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The Escherichia coli sequence type 131 (ST131)-O25b:H4 clone has spread worldwide and become responsible for a significant
proportion of multidrug-resistant extraintestinal infections. We generated humanized monoclonal antibodies (MAbs) that tar-
get the lipopolysaccharide O25b antigen conserved within this lineage. These MAbs bound to the surface of live bacterial cells
irrespective of the capsular type expressed. In a serum bactericidal assay in vitro, MAbs induced >95% bacterial killing in the
presence of human serum as the complement source. Protective efficacy at low antibody doses was observed in a murine model
of bacteremia. The mode of action in vivo was investigated by using aglycosylated derivatives of the protective MAbs. The signif-
icant binding to live E. coli cells and the in vitro and in vivo efficacy were corroborated in assays using bacteria grown in human
serum to mimic relevant clinical conditions. Given the dry pipeline of novel antibiotics against multidrug-resistant Gram-nega-
tive pathogens, passive immunization with bactericidal antibodies offers a therapeutic alternative to control infections caused by
E. coli ST131-O25b:H4.

Escherichia coli is a member of the intestinal commensal flora.
Certain variants (pathotypes) of the species, however, can

cause either intestinal or extraintestinal infections, such as urinary
tract infection, meningitis, or bacteremia (1). Extraintestinal
pathogenic E. coli (ExPEC) strains harbor a large array of virulence
traits that enable them to cause disease outside the intestinal tract.
ExPEC strains have been evolving antibiotic resistance, often a
combined resistance against most of the clinically relevant antibi-
otics, such as fluoroquinolones, aminoglycosides, and �-lactam
antibiotics. Typically, multidrug-resistant (MDR) strains are
compromised in their fitness and virulence, which restricts their
prevalence to a nosocomial setting and conversely limits their
spread in the community. Some successful MDR clonal lineages
do, however, retain high virulence potential (2, 3). The E. coli
clonal lineage sequence type 131 (ST131)-O25b:H4, first de-
scribed in 2008 (4, 5), has spread globally not only in hospitals
(as do most other MDR clones) but also in the community
(6–9). This clone is responsible for �15% (up to 25% [10, 11]) of
all extraintestinal E. coli infections and represents the majority of
fluoroquinolone-resistant isolates (12) and about half of the ex-
tended-spectrum �-lactamase (ESBL)-producing isolates (13).
The progressive acquisition of additional resistance phenotypes in
ST131-O25b:H4 strains leaves very few effective antibiotics for
treatment of patients infected by members of this lineage (14).
Even more alarming is the recent appearance of carbapenem-re-
sistant ST131 isolates (15–17). Recently, ST131-O25b:H4 strains
were shown to predominate among carbapenem-resistant E. coli
isolates (18). A major clinical concern is the lack of development
of novel antibiotics against Gram-negative pathogens, again leav-
ing very limited treatment options (19). The potential emergence
and subsequent spread of pan-resistant E. coli strains emphasizes
the urgent need to develop alternative therapeutic approaches,
such as monoclonal antibodies (MAbs).

Lipopolysaccharide (LPS) of Gram-negative bacteria has long
been considered an attractive target for active and passive immu-

nization approaches (20, 21). Antibodies against the lipid A (en-
dotoxin) or core oligosaccharide portions of the LPS molecule are
expected to have primarily an antiendotoxin function by neutral-
izing or sequestering endotoxin in the circulation (20). Their
antibacterial effect is restricted because of the low accessibility of
these epitopes on live bacteria, as they are masked by the abundant
O side chains and/or the capsular polysaccharide (22). Con-
versely, it has been shown that antibodies specific to the O anti-
gens of LPS can trigger bacterial killing by the complement system
alone or, alternatively, through opsonophagocytic killing. In
models of bacteremia using different animal species, antibacterial
O-specific MAbs afford higher protection than those that target
the core oligosaccharide portions of the LPS (23, 24). Bactericidal
antibodies directed against the O antigens of LPS may therefore
offer an effective therapeutic alternative to antibiotics in the fight
against MDR clones. In this article, we describe humanized IgG1
MAbs specific to the conserved O antigen of the E. coli ST131-
O25b:H4 clone that induce complement-mediated killing in vitro
and give high protective efficacy in a murine model of bacteremia.
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MATERIALS AND METHODS
Bacterial strains and growth conditions. Two previously described
ST131-O25b clinical isolates (81009 and 3O) (25, 26) that were confirmed
genotypically (MLST typed by the Achtman scheme [27] and O25b-spe-
cific PCR) and phenotypically (serotyped by O25 rabbit serum and with
O25b-specific MAbs) were used in this study. Strain 81009 expresses a
K5-type capsular polysaccharide, while strain 3O expresses a non-K5 cap-
sule, confirmed by the use of a K5-specific lytic phage (Statens Serum
Institute). A collection of ST131 strains representing different pulsotypes
was kindly provided by G. Peirano and J. Pitout (University of Calgary,
Canada) (28).

