges et al. 2008; Wang et al. 2008; Qin et al.

2009–see Fig. 4a). The use of different Arabidopsis ac-

cessions, pollen states (desiccated or hydrated), sample

collection methods, and detection call algorithms may have

contributed to the large variation in these estimates.

Similarly, estimates of the percentage of genes that are

pollen-specific also vary, from 4 to 11 %, depending on the

normalisation algorithms used and the number and diver-

sity of sporophytic data sets used for comparison (Boavida

et al. 2005; Twell et al. 2006). There are however two

major findings common to all studies: first, the unique

composition of the pollen transcriptome; second, its strik-

ing reduction in complexity compared with sporophytic

tissues and purified sporophytic cell types, such as root hair

cells (11,696 genes; Becker et al. 2014) and stomatal guard

cells (13,222 genes; Bates et al. 2012).

RNA-seq is a powerful alternative approach to study

the pollen transcriptome, with higher sensitivity and a

Table 1 A summary of male gametophyte stage-specific transcriptome studies for different plant species

UNM BCP TCP MPG PT GC SC VC

A. thaliana X X X X X X

O. sativa X X X X X X X

N. tabacum X X X1 X X XEST

Z. mays X XEST

L. longiflorum X X XEST

G. max X

V. vinifera X

F. vesca X

S. lycopersicum X

P. zeylanica XEST

Developmental stages: UNM, microspore; BCP, bicellular pollen; TCP, tricellular pollen; MPG, mature pollen; PT, pollen tube; GC, gen-

erative cell; SC, sperm cell; VC, vegetative cell. X, signifies at least one microarray or RNA-seq data set. XEST, EST data is published for N.

tabacum (Xin et al. 2011) and Z. mays (Engel et al. 2003) sperm cells and L. longiflorum generative cells (Okada et al. 2006). X1, generative cell

division occurs during pollen tube growth in N. tabacum. See Table S1 and Table S2 for additional references

Fig. 4 Plots of transcriptome sizes at different stages of male

gametophyte development based on studies using Arabidopsis ATH1

(a) or rice 57 K (b) microarrays. UNM, uninucleate microspores;

BCP, bicellular pollen; TCP, tricellular pollen; MPG, mature pollen;

GPG, germinating pollen; 4-h PT, 4-h in vitro-grown pollen tubes,

SIV-PT, semi-in vivo pollen tubes. SC, purified sperm cells
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broader dynamic range (Zhao et al. 2014), which over-

comes the limitations of promiscuous probe sets and gene

models not represented on the ATH1 microarray. In the

first RNA-seq analysis of Arabidopsis pollen, Loraine

et al. (2013) reported at least 4172 protein-coding genes

to be expressed. Although the number of genes detected

was lower than estimates based on the majority of ATH1

studies, a highly conservative threshold of five reads per

million (RPM) was applied, and reads mapping to mul-

tiple locations in the genome assembly were discarded.

Reprocessed data now available in the online version of

Loraine et al. (2013) provide normalised data as reads per

kilobase per million (RPKM). In pollen, 6722 genes were

expressed at 1 RPKM or above, including 6473 protein-

coding genes, which is greater than the average number of

pollen-expressed genes (6044) detected using ATH1 ar-

rays. Illustrating the detection sensitivity of this threshold,

we found that transcripts for two well-known male

germline-specific genes, DUO1 and GCS1/HAP2, were

absent from seedlings but present in pollen at 2.4 and 3.0

RPKM, respectively. Nevertheless, the overlap between

pollen ATH1 and RNA-seq data was almost complete,

with\1 % of genes reliably detected on the ATH1 array

not being found in RNA-seq data. Interestingly, 11 % of

the genes detected by RNA-seq had no corresponding

probe sets on the ATH1 array, revealing a previously

unknown group of pollen-expressed genes. Pollen-ex-

pressed genes with additional exons and genes with pre-

viously unannotated 50 and 30 untranslated regions were

also identified, although fewer than 20 genes annotated as

alternatively spliced in TAIR10 were differentially

spliced between pollen and seedlings. The RNA-seq data

set of Loraine et al. (2013) thus provides a useful resource

for the evaluation of annotation accuracy, alternative

splicing, and a point of reference for future RNA-seq-

based studies of Arabidopsis pollen gene expression.

The Arabidopsis male germline transcriptome

The male germline makes a unique contribution to the

pollen transcriptome (Engel et al. 2003). This was first

revealed in Arabidopsis by profiling RNA from fluores-

cence-activated cell sorting (FACS)-purified sperm cells on

the ATH1 platform (Borges et al. 2008). The sperm cell

transcriptome of 5829 genes was smaller than that of ma-

ture pollen (7177 genes) and showed considerable diver-

gence, with 65.4 % of genes in common (Fig. 4a).

Compared with seedlings and pollen, around 2400 tran-

scripts were enriched in sperm, with 642 (11 %) detected

only in sperm. Wider comparisons with sporophytic data

sets refined a set of 74 sperm-preferential transcripts likely

to be sperm cell-specific. While the major GO categories

enriched in pollen were membrane transport, signalling,

and vesicle trafficking, among sperm cell-preferential

transcripts, those showing the most enrichment were DNA

repair, ubiquitin proteasome system, and cell cycle, con-

sistent with the propagation and maintenance of germline

integrity (Pina et al. 2005; Borges et al. 2008). Compelling

evidence for the role of the ubiquitin proteasome system in

male germline cell cycle progression includes the role of

the SCFFBL17 E3 ubiquitin ligase complex (Kim et al.

