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Antimicrobial resistance in Enterobacteriaceae, including resistance to carbapenems, is increasing worldwide. However, using
U.S. Study for Monitoring Antimicrobial Resistance Trends (SMART) data for 2009 to 2013, no statistically significant decreas-
ing susceptibility trends were found overall for Escherichia coli isolates from patients with intra-abdominal infections. In the
subset of isolates from community-associated infections, susceptibility to levofloxacin decreased significantly and the increasing
rate of multidrug-resistant E. coli approached statistical significance. In 2013, ertapenem, imipenem, and amikacin showed the
highest susceptibility rates (>99%) and fluoroquinolones the lowest (<70%). The 10 non-ertapenem-susceptible isolates (0.3%
of all E. coli isolates) encoded one or more carbapenemases, extended-spectrum �-lactamases (ESBLs), AmpC �-lactamases, or
non-ESBL �-lactamases.

As Enterobacteriaceae producing extended-spectrum �-lacta-
mases (ESBLs) spread, carbapenems are often considered the

treatment of choice for intra-abdominal infections (IAIs) (1–3).
However, reports of decreased susceptibility to carbapenems in
Enterobacteriaceae, due to carbapenemases or porin deficiency
combined with production of ESBLs or AmpC cephalosporinases,
are mounting (4–7). Monitoring changes in the susceptibility of
Escherichia coli, the most common IAI pathogen, is crucial for
decision-making regarding empirical therapy, as well as for efforts
to control the spread of ESBLs and carbapenemases. The Study for
Monitoring Antimicrobial Resistance Trends (SMART) program
has been monitoring IAIs for antimicrobial susceptibility, to as-
sess worldwide trends, since 2002. This report examines trends in
the activity of ertapenem and comparator agents against E. coli
isolates collected over the past 5 years from patients with IAIs in
the United States. Susceptibility is reported for agents recom-
mended in the Surgical Infection Society and the Infectious Dis-
eases Society of America guidelines for the diagnosis and manage-
ment of complicated intra-abdominal infections (2).

(The results of this report were presented in part as an abstract
at IDWeek 2014, Philadelphia, PA.)

Between 2009 and 2013, 29 hospitals in 17 states participated in
the SMART program in the United States. A map of the partici-
pating states is presented in Fig. S1 in the supplemental material.
Participating sites each collected up to 100 consecutive aerobic or
facultatively anaerobic Gram-negative IAI pathogens per year.
Only one isolate per species per patient was allowed. Of 7,907 IAI
isolates, 2,897 (37%) were E. coli. Isolates were identified to the
species level and were sent to a central laboratory (International
Health Management Associates, Inc., Schaumburg, IL) for suscep-
tibility testing and confirmation of identification. MICs and phe-
notypic ESBL status were determined by broth microdilution, fol-
lowing the Clinical and Laboratory Standards Institute (CLSI)
guidelines, using custom dehydrated MicroScan panels (Siemens
Medical Solutions Diagnostics, West Sacramento, CA) (8, 9). MIC
interpretive criteria followed 2014 CLSI guidelines (9). As in
other studies, multidrug resistance (MDR) was defined as re-

sistance to three or more drug classes (in this study, aminogly-
cosides, �-lactam/�-lactamase inhibitors, cephems, carbapen-
ems, and quinolones) (10). An IAI was defined as hospital
associated or community associated if cultured �48 or �48 h
postadmission, respectively.