Bacteria were routinely grown in Luria-Bertani (LB) broth (Fisher
Scientific) or on Trypticase soy agar (TSA) plates (bioMérieux).

When bacteria were cultured in the presence of human serum, the
serum samples obtained from healthy volunteers were pooled (from a
minimum of 3 donors) and depleted of E. coli-specific antibodies accord-
ing to a previously published method (29). Complement was heat inacti-
vated at 56°C for 40 min, and human serum samples were diluted to 50%
with 3% human albumin (Albiomin, Biotest), 1.67 diluted RPMI 1640
(Life Technologies), and 12 �M L-glutamine (Sigma-Aldrich) in Dulbec-
co’s phosphate-buffered saline (DPBS) with calcium and magnesium
(Life Technologies).

For in vivo experiments, bacteria were grown in LB broth or in pooled
human serum (PAA) that was heat inactivated and diluted in RPMI 1640
without phenol red or L-glutamine (Life Technologies) to 50% final con-
centration.

Generation and selection of humanized monoclonal antibodies tar-
geting the LPS O25b antigen. BALB/cJRj mice were immunized three
times with �1 � 107 CFU of either E. coli 81009 or E. coli 81009�kps (30).
Mice with the highest titers against O25b antigen were boosted, and their
splenocytes were subjected to hybridoma fusion as previously described
(30). From five independent fusions, a total of 23 hybridoma clones were
selected based on specific binding to purified O25b LPS, assessed by im-
munoblots and ELISA, and surface staining of live E. coli O25b cells by
flow cytometry. Sequencing of murine MAbs was performed by cloning
cDNA specific to the VL and VH regions into commercial cloning vectors.
Selected hybridoma clones were expressed as chimeric MAbs (i.e., the
mouse variable regions were fused to human IgG1 constant domains and
to kappa light chains). Three selected chimeric MAbs were subjected to
humanization by CDR grafting technology (Fusion Antibodies Ltd., Bel-
fast, United Kingdom). Briefly, the hypervariable (CDR) mouse antibody
sequences were inserted into human framework sequences that were pre-
dicted in silico to be the most closely related to the original mouse frame-
works. The best humanized MAb from each lineage was selected for fur-
ther studies based on antigen binding affinity, surface staining,
bactericidal activity, and in vivo protective efficacy. Antibodies were rou-
tinely expressed by CHO cells (Evitria AG, Schlieren, Switzerland) and
purified through MabSelect or MabSelect SuRe resins. Aglycosylated
MAb variants were generated by introducing N297Q mutations in the
heavy chain.

Immunoblots. Immunoblotting was performed as described previ-
ously (30). Purified and separated LPS blotted onto polyvinylidene diflu-
oride (PVDF) was reacted with 1 �g/ml of O25b-specific monoclonal
antibodies or with LPS core-specific murine MAb WN1 222-5 (Hycult
Biotech). Binding of MAbs was detected by horseradish peroxidase
(HRP)-conjugated goat F(ab=)2 anti-human IgG (Southern Biotech) or
goat F(ab=)2 anti-mouse IgG (Southern Biotech) at 1:40,000 dilution.