2008; Gusti et al. 2009) and a pair of Ub-specific proteases

(UBP3/UBP4) (Doelling et al. 2007). Small non-coding

RNA pathways and DNA methylation pathways were also

upregulated in sperm compared with the vegetative cell

(Borges et al. 2008). For example, the DNA methyltrans-

ferase (MET1) is enriched in sperm, consistent with the

active role of MET1 in the maintenance and epigenetic

inheritance of CG-context methylation (Saze et al. 2003;

Saze 2008; Calarco et al. 2012).

The sperm cell transcriptome has been used to inform

the selection of genes of interest for further study. For

example, it was used effectively to help distinguish spuri-

ous from genuine target genes, following ectopic expres-

sion of the male germline-specific MYB transcription

factor, DUO1, in seedlings (Borg et al. 2011). Application

of a sperm cell filter reduced the number of potential

DUO1-activated target genes (DATs), from 124 to 63 ge-

nes, including those shown to play a role in gamete fusion

(GCS1/HAP2; Mori et al. 2006; von Besser et al. 2006),

sperm–egg adhesion (GEX2; Mori et al. 2014), and more

recently, germ cell division and sperm cell specification

(DAZ1 and DAZ2; Borg et al. 2014).

The Arabidopsis developmental transcriptome

Developmental resolution to the transcriptome was enabled

by the use of density gradient centrifugation to separate

four stages from microspore to mature pollen (Honys and

Twell 2004): uninucleate microspore (UNM), bicellular

pollen (BCP), tricellular pollen (TCP), and mature pollen

grain (MPG). In total, 13,977 genes showed male game-

tophyte expression, with transcriptome size decreasing

progressively from 11,565 genes in UNM to 7235 genes in

MPG (Fig. 4a). In contrast, the percentage of pollen-

specific genes increased from 6.9 % at UNM to 8.6 % at

MPG, reflecting the differentiation and functional spe-

cialisation of mature pollen. Pairwise comparisons showed

expression profiles to be well correlated for UNM and BCP

(R = 0.96) and for TCP and MPG (R = 0.86); however,

profiles were less similar for BCP and TCP (R = 0.54)

stages.

This study was the first to document dynamic changes in

gene expression during male gametophyte development

78 Plant Reprod (2015) 28:73–89
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and to quantify the numbers of genes contributing to early

and late expression programs on a genomic scale (reviewed

in Twell et al. 2006). This study was also the first to per-

form hierarchical cluster analysis, allowing co-regulated

genes to be identified. Different co-expressed clusters of

genes were found in UNM-BCP compared with TCP-MPG

stages, revealing a phase shift in gene expression between

BCP and TCP stages. Core cell cycle genes and tran-

scription factors were enriched in UNM-BCP, while genes

for signalling and cell wall metabolism were overrepre-

sented in TCP-MPG, consistent with the early proliferative

and late differentiation phases of pollen development.

Moreover, the transcriptome of cell suspension cultures

was more similar to UNM (R = 0.47) than to MPG

(R = 0.13), reflecting the undifferentiated and proliferative

state of microspores. Here, it is interesting to note the role

of auxin in maintaining dedifferentiation in cell cultures

with the peak levels of bioactive auxin, which occurs in

microspores (Cecchetti et al. 2008).

The reported profiles of 607 transcription factors (TFs)

expressed during pollen development (Honys and Twell

2004) have been exploited in reverse genetic approaches

to study regulatory networks (Verelst et al. 2007a;

Gibalova et al. 2009; Leydon et al. 2013, Liang et al.

2013; Xia et al. 2014), as well as in the broad phenotypic

screening of T-DNA insertions in TF genes (Renak et al.

2012). For example, while the MADS family are collec-

tively under-represented in the pollen transcriptome

(Honys and Twell 2004), the non-classical lineages, in-

cluding the AtMIKC* genes, are overrepresented (Pina

et al. 2005). In the first application of these data, Verelst

et al. (2007a) explored the function of five MIKC*

MADS-box proteins (AGL66, AGL104, AGL67, AGL65,

and AGL94), which are co-expressed in late stages of

pollen development. MIKC* heterodimer pairs were

shown to bind MEF2-type CArG-box motifs, which were

found to be highly enriched in the promoters of genes

selectively expressed in TCP/MPG during pollen

maturation (Verelst et al. 2007a). Moreover, agl66/104

double mutants showed functional redundancy with sev-

ere in vitro germination defects and reduced male trans-

mission. In a further pioneering study, Verelst et al.

(2007b) profiled the pollen of double and triple mutants,

providing a unique insight into the complexity of the

MIKC* TF network that directs a cellular differentiation

network during pollen maturation (Table S1). This was

further elaborated upon to include phenotypic analysis

and profiling of pollen from quadruple mutants, high-

lighting the large-scale changes in transcripts associated

with the absence of MIKC* and supporting the model of

Verelst et al. (2007b), whereby the MIKC* network re-

presses genes for early development and activates pollen

maturation genes (Adamczyk and Fernandez 2009).

