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Dietary Sulforaphane in Cancer Chemoprevention:
The Role of Epigenetic Regulation and HDAC Inhibition

Stephanie M. Tortorella,1–3 Simon G. Royce,4,5 Paul V. Licciardi,6 and Tom C. Karagiannis1,4

Abstract

Significance: Sulforaphane, produced by the hydrolytic conversion of glucoraphanin after ingestion of cru-
ciferous vegetables, particularly broccoli and broccoli sprouts, has been extensively studied due to its ap-
parent health-promoting properties in disease and limited toxicity in normal tissue. Recent Studies: Recent
identification of a sub-population of tumor cells with stem cell-like self-renewal capacity that may be
responsible for relapse, metastasis, and resistance, as a potential target of the dietary compound, may be an
important aspect of sulforaphane chemoprevention. Evidence also suggests that sulforaphane may target the
epigenetic alterations observed in specific cancers, reversing aberrant changes in gene transcription through
mechanisms of histone deacetylase inhibition, global demethylation, and microRNA modulation. Critical
Issues: In this review, we discuss the biochemical and biological properties of sulforaphane with a particular
emphasis on the anticancer properties of the dietary compound. Sulforaphane possesses the capacity to
intervene in multistage carcinogenesis through the modulation and/or regulation of important cellular
mechanisms. The inhibition of phase I enzymes that are responsible for the activation of pro-carcinogens, and
the induction of phase II enzymes that are critical in mutagen elimination are well-characterized chemo-
preventive properties. Furthermore, sulforaphane mediates a number of anticancer pathways, including the
activation of apoptosis, induction of cell cycle arrest, and inhibition of NFjB. Future Directions: Further
characterization of the chemopreventive properties of sulforaphane and its capacity to be selectively toxic to
malignant cells are warranted to potentially establish the clinical utility of the dietary compound as an anti-
cancer compound alone, and in combination with clinically relevant therapeutic and management strategies.
Antioxid. Redox Signal. 22, 1382–1424.

Introduction

The promotion of health by a diet that is rich in
Brassica vegetables, including its association with a

decreased risk of cardiovascular disease (52, 130, 189, 276)
and a lower incidence in a wide variety of cancer types,
including breast, lung, prostate, and colorectal cancer, has
been extensively reported in the literature (75, 129, 205, 285,
288). A diet of three to five servings per week is sufficient

to decrease the risk of cancer development by *30%–40%
(122). Table 1 provides a detailed summary of the epidemi-
ological and case-control studies published to date, involving
the consumption of cruciferous vegetables and cancer risk. A
number of these studies have reported an inverse association
with an increase in cruciferous vegetable consumption ob-
served to significantly decrease cancer risk, including ma-
lignancies of the breast, lung, prostate, pancreas, and colon
(184, 205, 255, 269, 277). Systematic reviews of the literature
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have also confirmed the association, with cruciferous vege-
table intake weakly correlated with a decreased risk of cancer
development (159, 174, 175, 301). Of note, Bosetti et al.
conducted an integrated series of case-control studies on
various malignancies in order to assess cancer incidence and
cruciferous vegetable consumption (24). It was found that
subjects who consumed at least one portion of cruciferous
vegetables per week as compared with those with no or oc-
casional consumption were associated with a significantly
reduced risk of oral cavity and pharynx, esophageal, colo-
rectal, breast, and kidney cancer. In addition, Brassica vege-
tables have been associated with the induction of protective
mechanisms against pollution-related upper airway inflam-
mation (231, 232), as well as a reduction in markers of oxi-
dative stress and hypertension in heart and kidney tissues
(300). The elucidation of the biological mechanisms under-
lying the putative health benefits of cruciferous vegetable
consumption has been subject to extensive investigation, with
further studies required in order to complete understanding.

Phylogeny, Molecular Genetics, and Biochemistry
of Glucosinolate-Containing Plant Species

Glucosinolates are a class of secondary compounds present
in angiosperms of the order Brassicales, which comprises 18
families, 398 genera, and *4450 species (100). Figure 1
summarizes the phylogeny of angiosperms, with the Brassi-
cales belonging to the malvids group of the monophyletic
clade rosids, in accordance to the Angiosperm Phylogeny
Group (APG) III system. The APG III system of flowering
plant classification is the third version of a molecular-based
plant taxonomy system published in 2009 by the APG (278).
Overall, Brassicales contain *2.2% of the eudicot diversity,
with their earliest fossil known from the Turonian (89.5
millions years ago) (180). The most important, and perhaps
most extensively studied glucosinolate-producing family is
the Brassicaceae, which comprises 49 tribes, including the
tribes Brassiceae and Arabideae (190). Plants belonging to
the Brassicaceae family exhibit species-specific profiles of

FIG. 1. The phylogeny
of angiosperms (flowering
plants) in accordance to
the Angiosperm Phylogeny
Group (APG) III system.
The order Brassicales includes
all glucosinolate-producing
plants, including those in the
Brassiceae (cruciferous vege-
table) and Arabideae tribes.
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glucosinolates, a class of compounds thought to function as a
part of a defence mechanism against pathogens and insects
(9). Difficulty in establishing evolutionary trends and utiliz-
ing morphology in phylogenetic studies has been a challenge
due to homoplasy in the family (6, 281). The first compre-
hensive phylogenetic study by Beilstein et al. used a sample
of 101 genera within the family to assess the chloroplast gene
ndhF for an intergeneric relationship (19). This study placed
the genera into clades (recognized as tribes) grouped into
three main lineages (I-III). Currently, lineage I include 15
tribes, lineage II has been expanded to include 25 tribes, and
lineage III now comprises seven tribes (82, 88, 295). Sub-
stantial support for this system has been provided using an
internal transcribed spacer of nuclear ribosomal DNA (ITS)-
based phylogeny, nuclear alcohol dehydrogenase, chalcone
synthase, and plastidic maturase sequence data (14, 150).The
tribes Brassiceae and Arabideae are a part of lineage II, with
floral monosymmetry evolved independently several times
within this lineage (27).