Biolayer interferometry (BLI). Antibody binding was measured by
immobilizing biotinylated O25b polysaccharide antigen prepared as de-
scribed previously (30) on streptavidin sensors (ForteBio, Pall Life Sci-
ences) and monitoring the association of the MAbs (10 �g/ml) to the
preloaded sensors for 10 min in DPBS containing 1% bovine serum albu-
min (BSA), followed by dissociation in the same buffer. The Kd (dissoci-
ation constant), kon (association rate), and koff (dissociation rate) values
were determined using Data Analysis 7 software (ForteBio, Pall Life Sci-

ences). Polyreactivity against nonrelated antigens was measured by im-
mobilizing the MAbs on anti-human capture sensors (ForteBio, Pall Life
Sciences) and monitoring the response for the association of 30 �g/ml
antigen in solution for 10 min in PBS containing 1% BSA. Response values
of �0.05 nm were considered negative. All polyreactivity antigens were
purchased from Sigma-Aldrich.

Flow cytometry. Surface staining was performed as previously de-
scribed (30). Overnight cultures of bacteria were diluted 1:100 in LB broth
or in a 50% depleted heat-inactivated human serum pool and grown at
37°C to mid-log phase. Bacteria (106 CFU) were reacted with MAbs in the
concentration range of 0.01 to 160 �g/ml, followed by staining with 4
�g/ml of Alexa Fluor 488-conjugated goat anti-human IgG secondary
antibody (Life Technologies) and 5 �M SYTO-62 nucleic acid stain (Life
Technologies). Samples were quantified in a BD Accuri C6 flow cytometer
(BD Biosciences), and data were analyzed using FCS Express software
version 4 (De Novo Software).

Serum bactericidal assay. Serum bactericidal assay (SBA) was per-
formed in a 50% depleted human serum pool diluted with DPBS supple-
mented with calcium and magnesium. The reaction mixture contained
�5 � 103 CFU from LB broth- or serum-grown mid-log-phase bacterial
suspension and 10 or 20 �g/ml MAb, respectively. Mixtures without any
antibody and with isotype-matched irrelevant MAb were included as con-
trols. Bacteria were enumerated by plating appropriate dilutions follow-
ing 3 h (LB broth-grown bacteria) or 5 h (serum-grown bacteria) incuba-
tion at 37°C with shaking at 410 rpm. Killing mediated by specific MAbs
was expressed as killing (%) � 100 	 [(CFUMAb/CFUcontrol antibody) �
100].

Animal experiments. All animal experiments were performed accord-
ing to Austrian law (BGBl. I Nr. 114/2012, approved by MA58, Vienna).
Female 6- to 8-week-old BALB/cJRj mice (Janvier) were used in all exper-
iments.

The protective efficacy of MAbs was assessed by intraperitoneal injec-
tion of MAbs diluted in DPBS in a total volume of 500 �l 24 h prior to
challenge with a 
90% lethal dose (determined in pilot studies) of E. coli
81009 or 3O strains. Control groups received isotype-matched (human
IgG1) irrelevant MAb at the same dose. Challenge was performed intra-
venously with 100 �l of bacterial suspension. Bacteria were grown to
mid-log phase (optical density at 600 nm [OD600] of �0.5) in LB broth,
washed with DPBS, and diluted to the target inoculum (1 � 109 CFU/ml
for 81009 and 1.5 � 109 CFU/ml for 3O). Alternatively, bacteria were
grown in 50% depleted and heat-inactivated human serum until mid-log
phase (OD600 of �0.2). Mice were challenged with serum-grown bacteria
from frozen glycerol stocks washed and diluted in DPBS to 3 � 109 CFU/
ml. In all cases, survival was monitored daily for 2 weeks. Statistical anal-
ysis was performed by the log rank (Mantel-Cox) test using GraphPad
Prism 5.04 software. Differences were considered statistically significant
when the P value was �0.05.

RESULTS
Binding characteristics of three humanized O25b-specific
MAbs. First, O25b-reactive MAbs were generated with standard
hybridoma technology by immunizing mice with E. coli ST131-
O25b:H4 cells. Mouse MAbs displaying the best binding to puri-
fied LPS and live bacterial cells were selected for the generation of
murine-human IgG1 chimeric antibodies, three of which were
humanized by CDR grafting technology, as described in Materials
and Methods.