The Arabidopsis progamic phase pollen transcriptome

In the first study to show transcriptome changes during

pollen germination and tube growth of Arabidopsis, Wang

et al. (2008) used ATH1 arrays to profile mature (dry)

pollen (MP), germinating pollen (GP) cultured in vitro for

45 min, and pollen tubes (PT) after 4 h of in vitro culture.

The size of the transcriptome increased from 3945 genes in

MP to 4892 genes in PT (Fig. 4a). The percentage of stage-

specific genes also increased progressively, from 4.1 % at

MP to 14.9 % in PT, with more genes being up- and down-

regulated from GP to PT than from MP to GP. Some

biological processes enriched in germinating pollen were

also overrepresented in pollen tubes, including cell wall

metabolism, signalling, and cellular transport. Processes

showing the greatest change during pollen germination

were stress response and transcription, while in pollen

tubes, metabolism and signalling components showed the

greatest change. These observations reflect physiological

differences, with germinating pollen activated from a qui-

escent state and pollen tubes actively growing by tip

extension.

Communication between pollen and pistil and the stylar

environment has important roles in pollen tube growth

in vivo (see Taylor and Hepler 1997; Palanivelu and

Tsukamoto 2012). For example, it takes around 4 h for the

pollen tube to reach the ovule in Arabidopsis (a distance

[400 lm), but at 4 h, in vitro-grown pollen tubes are only

about 150 lm (Wang et al. 2008). In addition, the growth

of pollen tubes in vitro is non-directional and targeting of

ovule explants is low, unlike ‘conditioned’ pollen tubes

grown through the pistil (Palanivelu and Preuss 2006).

Three studies have examined the transcriptional land-

scape of Arabidopsis pollen tubes, factoring in pollen tube

crosstalk with the pistil and pollen tube guidance (Qin et al.

2009; Chen et al. 2014; Lin et al. 2014).

To examine the role of ‘pistil conditioning’, Qin et al.

(2009) compared the transcriptome of semi-in vivo pollen

tubes (SIV-PT) grown through stigma–style explants with

those of mature pollen and in vitro-grown pollen tubes (PT)

at 0.5 h and 4 h. Although similar numbers of genes were

expressed in mature pollen and in vitro pollen tubes, SIV-

PT expressed a greater number (7044 genes; Fig. 4a). SIV-

PT also had the largest number of pollen stage-specific

genes (1254), suggesting that growth through the pistil

elicits a significant change in the pollen tube transcriptome.

Further, a set of 383 genes, uniquely expressed in SIV-PT,

was enriched for genes involved in signalling (e.g. trans-

membrane receptors and protein kinases), defence response

(e.g. TIR-NBS-LRR receptors), and cell extension (trans-

porters and antiporters). Reverse genetic analysis of 33

genes induced during pollen tube growth identified five

required for optimal tube growth in vitro, while mutations

Plant Reprod (2015) 28:73–89 79
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in two further genes showed pollen tube navigation defects

in vivo. One of the in vivo effect genes, At3g18000

(XIPOTL), was specifically up-regulated in SIV-PT and is

required for phosphatidylcholine synthesis (Cruz-Ramirez

et al. 2004), implicating lipid signalling and/or plasma

membrane composition in pollen tube growth though the

pistil.

Chen et al. (2014) extended the semi-in vivo approach to

factor in the role of diffusible pollen tube attractants and

monitored the transcriptome of semi-in vivo-guided pollen

tubes (SIV-PG) by positioning ovules below pollen tubes

emerging from pistil explants. Using a 12 9 135 K Ara-

bidopsis gene chip (Roche-NimbleGen), 719 genes were

identified to be specifically expressed in SIV-PG. Gene

families, such as defensin-like (DEFL), leucine-rich repeat

receptor like kinases (LRR-RLKs), and TIR-NBS-LRR

receptors, were specifically enriched in SIV-PG, but sur-

prisingly there was little overlap with candidate pollen tube

guidance genes from the SIV-PT system of Qin et al.

(2009). Phenotypic screening of 18 confirmed T-DNA in-

sertion lines for pollen tube guidance defects was unsuc-

cessful, highlighting potential redundancy among the often

large, gene families involved. However, in a dominant

negative approach involving the expression of a ‘kinase-

deleted’ variant, phenotypes consistent with pollen tube

guidance defects were observed for one LRR-RLK gene

(Chen et al. 2014).

Lin et al. (2014) used a novel application of the ‘TRAP’

method (translating ribosomes affinity purification) to the

male gametophyte, allowing in vivo gene expression data

to be gathered for the progamic phase. This approach in-

volves immunopurification (IP) of ribosome-associated

mRNA to identify transcripts undergoing active transla-

tion—the ‘translatome’ (Zanetti et al. 2005). Transgenic

plants in which epitope-tagged ribosomal protein L18 was

expressed from the pollen-specific LAT52 promoter were

used for mRNA–ribosome complex isolation from unpol-

linated buds (IP-bud), open flowers (IP-in vivo), as well as

4.5 h in vitro-grown pollen tubes (IP-in vitro). The LAT52

promoter is active in the late microspores and after PMI in

the vegetative cell of Arabidopsis and is expected to cap-

ture the vegetative cell translatome (Eady et al. 1994;