All non-ertapenem-susceptible and �70% of phenotypically
ESBL-positive E. coli isolates were molecularly characterized for
�-lactamase genes. According to the SMART protocol, 50% of
phenotypically ESBL-positive E. coli, Klebsiella pneumoniae, Kleb-
siella oxytoca, and Proteus mirabilis isolates from each site were to
be randomly selected for molecular characterization. However,
sometimes additional isolates were characterized for special anal-
yses in support of publications, resulting in an overall final pro-
portion of characterized ESBL-positive isolates that was greater
than 50%. Genes encoding ESBLs (TEM, SHV, and CTX-M-type),
carbapenemases (KPC, NDM, IMP, VIM, and OXA-48-type), and
AmpC �-lactamases (CMY, DHA, FOX, MOX, ACC, MIR, and
ACT) were detected using a combination of microarray (Check-
MDR CT101; Check-Points B.V., Wageningen, the Netherlands),
as described previously (11), and multiplex PCR assays, as de-
scribed in the supplemental material. Detected genes were se-
quenced and compared to public databases available from the
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National Center for Biotechnology Information and the Lahey
Clinic. Annual rates of genotypically ESBL-positive isolates were
estimated by using as weights the yearly sampling fractions of
phenotypically ESBL-positive isolates (i.e., the proportion of phe-
notypically ESBL-positive isolates that were molecularly charac-
terized each year).

ESBL, MDR, and susceptibility rates were evaluated for linear
trends with the Cochran-Armitage test, while trends in MICs were
assessed using Pearson’s correlations between logarithmically
transformed MICs and calendar years. The main analyses in-
cluded all 2,897 E. coli isolates from all 29 U.S. sites. Sensitivity
analyses included only 1,856 isolates from the 12 sites in 9 states
that participated in all 5 years. P values of �0.05 were considered
statistically significant. Analyses were performed with XLSTAT
v2011.1.05.

Of 2,897 E. coli isolates, 69% were from general hospital wards
and 17% from intensive care units. Medical wards contributed
44% of isolates and surgical units 36%. Susceptibility, MIC, and
prevalence results shown in the tables and figures are for the main
analyses using all sites; the statistical test results of the sensitivity
analyses are reported in the footnotes. Overall, activities were
highest for amikacin, ertapenem, and imipenem, with susceptibil-
ity rates being consistently �98%; piperacillin-tazobactam and all
cephalosporins except for cefotaxime and ceftriaxone demon-
strated susceptibility rates of �90%, and the fluoroquinolones
showed the lowest susceptibility rates, with rates falling below
70% in 2013 (Table 1). Susceptibility rates did not differ between
hospital-associated and community-associated IAIs for amikacin,
ertapenem, and imipenem, while small differences were observed
for cephalosporins (on average, 1 to 3% lower for hospital-asso-
ciated infections) and fluoroquinolones (on average, 4% lower).
Susceptibility rates appeared fairly stable over the past 5 years,
with no statistically significant trends in the main analysis except
for a decreasing trend for levofloxacin susceptibility among iso-
lates from community-associated IAIs (P � 0.04) (Table 1); how-
ever, this trend was not confirmed in the sensitivity analysis. De-
creasing trends for ciprofloxacin and cefotaxime susceptibility
among isolates from community-associated IAIs approached sig-
nificance (P � 0.1) in the main analysis, and the latter was statis-
tically significant in the sensitivity analysis (decreasing from 94%
in 2009 to 87% in 2013; P � 0.02). Ertapenem activity also ap-
peared remarkably stable when the MIC distribution was exam-
ined (Fig. 1), with no statistical evidence of a shift in MICs (P �
0.05). Furthermore, our data showed no increase in isolates with
MICs of 0.25 or 0.5 �g/ml, which is important in light of reports of
carbapenemases and other resistance mechanisms increasing car-
bapenem MICs in Enterobacteriaceae but leaving the isolates sus-
ceptible (ertapenem MICs of �0.5 �g/ml) (4).