The antigen specificities of humanized MAbs 3E9-11, 2A7-01,
and 4D5-02 were demonstrated by immunoblotting using puri-
fied LPS. All selected MAbs bound to the O25b antigen, whereas
no binding was observed to unrelated, i.e., non-O25 LPS, mole-
cules (Fig. 1). MAb 4D5-02 cross-reacted with the O25a antigen,
while the other two MAbs did not, suggesting that MAb 4D5-02
recognizes a different epitope that is shared by O25a and O25b.
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The binding characteristics were further investigated by bio-
layer interferometry (BLI; ForteBio) using biotinylated O25b
polysaccharides. The affinity of all of the MAbs was in the range of
10	7 to 10	8 M (Table 1), which is in good agreement with values
published for other anti-carbohydrate MAbs (31, 32). Impor-
tantly, no polyreactive characteristic for any of the MAbs was de-
tected based on lack of binding to unrelated antigens, such as
DNA, gelatin, fetuin, and dextran (Table 1).

Binding to the native O25b antigens on the surface of live E. coli
cells was assessed by flow cytometry. We observed comparably
high levels of surface binding to two different ST131-O25b:H4
strains expressing different capsule types with all three antibodies
at concentrations of �20 �g/ml (Fig. 2A). At lower antibody con-
centrations, the 3E9-11 and 2A7-01 MAbs displayed significantly
higher surface binding intensity than that found for 4D5-02. In
addition, surface binding was confirmed using a panel of clinical
ST131 isolates representing different pulsotypes (28). All pulso-
types, with the exception of pulsotype O (previously shown to
express the O16 antigen), were strongly stained by all three MAbs
(see Table S1 in the supplemental material).

Encouraged by the observation that Gram-negative bacteria
grown under in vivo-like conditions demonstrate changes in gene
expression (33, 34), particularly those involved in the synthesis
and export of surface molecules, we also measured antibody bind-

ing to live E. coli cells grown in the presence of human serum. We
observed reduced surface staining of serum-grown bacteria; how-
ever, it was still considered intense based on the 10- to 100-fold
increase in median fluorescent intensity relative to the negative-
control antibody (Fig. 2B).

In vitro bactericidal activity of O25b MAbs. To measure the
bactericidal activity attributable to the three humanized MAbs, an
SBA was performed to detect antibody-mediated complement-
dependent killing of E. coli cells. We observed an antibody con-
centration-dependent bacterial killing with all three antibodies
(Fig. 3A), which was completely abolished upon heat inactivation
of human serum (see Fig. S1 in the supplemental material). Con-
sistent with the surface staining data, 3E9-11 proved to be the most
efficacious MAb at low antibody concentrations, resulting in 
95%
killing compared to that of control antibody during a 3-hour incuba-
tion. The other two MAbs required higher concentrations (
10 to 20
�g/ml) to reach the same level of bactericidal efficacy.

Similarly, a highly efficacious bactericidal effect was observed
when the assay was performed using bacteria grown in depleted
human serum (Fig. 3B). Serum-grown bacteria required a higher
antibody concentration and longer incubation (5 h versus 3 h)
than LB broth-grown bacteria to give a comparable effect.

In vivo protection. The protective efficacy of the selected hu-
manized MAbs was tested in a murine bacteremia model using
two unrelated ST131-O25b:H4 challenge strains. At an antibody
dose of 100 �g/mouse (corresponding to �5 mg/kg dose), all
three tested MAbs provided comparable high levels of protection
against both strains (Fig. 4A and B). Considering the differences
between the three MAbs observed in vitro, we were interested in
comparing the protective efficacies as a function of antibody con-
centration. Passive immunization of mice with MAb doses be-
tween 1 and 150 �g (corresponding to �0.05 to 7.5 mg/kg and an
estimated 1.3 to 200 �g/ml serum levels) revealed that MAb
3E9-11 was the most efficacious, while 4D5-02 was the least potent
at lower antibody doses (Fig. 4B). This efficacy ranking was con-
sistent with the in vitro bactericidal activities measured with the
three MAbs (Fig. 3A).

In light of the lower surface-staining intensity and delayed bac-
tericidal effect observed with serum-grown compared to LB
broth-grown bacteria (Fig. 2B and 3B), we measured the protec-
tive efficacy of MAbs against bacteria preconditioned in human
serum. Survival data from these experiments confirmed protec-
tion comparable to that observed for LB broth-grown bacteria at
the same MAb dose (Fig. 4B and C).