Grant-Downton et al. 2013), In IP-bud samples, 8140 genes

had corresponding transcripts undergoing translation with a

similar number in IP-in vivo samples, but significantly

fewer (5188 genes) than in the IP-in vitro pollen tubes. In

the IP-in vivo data set, 519 genes were specifically en-

riched, implicating these genes in the growth and guidance

of the pollen tube in the gynoecium and in response to

fertilisation. This set of genes was enriched for molecular

functions associated with heme, which has been implicated

in sperm cell discharge through pollen tube rupture (Lin

et al. 2014). Whereas an overlap of 13 % (67/519) was

observed between IP-in vivo-enriched and pollination-in-

duced mRNAs (Boavida et al. 2011), there was only 4 %

(17/383) overlap between semi-in vivo and IP-in vivo,

pollination-induced mRNAs, indicating a significant dis-

tinction between enriched transcripts from semi-in vivo

and true in vivo pollen tubes. Reverse genetic analysis

identified mutations in three IP-in vivo-enriched genes, iv2

(methyl esterase 8, MES8), iv4 (glutathione s-transferase,

GSTU26), and iv6 (xyloglucan endotransglucosylase/hy-

drolase 19), which showed reduced male transmission.

These mutants showed defective micropylar guidance,

pollen tube burst, and ovules receiving multiple pollen

tubes (polytubey).

Collectively, the transcriptome analyses outlined above

establish some unifying features of Arabidopsis pollen

development. First, mature pollen grains possess the most

unique transcriptome with the least transcript diversity

when compared with the sporophyte. Second, the transition

from proliferating microspores to differentiated pollen is

associated with large-scale repression and de novo tran-

scription of an increased number of pollen-specific genes.

Third, sperm cells possess a similarly reduced, but diverse

and unique transcriptome. Fourth, the germination and di-

rectional growth of the pollen tubes involves stored tran-

scripts and de novo transcriptional responses associated

with signalling and communication with the gynoecium.

The distinctive transcriptomes associated with the different

phases of pollen development and the germline are con-

trasted with those of the sporophyte in the principal com-

ponent analysis shown in Fig. 5.

Comparative pollen transcriptomics

The analysis of pollen transcriptome profiles for diverse

angiosperms enables the conservation of the molecular

mechanisms underlying the different phases of pollen de-

velopment to be explored. Pollen microarray and/or RNA-

seq data are available for at least 10 different species in-

cluding Arabidopsis. Lists of the current data sets are

compiled in Tables S1 and S2. Transcriptome profiling at

multiple points in development has only been reported for

Arabidopsis, cultivated rice, and tobacco (see Table 1),

which differ in specific features, such as the timing of germ

cell division and length of the progamic phase.

Rice

The transcriptome of developing rice pollen has been in-

vestigated in two independent studies, the first using laser

microdissection of tapetum, microspores, and pollen, and

the 44-K rice oligo microarray platform (Suwabe et al.

2008; Hobo et al. 2008). K-means cluster analysis of the
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data revealed eight gene clusters with synchronous gene

expression in tapetum and microspores involving a total of

10,810 genes. Within these clusters, there was enrichment

for transcription, secondary metabolism (e.g. chalcone

synthase, chalcone reductase, and phytoene synthase), and

lipid synthesis and metabolism processes associated with

construction of the pollen wall. These observations counter

the view of the tapetum simply as a nurse cell layer,

recognising shared pathways and the common develop-

mental origins of tapetal cells and microspores (Scott et al.

2004; Hobo et al. 2008).

A subsequent study using the 57 K Affymetrix Rice

Genome Array (Wei et al. 2010) showed a progressive

decrease in the number of expressed genes, from 14,590

genes in uninucleate microspores to 5939 genes in mature

pollen and a similar number (5945 genes) in germinated

pollen (Fig. 4b). Similar to Arabidopsis, the rice pollen

transcriptome was highly reduced compared to the sporo-

phyte, where 17,383 genes were detected in roots and

17,242 in leaves. The overall patterns of genes expressed

mirrored observations from Arabidopsis, with highly cor-

related early (UNM and BCP; r = 0.82)- and late (TCP

and MPG; r = 0.76)-stage profiles and a distinct phase

shift between. The authors described a ‘U-type’ change for

pollen-preferential or stage-specific transcripts in rice and

Arabidopsis, with the least number of genes preferentially

expressed at bicellular stage. This trend reflects the bicel-

lular stage as transitional between early proliferative and

late differentiation phases. Compared with Arabidopsis,

rice showed a steeper decline in the number of genes ex-

pressed between TCP and MPG stages, suggesting differ-

ences in the onset of large-scale transcriptional repression

and/or in the rates of transcript turnover (Fig. 4).

Despite overall similarities, significant differences were

noted in the distribution of GO categories for genes ex-

pressed at different stages between rice and Arabidopsis.

For example, rice expressed more stage-enriched tran-

scripts associated with defence and stress response in ma-

ture pollen, while rice pollen was more enriched for

signalling at bicellular stage. Overall comparisons revealed

that 62.4 % (1195 genes) of stage-enriched genes from rice

had homologues in the Arabidopsis genome; however, only

56.6 % (677 genes) of these were expressed, with a very

small proportion, 3.2 % (22 genes), being preferentially

expressed in Arabidopsis pollen. Moreover, the analysis of

regulatory proteins identified many TF classes, which were

shared between rice and Arabidopsis, but the expression of

a set of unique TFs in rice pollen indicates that regulatory

networks will show significant differences (Wei et al.