Between 2009 and 2013, nine isolates were resistant to ertap-
enem and one exhibited intermediate resistance (total of 0.3%
non-ertapenem-susceptible isolates), without evidence of an in-
creasing trend. Molecular characterization of these 10 isolates re-
vealed four KPC carbapenemase producers from New York and
Pennsylvania (Table 2); although KPC is usually associated with
K. pneumoniae, KPC-producing E. coli isolates were recently
noted in the mid-Atlantic region (12). Another four isolates en-
coded CMY-2 or CTX-M-15 enzymes, which have been reported
to cause increased carbapenem MICs in E. coli when expressed at
high levels in combination with porin deficiency (13–16). The
isolate encoding only CTX-M-71 was carbapenemase negative by
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the CarbaNP test (17). CTX-M-71 was first observed in a K. pneu-
moniae isolate that was resistant to ertapenem and meropenem.
The purified CTX-M-71 enzyme displayed only weak carbapen-
emase activity, suggesting that an additional nonenzymatic mech-
anism (e.g., porin deficiency) was required for the reduction in
susceptibility (18). The last isolate encoded only non-ESBL TEM.
That isolate displayed MICs of 2 �g/ml for ertapenem and 4 to 8
�g/ml for cefepime in multiple determinations, was susceptible to
cefotaxime, ceftazidime, and imipenem, and was not susceptible
to cefoxitin and piperacillin-tazobactam. This pattern is similar to
that observed by Beceiro et al. for a non-ESBL TEM-1 expressed
under the control of a promoter with elevated activity in a porin-
deficient E. coli strain (19); however, in contrast to that case, the
isolate in this study was not sensitive to the combination of
cefepime and clavulanic acid (data not shown), suggesting that
additional resistance mechanisms may be involved.

ESBL rates increased slightly from 6.5% in 2009 to 8.0% in
2013, with a faster increase among isolates from community-as-
sociated IAIs (from 4.3 to 7.3%), but none of these trends was
statistically significant (Fig. 2). Multidrug-resistant (MDR) E. coli
presented a similar pattern, with the rate more than doubling from
2009 to 2013 among community-associated infections (Fig. 3). This

trend approached statistical significance in both the main analysis
(P � 0.10) and the sensitivity analysis (P � 0.07). We cannot
explain the decreases in the ESBL and MDR rates seen in 2012.
Since these decreases were also found in the sensitivity analyses,
they do not appear to be caused by sampling bias due to sites not
participating every year. They are likely at least partly due to sam-
pling variations common in surveillance studies, in which the
characteristics of a population are estimated by examining a lim-
ited subset of that population. The finding underscores the impor-
tance of looking at longer-term trends, rather than placing undue
significance on individual yearly estimates.

This study has limitations. The categorization of IAIs into hos-
pital-associated and community-associated infections based on
the length of time between hospital admission and specimen col-
lection is imperfect, since patients may be transferred to a hospital
from another health care facility. Nevertheless, publications on
various infection types, regions, and time periods using this defi-

FIG 1 Frequency distribution of ertapenem MICs (in micrograms per milli-
liter) for E. coli isolates from IAIs in the United States in 2009 to 2013. No
statistically significant trends in MICs were noted in the main or sensitivity
analyses (P � 0.05). E. coli sample sizes were as follows: 2009, 551 isolates;
2010, 613 isolates; 2011, 554 isolates; 2012, 603 isolates; 2013, 576 isolates.

TABLE 2 MICs and �-lactamases found in 10 non-ertapenem-susceptible isolates from IAIs in the United States in 2009 to 2013

Year State
Patient
age (yr) Typea

MIC (�g/ml)b Molecular characteristicsc

ETP IPM FEP CTX CAZ FOX TZP CIP AMK OSBL ESBL AmpC Carbapenemase

2009 Ohio 61 HA �4 8 8 128 128 �16 64 �0.25 �4 CMY-2
2010 California 2 CA �4 �8 8 128 �128 �16 �64 0.5 �4 TEM CMY-2
2010 California 46 NA 1 0.25 �32 �128 �128 �16 �64 �2 32 CTX-M-15
2010 Pennsylvania 49 HA �4 �8 �32 �128 �128 �16 �64 �2 �4 SHV-12 KPC-2
2011 Pennsylvania 51 CA �4 8 �32 �128 128 �16 �64 �2 �4 SHV-12 KPC-2
2011 New York 56 CA �4 4 �32 �128 �128 �16 �64 �2 �32 TEM SHV-5 KPC-3
2012 California 55 HA 2 0.25 4 �0.5 �0.5 16 64 �2 16 TEM
2012 Georgia 86 CA �4 8 8 32 128 �16 64 �2 �4 TEM CMY-2
2013 Michigan 67 HA 2 0.25 32 32 16 16 32 �2 16 CTX-M-71
2013 New York 80 HA �4 4 �32 �128 128 �16 �64 �2 �4 TEM KPC-3
a HA, hospital-associated (hospital stay of �48 h at the time of specimen collection); CA, community-associated (hospital stay of �48 h); NA, not available.
b ETP, ertapenem; IPM, imipenem; FEP, cefepime; CTX, cefotaxime; CAZ, ceftazidime; FOX, cefoxitin; TZP, piperacillin-tazobactam; CIP, ciprofloxacin; AMK, amikacin.
c OSBL, original-spectrum �-lactamase; ESBL, extended-spectrum �-lactamase; AmpC, plasmid-encoded class C �-lactamase.