In order to corroborate that the protection seen in the mouse

FIG 1 Immunoreactivity of O25b-specific humanized MAbs with purified
LPS. Purified LPS samples from E. coli serotypes O25b, O25a, and O55 (con-
trol) were separated and blotted onto PVDF membranes that were reacted with
the indicated MAbs. The inner-core-specific cross-reactive WN-1 222-5 MAb
reacting with all LPS types was used as a positive control.

TABLE 1 Binding of O25b MAbs to the cognate antigen (O25b polysaccharide), expressed as affinity, association, and dissociation constants, and
binding to unrelated antigens, expressed as response values

MAb Kd (M	1) kon (M	1s	1) koff (s	1)

Polyreactivity response (nm)

Dextran DNA Fetuin Gelatin

3E9 chimeric 5.56E–08 2.83E�05 1.57E–02 	0.0114 	0.0114 	0.0076 	0.0159
3E9-11 6.94E–08 2.44E�05 1.69E–02 	0.0124 	0.0183 	0.0145 	0.016
2A7 chimeric 1.12E–07 1.42E�05 1.59E–02 	0.0178 	0.0175 	0.0146 	0.0161
2A7-01 1.15E–07 1.62E�05 1.86E–02 	0.0151 	0.0157 	0.0163 	0.0165
4D5 chimeric 1.49E–08 4.36E�04 6.51E–04 	0.0107 	0.0033 	0.0034 0.0024
4D5-02 3.82E–08 3.86E�04 1.47E–03 	0.0182 	0.0143 	0.0144 	0.0167
Irrelevant control MAb 0.0056 0.0121 	0.0224 	0.0164
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model was mediated by the activation of complement, aglycosy-
lated versions of the three MAbs were tested. These aglycosylated
antibodies were generated by replacing the asparagine residue in
the Fc domain of IgGs (N297Q) known to be essential for N-
linked glycosylation and effective activation of the complement
system via C1q binding. In these comparative studies, we used the
minimal protective dose of each antibody, which was 5, 10, and 25
�g/mouse for 3E9-11, 2A7-01, and 4D5-02, respectively (based on
data shown in Fig. 4B), or a 50-�g/mouse dose for all MAbs, which
was considered to result in antibody excess. At the minimal protective
MAb doses, the significant protection elicited by the glycosylated
IgGs was lost upon use of the aglycosylated versions (Fig. 5A). Sur-
prisingly, however, the protective capacity was found to be indepen-
dent of the glycosylation status at the higher MAb dose (Fig. 5B).

To investigate this unexpected finding, we measured the in
vitro bactericidal effect of aglycosylated MAbs side by side with the
glycosylated (wild-type) counterparts. Surprisingly, at high doses,
aglycosylated MAbs induced 70% to 92% of the killing, elicited by
the glycosylated MAbs. Nevertheless, their bactericidal effect de-
creased rapidly upon dilution of the antibodies (Fig. 6).

DISCUSSION

Passive immunization with hyperimmune sera (serum therapy)
was a standard treatment option in the preantibiotic era. As we
move toward a possible post-antibiotic era, it may be prudent
to reconsider the merits of this general approach. Current
state-of-the-art biomedical research and biopharmaceutical
manufacturing capabilities make it possible to generate highly pu-
rified human/humanized MAbs against a range of pathogenic mi-
croorganisms. MAbs directed against nonhuman targets and as a
class of therapeutics in general have an excellent safety record and
are well tolerated in the clinic (unlike therapy with serum). To

FIG 2 Surface staining of live E. coli cells with O25b-specific MAbs. Two E. coli ST131-O25b:H4 clinical isolates, 81009 and 3O, were grown to mid-log phase in
LB broth (A) or in 50% depleted heat-inactivated human serum (B) and stained with MAbs at a concentration range of 0.01 to 160 �g/ml. Fluorescent intensity
of bacteria was determined by flow cytometry using labeled secondary IgG.