2010).

Direct evidence for the conservation of an important TF

network between rice and Arabidopsis includes a study of

the MIKC* MADS-box network, which is required for

pollen maturation (Liu et al. 2013). While Arabidopsis

encodes five pollen-expressed MIKC* genes, the rice

genome has three genes divided between S- (OsMADS62,

OsMADS63) and P- (OsMADS68) clades, which show

conserved expression in pollen. Similar to observations in

Fig. 5 Principal component

analysis (PCA) of ATH1

microarray data for male

gametophyte and selected

sporophytic samples. The data

sets included are from the

following publications: Honys

and Twell (2004), Borges et al.

(2008), Qin et al. (2009), Phan

et al. (2011), Becker et al.

(2014). PCA was generated

using RMA-normalised data in

Partek� Genomics Suite�

(Partek Inc., Missouri)
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Arabidopsis, mutants affecting rice P- or S-clade MIKC*

genes displayed defects in pollen germination in vitro, but

also showed reduced pollen viability and abnormal starch

accumulation (Liu et al. 2013). Moreover, the transcrip-

tome data of Wei et al. (2010) were used to show that the

promoters of genes expressed during late pollen develop-

ment were enriched for MIKC* binding sites. This work

indicates that the function of the MIKC* regulatory net-

work in pollen development has been conserved, since the

divergence of eudicots and monocots, some 150 million

years ago (Liu et al. 2013).

Tobacco

Transcriptome analysis of the male gametophyte from to-

bacco using the Agilent 44-K tobacco microarray,

originally consisting of three stages (mature pollen, 4, and

24 h in vitro pollen tubes; Hafidh et al. 2012a, b), was

recently extended to include earlier stages of development

(uninucleate microspores, early bicellular pollen, and late

bicellular pollen; Bokvaj et al. 2015). Similar to the ob-

servations in Arabidopsis and rice (Fig. 4), transcriptome

complexity was reduced during pollen maturation in to-

bacco, although the onset of the decline was later, with an

unusually low diversity of transcripts (16,700) detected in

microspores relative to early and late bicellular pollen

(22,872 and 19,750, respectively). Although some features,

such as the abundance of translational components at early

stages and the overrepresentation of transport and cy-

toskeleton at late stages of pollen development (Bokvaj

et al. 2015), reflected patterns observed in Arabidopsis and

rice, the temporal shift in maximum transcriptome com-

plexity from microspore to the bicellular stage may reflect

different demands on the rate of development, and it will

be interesting to examine whether this is a general feature

of species that shed bicellular pollen. Division of the germ

cell in tobacco occurs 8–12 h after pollen germination,

such that 4-h pollen tubes harbour M-phase generative

cells, while 24-h pollen tubes contain sperm. During to-

bacco pollen tube growth, a moderate increase in the

number of detectable transcripts was observed, from

13,966 in mature pollen to 14,420 in 24-h pollen tubes,

with 3597 transcripts in common between these three

stages. Transcripts of 699 genes (4.8 %) accumulated sig-

nificantly ([fivefold) compared to mature pollen and the

4-h pollen tube, while 320 genes (2.2 %) accumulated de

novo after 4 h, highlighting the extended transcriptional

capacity of pollen tubes cultivated in vitro (Hafidh et al.

2012a, b). The delay in germ-cell-cycle progression, until

10–12 h of in vitro pollen tube growth, was linked with the

presence of transcripts for cell cycle inhibitors, such as

RBR1 and DEL3. Transcripts for the G2/M-phase activator

CYCB1;1 peaked during the transition to PMII, together

with the expression of the tobacco orthologue of AtDUO1

(NtDUO1; B25, Kyo et al. 2003), which is required for

germline CYCB1;1 accumulation in Arabidopsis (Brown-

field et al. 2009a). Although the expression of cell cycle

repressors and activators requires validation in tobacco

germ cells, these data support the conservation of DUO1-

mediated mitotic progression and differentiation between

Arabidopsis and tobacco.

Other species

Other species for which mature pollen transcriptome data

have been published include maize (Ma et al. 2008;

Davidson et al. 2011; Chettoor et al. 2014), soybean

(Haerizadeh et al. 2009), grapevine (Fasoli et al. 2012),

potato (Sanetomo and Hosaka 2013), woodland strawberry

(Hollender et al. 2014), and most recently lily (Lang et al.

2015).

The maize pollen transcriptome has been analysed in

three independent studies focussed on reproductive devel-

opment. In the microarray study of Ma et al. (2008), 10,545

different transcripts were detected in maize pollen, which

was extended in the two RNA-seq experiments to 13,418

genes (Davidson et al. 2011) and 14,591 genes (Chettoor

et al. 2014). The maize pollen transcriptome was typically

reduced in complexity, expressing, for example, only 57 %

of the mean number of genes expressed in 12 other

sporophytic tissues (Davidson et al. 2011). Moreover,

pollen was also among tissues with the most extreme range

of transcript levels, showing the highest maximum ex-

pression levels (Davidson et al. 2011). The classification of

array data (Ma et al. 2008) into high (237 transcripts) and

medium (5547) abundance classes was also strikingly

congruent with the original estimates (240 and 6000, re-

spectively) for maize pollen based on R0t curves (Willing

et al. 1988). However, the low copy number, slow to hy-

bridise transcript class, appears to be substantially over-

estimated in R0t hybridisations (Ma et al. 2008).