FIG 2 Trends in the prevalence of genotypically ESBL-positive isolates of E.
coli from IAIs in the United States in 2009 to 2013. No statistically significant
trends were noted in main (all 29 sites) or sensitivity (12 continuously partic-
ipating sites) analyses (all P � 0.05). HA, hospital-associated; CA, community-
associated. E. coli sample sizes (denominators) were as follows: all (including
isolates from HA and CA IAIs, as well as isolates for which the time of collec-
tion postadmission was not reported), 2009, 551 isolates; 2010, 613 isolates;
2011, 554 isolates; 2012, 603 isolates; 2013, 576 isolates; HA, 2009, 291 isolates;
2010, 249 isolates; 2011, 213 isolates; 2012, 277 isolates; 2013, 258 isolates; CA,
2009, 184 isolates; 2010, 334 isolates; 2011, 311 isolates; 2012, 326 isolates;
2013, 318 isolates.
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nition have consistently found higher susceptibility and lower
ESBL rates for community-associated infections, thus helping to
depict community trends (20–23). Another limitation common
in longitudinal surveillance studies is that analyses are often neg-
atively affected by changes in local sites from year to year. There-
fore, sensitivity analyses were performed using only continuously
participating sites. About one-third of the isolates had to be ex-
cluded, leading to smaller sample sizes and less power to find
statistical significance. On the other hand, sensitivity analyses may
make it easier to discern trends, as the “noise” and diluting effects
of sites that enter and leave the study are reduced. The sensitivity
analyses performed for this report corroborated the stability of
susceptible rates found for most agents, as well as the stability of
MICs for ertapenem, and they confirmed the weak statistical evi-
dence of an increase in MDR rates in the community. The decreas-
ing trends in susceptibility to levofloxacin and cefotaxime in the
community were found only in either the main analysis or the
sensitivity analysis. Both are plausible, considering the spread of E.
coli ST131 (24) and the slight increase in ESBL rates, affecting
cephalosporins and often being associated with coresistance to
other drug classes.

Both globally and in North America, decreasing susceptibility
to many drugs of E. coli isolates from IAIs was reported in several
studies for the years leading up to 2009/2010 (25–27). In those
studies, ertapenem, imipenem, and amikacin were the only tested
agents without evidence of activity loss in North America. The
current report found that, since 2009, resistance rates have stabi-
lized for almost all drugs, and carbapenems have maintained their
excellent activity, despite increasing reports of carbapenem resis-
tance worldwide (4, 6). However, this report did find some evi-
dence of increasing resistance among isolates from community-
associated infections, including the decreasing trends in
levofloxacin and cefotaxime susceptibility in the main and/or sen-
sitivity analyses, which were statistically significant, the increasing
trends in MDR rates, which approached significance, and the

slight increase in ESBL-positive isolates, which, although not sta-
tistically significant, is worrisome considering other reports of the
spread of ESBLs in the community (28, 29). Worldwide reports of
increasing resistance and new resistance mechanisms, the mobil-
ity of plasmid-mediated resistance, and today’s human mobility
all combine to underscore the importance of remaining vigilant
and continuing surveillance efforts. Surveillance is important at
every level (global, national, and local), as resistance patterns and
trends help inform empirical treatment decisions and support in-
fection control efforts.
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