FIG 3 Serum bactericidal activity of O25b MAbs. Bactericidal effect was ex-
pressed as percent reduction of CFU relative to the bacterial numbers recov-
ered from the control (irrelevant MAb) group. (A) Bacteria grown in LB broth
incubated with humanized MAbs for 3 h. Combined results of 3 independent
experiments shown as means � standard errors. (B) Bacteria grown in 50%
depleted heat-inactivated human serum incubated with humanized MAbs for
5 h. Combined results of 2 independent experiments shown as ranges (B).
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date, there are two licensed MAb products against infectious tar-
gets (35, 36) and many more in the clinical phase of testing or
under preclinical development (37, 38).

The challenges associated with the development of antibacte-
rial antibodies include finding molecular targets that are accessible
on the surface of a given bacterium and simultaneously shared by
clinically relevant strains. Since conserved bacterial surface mole-
cules are masked by highly variable surface polysaccharides in E.
coli (and other enterobacterial pathogens), it is difficult to find a
target that can provide broad-spectrum protection. The concept
of “magic bullets” that are able to treat a broad variety of patho-
gens might be considered unrealistic and should be replaced by
rational designs of species/subspecies-specific therapeutic ap-
proaches. These novel antimicrobials with targeted coverage are
not expected to induce widespread resistance or to have detrimen-
tal effects on normal microbiota.

In this paper, we described highly efficacious MAbs targeting
the unique O antigen (30) of a clinically relevant MDR E. coli

clonal lineage. The humanized MAbs binding to the O25b antigen
were shown to confer high levels of protection in a murine model
of bacteremia. This is in accordance with previous reports suggest-
ing that the LPS O antigen is a protective antigen, i.e., that anti-
bodies against these epitopes can elicit protection (23, 24, 39, 40).

The primary aim of the study was to identify MAbs capable of
triggering bactericidal effects mediated solely by the complement
system, i.e., without the involvement of phagocytes. Activation of
the classic complement pathway is initiated by the binding of C1q
to the antigen-bound antibody complex. C1q is a hexamer mole-
cule that requires binding to several Fc regions for efficient acti-
vation of the complement cascade. This is supported by the greater
complement-activating potential of pentameric IgM molecules
compared to that of IgG subclasses. In order to be able to develop
therapeutic MAbs of the IgG isotype with such an intended mode
of action, we considered it important to select a target antigen that
is highly abundant on the surface. We envisioned that adjacent
binding of multiple IgG molecules may efficiently trigger the
binding of C1q and hence activate the classic complement path-
way. Indeed, the main mode of action of O25b-specific MAbs
appears to be complement-mediated killing, as confirmed both in
vitro and in vivo. In vivo, at minimal protective doses, aglycosyla-
tion of MAbs eliminated protection, confirming an Fc-mediated
mode of action. Interestingly, however, at excessive MAb doses,
even aglycosylated MAbs provided protection. One possible ex-
planation for this protection is that aglycosylated MAbs retain
some residual capacity of complement activation. This is sup-
ported by previous reports showing �30% residual binding of
C1q and the consequent ability of aglycosylated MAbs to lyse sen-
sitized erythrocytes at higher concentrations (41, 42). Our data

FIG 4 Protective efficacy of selected humanized MAbs in a murine lethal
bacteremia model. Passive immunization was performed by intraperitoneal
injections of MAbs 24 h prior to lethal intravenous challenge with strain 3O
grown in LB broth (A), strain 81009 grown in LB broth (B), or strain 81009
grown in depleted human serum (C). Doses of 100 �g/mouse were used rou-
tinely, and survival curves for 14 days are depicted in panels A and C. Dose
response curves with three selected MAbs within the range of 1 to 150 �g were
performed, and survival rates over control at day 14 postinjection are plotted
in panel B. Combined results of 2 (A) or 3 (C) independent experiments are
shown. P values were calculated using the log rank test (***, P � 0.001).