Comparative analysis by Ma et al. (2008) indicated sig-

nificant conservation in gene expression programs between

Arabidopsis and maize pollen. Of 4407 homologues of

Arabidopsis pollen-expressed genes represented on the

maize array, 3444 (78 %) were expressed in maize pollen

and highly expressed genes in each species showed sub-

stantial overlap.

Since maize is an allotetraploid consisting of two sub-

genomes, the relative contributions of each subgenome to

the trancriptome can be determined to explore potential

bias between the gametophyte and sporophyte. Previous

studies revealed that subgenome 2 is characterised by re-

duced expression and a higher rate of gene loss, relative to

subgenome 1 (Schnable et al. 2011). However, in their

study, Chettoor et al. (2014) discovered, that the pollen
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transcriptome was overrepresented for subgenome 2,

compared to the other tissues assessed. The basis for this

difference was linked to the retention of a greater propor-

tion of duplicate gene pairs derived from both subgenomes

for pollen, with both members of duplicate pairs also more

likely to be pollen-enriched. This suggests that selective

pressure could be acting on pollen to maintain functional

copies of both homeologues following tetraploidisation,

due to increased sensitivity of pollen to gene dosage effects

(Chettoor et al. 2014).

The soybean (Glycine max) pollen transcriptome is the

first described for a legume and for a bicellular pollen

species (Haerizadeh et al. 2009). Soybean pollen expressed

10,299 transcripts representing only 37 % of those detected

in sporophytic tissues, while 7.9 % were pollen-specific.

The most abundant transcripts were enriched for cell wall-

modifying enzymes, signalling genes, and transporters,

typical for Arabidopsis pollen. There was divergence,

however, in the number and diversity of regulatory pro-

teins, and small RNA pathway proteins were underrepre-

sented. Heat-shock proteins and heat-shock TFs were up-

regulated in mature soybean pollen, in contrast to Ara-

bidopsis, in which they were up-regulated specifically in

germinating pollen and proposed to act as molecular

chaperones to accommodate the intense physiological ac-

tivities associated with pollen germination and tube growth

(Wang et al. 2008).

Pollen microarray data for grapevine (Vitis vinifera)

were generated as part of a gene expression atlas for this

species (Fasoli et al. 2012). Similar to other studies, mature

pollen showed a distinctive transcriptome including en-

richment for cell wall-modifying enzymes. Although re-

duced in complexity compared to some sporophytic

samples, in contrast to previous studies, the pollen tran-

scriptome was not among the least complex, with berries,

tendrils, and stems showing lower complexity, perhaps

reflecting the specialised activities of some tissues and the

diversity of tissue samples analysed.

The pollen transcriptome of woodland strawberry

(Fragaria vesca) was generated by as part of a study to

develop F. vesca into a model plant for the Rosaceae

(Shulaev et al. 2011). The transcriptomes of mature pollen

and microspores isolated by laser capture microdissection

were determined by RNA-seq (Hollender et al. 2014).

Similar to studies in Arabidopsis and rice, F. vesca mature

pollen and microspores showed distinctive transcriptomes,

with mature pollen showing the least complexity (11,540

genes) compared with microspores (33,109 genes) or all

floral tissues combined (34,527 genes).

Lily (Lilium longiflorum) provides an established model

for pollen germination and tube growth, with significant

advantages for physiological and biochemical analyses;

however, only limited molecular data are available. The

recent analysis by Lang et al. (2015), involving the RNA-

seq of a normalised cDNA library (pooled from dry, hy-

drated, germinating pollen and pollen tubes), provides the

first comprehensive overview of the lily pollen transcrip-

tome. Assembled transcripts revealed conserved features

when visualised with MAPMAN software tools and com-

pared with RNAseq data from Arabidopsis pollen (Loraine

et al. 2013). This study provides useful data sets and tools

to search for lily sequences of interest enabling com-

parative studies.

Comparative male germline data

Exploring gene expression in the male germline has

benefitted from high-throughput screens using EST li-

braries. This approach overturned previous notions of

transcriptionally inert male gametes and delivered valuable

large-scale data for generative cells of lily (Okada et al.

2006), and for sperm cells of maize (Engel et al. 2003),

Plumbago (Gou et al. 2009), and tobacco (Xin et al. 2011).

The comparative analysis of maize sperm EST data iden-

tified the conserved gamete-expressed genes, GEX1 and

GEX2 in Arabidopsis (Engel et al. 2005), which have im-

portant roles and use as research tools in gamete biology

(Brownfield et al. 2009a, b; Alandete-Saez et al. 2011;

Mori et al. 2014).

The in-depth profiling of purified sperm cells from a crop

species was first achieved for rice using the 57-K microarray

(Russell et al. 2012). Strikingly, rice sperm cells expressed

10,732 genes, twice asmany as sperm cells fromArabidopsis.

Rice sperm cells were also found to express more genes than

mature pollen (8101 genes), in contrast to Arabidopsis sperm,

which express fewer than in mature pollen (Fig. 4). Similar to

Arabidopsis, rice sperm cells were enriched for genes asso-

ciatedwith ubiquitin pathways, DNAmodification and repair,

and chromatin remodelling. The enrichment of cell cycle

genes observed in Arabidopsis sperm (Borges et al. 2008),

however, was not reported in rice, consistent with the arrest of

Poaceae sperm in G1 (Friedman 1999). The expression of

more than 70 sperm-enriched TFs was reported in rice, and

homologues of several genes in the Arabidopsis DUO1

regulatory network were also selectively expressed, including

OsDUO1 (although not present on the array), supporting the

conservation of a key germline regulatory network (Russell

et al. 2012).

A simple cell isolation procedure involving the frac-

tionation of sperm cells from burst pollen grains has allowed

the sperm cell transcriptome to be compared with that of

sperm cell-depleted vegetative cells (Anderson et al. 2013).

The number of genes reliably detected was 16,985 in sperm

and 18,611 in vegetative cells, which reflects the reduced

complexity of sperm compared with mature pollen of
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Arabidopsis (Borges et al. 2008). This is in contrast to the

findings in rice using the 57-Kmicroarray, where more genes

were detected in sperm than in mature pollen (Russell et al.

2012). The top 50 transcripts in sperm showed a broader range

of expression with higher peak levels than those of the

vegetative cell, indicating that the reduced size and tran-

scriptional output of sperm cells do not limit the capacity of

sperm to express individual genes (i.e. ATPase) at very high

levels. Furthermore, the overlap between the vegetative and

sperm cells was found to be much higher (by around 25 %)

than between either of these and the egg cell, reflecting the

common lineage of the sperm cells and vegetative cell.

In both studies of the rice sperm cell transcriptome,

diversity in the complement of histones was noted, par-

ticularly type H2B and H3, with enrichment for at least one

member of each of the five major histone types (Russell

et al. 2012). All three homologues of HTR10 (MGH3), the

Arabidopsis male germline-specific histone H3.3, are ex-

pressed in rice sperm cells, together with histone-modify-

ing proteins. Histone modification genes were differentially

expressed between the vegetative cell and sperm cells

(Anderson et al. 2013). For the JUMONJI (JMJ) histone

demethylase family, which uses histone H3 as a substrate

and is involved in transcriptional repression, vegetative

cells lacked most of the H3K36-modifying JMJ proteins

expressed in sperm cells, with sperm cells expressing the

H3K27 demethylase ZOS1-20 to higher levels than in the

vegetative cell. In common with Arabidopsis, rice sperm

cells express MET1, while transcript levels are very low in

vegetative cells, consistent with the maintenance of CG

methylation in the male germline and its absence in the

vegetative cell (Calarco et al. 2012). Equally, DRM2 is

expressed in the vegetative cell implying that RNA-di-

rected CHH methylation is conserved. However, unlike

Arabidopsis, components of the RNA-directed DNA

methylation (RdDM) machinery are expressed in rice

sperm, including DCL3, DRM2, and RDR2, although the

latter is only reported by Anderson et al. (2013). Interest-

ingly, a similar number of sequence reads was found to

map to transposon-associated repeats in vegetative cells

and in the sperm cells, and previous reports have described

a high proportion (8 % of transcripts) of retroposon se-

quences in maize sperm (Turcich and Mascarenhas 1994;

Engel et al. 2003). These findings indicate that differences

may exist between rice and Arabidopsis in the mode of

epigenetic regulation of siRNA-mediated gene silencing in

the male germline.

Integration and analysis of pollen transcriptome data

With the wealth of transcriptome data now available for the

male gametophyte, meta-analyses can be used to identify

genes with common expression and activities between

multiple data sets. The data can be used to construct in

silico-derived co-expression networks and are based on the

assumption that genes with similar expression patterns are

likely to interact with each other. In a pioneering study in

rice, Aya et al. (2011) adopted a co-expression analysis to

identify ‘meiosis’ and ‘pollen wall synthesis’ sub-net-

works. The study analysed 176 microarray data sets, in-

cluding LM-microarray data separating tapetum and male

gametophyte cells, to identify a robust pollen wall syn-

thesis co-expression network, enriched for sporopollenin-

associated genes together with genes not previously im-

plicated in exine formation. This study demonstrates the

value of co-expression network analysis and how the

separate transcriptomes of pollen and tapetum cells can

increase the precision and resolving power of network

construction.

Integrative approaches utilising data within and between

species can also be used to explore common cellular pro-

cesses in different cell types. Two independent studies have

searched for a common set of genes associated with polar

cell growth. As part of a study of the tobacco pollen tube

transcriptome, Hafidh et al. (2012a) incorporated cross-

species comparisons, including transcriptome and proteome

data to identify Arabidopsis homologues of genes co-ex-

pressed in tobacco pollen tubes and roots (3264 genes), of

which 78 genes overlapped with genes known to possess

root hair-specific promoter motifs (Won et al. 2009). This

subset, extended to a candidate list of 104 genes, showed

enrichment for vesicle transport, signal transduction, trans-

lation, and cytoskeleton. Evidence for the function of three

candidate ‘root hair–pollen tube’ genes in the progamic

phase was shown, by transfection of antisense RNA, re-

sulting in reduced in vitro pollen tube growth. In a different

strategy, Becker et al. (2014) generated purified root hair

and pollen transcriptomes in Arabidopsis, incorporating a

distinction between apical (polar) and diffuse (non-polar)