FIG 5 In vivo efficacy of aglycosylated MAbs. Mice were passively immunized
with a minimal protective dose (A) or an excessive dose (B) of three different
O25b-specific MAbs and their aglycosylated variants. Survival curves follow-
ing a subsequent lethal challenge by strain 81009 are shown. Graphs show
combined results of 2 independent experiments with groups of 5 mice each. P
values (log rank test) are shown where survival was significantly different rel-
ative to the control group (**, P � 0.01; ***, P � 0.001).
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showed an �10-fold reduction in bactericidal effect in vitro and a
2- to 10-fold higher MAb dose required for in vivo protection with
aglycosylated MAbs, which showed good correlation with the pre-
vious results. Nevertheless, other studies showed a complete loss
of C1q binding for aglycosylated MAbs (43). We hypothesize that
the level of abundance of the different target antigens may at least
partially explain these seemingly contradictory results. Neverthe-
less, we cannot rule out that the efficacy of a large amount of
aglycosylated MAbs originates from involvement of other com-
plement pathways or via other modes of action in vivo (e.g., ag-
glutination or endotoxin neutralization). Further animal experi-
ments (in murine and nonmurine models) and in vitro assays are
needed to clarify these possibilities. Still, the principal mode of
action for protection by the O25b-specific MAbs described in this
study seemed to be the antibody-dependent complement-medi-
ated bactericidal effect that was confirmed by in vitro experiments.

We considered it important to test O25b-specific MAbs against
bacteria grown under in vivo-like conditions. Investigating bacte-
rial pathogens cultured in common laboratory media may result
in observations that are not directly relevant to the clinic because
of the differences in the types of bacterial antigens expressed in situ
under different environmental conditions. Recently, a transcrip-
tome analysis of E. coli grown in serum versus that grown in LB
broth revealed that the envelope substantially realigned when cul-
tured in serum (33, 34). Importantly, while the accessibility of
O25b antigens was lower when grown in serum (as shown by flow
cytometry) due to the abundance of LPS, avid binding of MAbs to
this target may still mediate a bactericidal effect. In the mouse
protection studies, as little as 100 �g of the MAbs was shown to be
highly protective against a challenge with 3 � 108 CFU of serum-
grown mid-log-phase E. coli cells (and even lower doses against LB
broth-grown bacteria). This MAb dose corresponded to 5 mg/kg,
a relatively low concentration compared to other anti-infective
MAbs tested in preclinical experiments (37, 38) or clinical trials
(35, 36). Furthermore, in human bacteremia, the live bacterial
numbers rarely exceeded 103 to 104 CFU/ml of blood (44).

Since there are �180 structurally and hence antigenically dif-
ferent O types of E. coli, the O25b-specific MAbs target only those
E. coli cells that express this particular LPS antigen. However, the
overrepresentation of isolates belonging to the ST131-O25b:H4
clonal group among MDR extraintestinal infections still justifies
development of a MAb directed against this target. It was demon-
strated that within the ST131 lineage, all strains that expressed the
O25b antigen, irrespective of capsular and pulsotype, were bound
by the tested MAbs.

Given the targeted specificity, a companion diagnostic tool that
can rapidly identify infections by representatives of this clone
would present a significant clinical advantage and cost benefit.
Recently, we published a prototype of a bead-based agglutination
assay that, with further development, may be appropriate for this
purpose (30). Since this highly specific and sensitive diagnostic
tool also utilizes O25b-specific MAbs, it would identify only iso-
lates that in fact express the O25b antigen (in contrast to genotyp-
ing) and so would reliably identify patients who might benefit
from passive immunotherapy with O25b-specific MAbs.

We envision that MAbs may provide a therapeutic alternative
for strains resistant to available antibiotics. Although carbap-
enem-resistant E. coli strains are currently not prevalent, this may
rapidly change, as exemplified by the related pathogen Klebsiella
pneumoniae. On the other hand, LPS-specific MAbs may exert
endotoxin-neutralizing potential and hence complement antibi-
otic therapy. Such a synergistic mode of action may be desirable
given the concerns with LPS release associated with some antibi-
otics (45, 46). Experiments aiming to show additive and/or syner-
gistic effects of antibiotics and MAbs are ongoing.
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FIG 6 In vitro bactericidal efficacy of aglycosylated MAbs. Bactericidal activ-
ities of three aglycosylated MAbs were determined simultaneously with their
glycosylated counterparts. Bactericidal activity is expressed as percent killing,
i.e., CFU recovered in test groups relative to the control group (irrelevant MAb
control) following 3 h of incubation in 50% depleted human serum. (A) MAb
3E9-11; (B) MAb 4D5-02; (C) MAb 2A7-01. Black bars, wild-type MAbs; gray
bars, Fc mutated to remove glycosylation. Means with range for 2 independent
assays are shown.
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