cell growth to identify a molecular signature for polar cell

growth. This identified 4989 genes co-expressed in root

hairs and pollen, with 277 showing enrichment compared to

diffuse growth cell types and 105, which were exclusive to

root hairs and pollen. An interesting finding based on pro-

moter analysis of a subset of 49 co-expressed apical cell

growth-specific genes was the identification of a sequence

motif enriched in hypoxia-induced genes, supporting the

hypothesis that tip growing cells experience anaerobic

conditions (Becker et al. 2014). Despite the different

strategies employed in the two studies, there was notable

overlap, with 48 out of the 104 candidate polar cell expan-

sion genes of Hafidh et al. (2012a) detected in Arabidopsis

root hairs and pollen, but only three of these genes were

found to be enriched compared with cell types showing non-

polar growth (Becker et al. 2014).
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Computational approaches involving meta-analyses

have also been used to construct and explore a regulatory

network of TF activity during pollen development (Wang

et al. 2011). Network component analysis (NCA) was ap-

plied to a total of 23 data sets encompassing developmental

and progamic phases to construct a regulatory network

involving 19 TFs, 101 target genes, and 319 regulatory

interactions. Although NCA can infer hidden TF activities

by taking advantages of the prior knowledge of network

structure, most of the regulatory information and regulatory

pairs retrieved from co-expression analysis remain hypo-

thetical. Nevertheless, NCA did include the pollen-specific

factor WRKY34 (Honys et al. 2006), which is negatively

regulated by MIKC* transcription factors and involved in

cold sensitivity and pollen maturation (Verelst et al. 2007b;

Zou et al. 2010; Guan et al. 2014). Currently, none of the

network predictions including TF interactions and target

genes are reflected by experimental data, and further effort

is required to gather empirical knowledge of system com-

ponents and to validate and improve network models.

Most recently, pollen transcriptome data have been used

in two phylostratigraphic studies, to address a novel hy-

pothesis in plants concerning the origin of ‘new’ or ‘or-

phan’ genes. In animals, new genes, which provide

material for evolutionary innovation, show testes-biased

expression and are thus regarded as the birthplace for new

genes in an ‘‘out of testes’’ hypothesis (Kaessmann 2010).

Wu et al. (2014) propose a corresponding ‘‘out of pollen’’

hypothesis and Cui et al. (2015) a ‘‘young genes out of the

male’’ hypothesis for the origin of new genes in flowering

plants. In the studies of Wu et al. (2014) in Arabidopsis and

Cui et al. (2015), which included Arabidopsis and rice, the

phylogenetically youngest transcriptome was found in

pollen, based on the analysis of transcriptome age index

(TAI; Domazet-Loso and Tautz 2010). Moreover, the

sperm transcriptomes of Arabidopsis and rice were shown

to be similarly young (Cui et al. 2015). Both studies

highlight the enrichment of TEs in the new genes and the

importance of epigenetics and chromatin states in the

vegetative cell and/or the germ cells in shaping transcrip-

tome age.

Concluding remarks and outlook

Transcriptome studies of the male gametophyte have not

only increased knowledge and understanding, but also

improved the efficacy of experimental strategies: first, in

describing transcript profiles (throughout development and

in specific cell types); second, by informing experimental

design (such as by gene selection for reverse genetics),

through query-based and co-expression analysis; and third,

by providing the raw materials to build gene networks and

a methodology to understand how these are affected in

pollen mutants. All three approaches have been exploited

(to a greater of lesser extent) by the Arabidopsis commu-

nity, and progress encompassing all three approaches in

other model and non-model species is expected as more

data are accumulate, together with improved methods for

exploring gene function, such as genome editing (Belhaj

et al. 2013).

Microarrays have been the dominant profiling tech-

nology, providing a uniform platform from which to ex-

plore the expression of individual genes and gene

families, to build co-expression networks and to aid the

design of reverse genetics experiments. For multiple

reasons, including reduced costs of replication, higher

sensitivity, and information content, RNA-seq is set to

become the dominant profiling technology in future

studies (Liu et al. 2014). Since RNA-seq requires little a

priori knowledge of the genome, this enables transcrip-

tome-based studies of non-model species, such as

Capsella grandiflora, in which pollen-specific genes were

identified to show stronger purifying selection and higher

rates of positive selection than sporophytic genes (Arun-

kumar et al. 2013). RNA-seq has also opened the way for

the small RNA landscape of pollen to be explored (Grant-

Downton et al. 2009; Slotkin et al. 2009; Zhang et al.

2009; Borges et al. 2011; Li et al. 2013). By integration of

mRNA transcriptome data and other genome-wide infor-

mation, such as bisulphite sequencing, our understanding

of the epigenomic landscape of the gametophyte and male

germline has also advanced (Calarco et al. 2012). Pollen

transcriptomics can also be applied more widely to de-

velop tools important to the biotechnology sector (Oo

et al. 2014) and to address agronomically important

questions such as tolerance to environmental stresses

linked to global climate change. For example, pollen heat

stress can cause sterility and associated crop losses, and

efforts are underway to explore the molecular networks

associated with thermotolerance in a broader system-level

analysis (Bokszczanin et al. 2013; Giorno et al. 2013;

Loraine et al. 2015).
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