Advances in the understanding of glucosinolate biosynthe-
sis through studies in Arabidopsis thaliana and Brassica sp.
have suggested that aliphatic glucosinolates (including glu-
coraphanin) are derived from methionine, tryptophan, and
phenylalanine (191, 192). A comparison between Brassica
oleracea L. var. italic, possessing a Brassica C.genome, and
Arabidopsis genomes showed sequence similarity and gene
order and content colinearity in specific chromosomal seg-
ments (222). The synthesis of glucosinolates is determined by
a simple genetic system containing two distinct sets of genes,
one determining sidechain elongation and the second involved
in the chemical modification of the sidechains (Fig. 2A).

Many of the glucosinolates found in Brassica vegetables
are derived from chain elongated forms of methionine or
phenylalanine (286). Figure 2B provides a genetic model of
methionine-derived glucosinolate biosynthesis, with the total
level and nature of the glucosinolate determined early in the
process, and the initial entry of methionine into the pathway
catalyzed by methylthioalkylmalate (MAM) synthase genes
at the GS-ELONG loci (58, 76). MAM synthases catalyze the
condensation of acetyl CoA as the methyl donor, with an a-
keto acid derived by amino-acid transanimation to result in
elongated methionine. Different members of this family may
catalyze different number of rounds of elongation, with ge-
netic variation at the GS-ELONG and GS-PRO loci enabling
selection for different glucosinolate profiles, while allelic
variation at the quantitative trait loci determines overall
amount (286). These initiating factors have been observed in
both Arabidopsis and Brassica (58, 242). In B. oleracea,
these genes determine the length of the side chain with either
one or two rounds of methionine elongation to produce 3C or
4C glucosinolates, respectively (242). Li and Quiros dem-
onstrated that glucosinolate synthesis was independently
regulated by genes GSL-PRO which determines the synthesis
of 3C glucosinolates, and GSL-ELONG which determines
synthesis of 4C glucosinolates (164). Furthermore, MAM and
a homologue protein of Arabidposis AOP2 were confirmed to
be useful markers for breeding of high glucoraphanin varie-
ties of B. oleracea. Importantly, it was shown that the glu-
cosinolate biosynthesis pathway may be manipulated toward
the synthesis of glucoraphanin (precursor to sulforaphane) by
increasing the expression level of GSL-ELONG and reducing
expression of GSL-PRO. Studies in A. thaliana showed that

the overexpression of R2R3-MYB transcription factors
(known regulators of glucosinolate biosynthesis), including
AtMYB28, AtMYB29, and/or AtMYB76, resulted in the
upregulation of the glucosinolate biosynthetic genes and an
increase in selected classes of glucosinolates (90, 91, 109,
264). Although genes involved in the regulation of glucosi-
nolate biosynthesis have not yet been functionally identi-
fied in Brassica species, Araki et al. suggest that gene
homologues of AtMYB28 and AtMYB29 are important in
B. oleracea (9).

After biosynthesis, methionine-derived glucosinolates may
undergo a number of side chain modifications, including hy-
droxylation, methoxylation, oxidation, desaturation, conjuga-
tion with benzoic acid, and glucosylation (286). For example,
methylthioalkyl glucosinolates may be converted to methyl-
sulphinylalkyl glucosinolates by flavin monoxygenases at the
GLS-OX loci (99). In turn, these glucosinolates may be
modified by 2-oxogluturate-dependent dioxygenases at the
GLS-ALK loci and by an unknown enzyme at the GLS-OH
loci to form alkenyl and hydroxyl-alkenylglucosinolates, re-
spectively (98). Due to the considerable variation at these loci
in B. oleracea, selection for specific glucosinolate profiles may
be possible with the genetic background being a major factor in
determining glucoraphanin concentration and composition
(Table 2). Brown et al. concluded that the percentage of glu-
cosinolate variability in broccoli was attributable to genotype
for individual compounds, including 54.2% for glucoraphanin
(25). High glucosinolate varieties of broccoli have been spe-
cifically bred to accumulate levels that are significantly higher
than regular broccoli (242). The best example of deliberate
breeding of such broccoli was achieved by crossing a standard
cultivar with B.villosa, a wild form of B. oleracea from Sicily,
which accumulates high levels of 3-methylthiopropyl gluco-
sinolate (85). This high glucosinolate variety of broccoli was
shown to deliver about four times the amount of sulforaphane
to the systemic circulation than standard cultivars, with sul-
foraphane metabolites consumed by GSTM1-positive subjects
measured to be 107.5 lM after consumption of regular broccoli
compared with 345.8 lM in subjects within the group who
consumed the high-glucosinolate variety.

Pharmacokinetics and Bioavailability
of Dietary Sulforaphane

The significant accumulation of the glucosinolate, glucor-
aphanin [4-methylsulfinylbutyl glucosinolate] in broccoli has
been shown to be important as the precursor of the bioactive
isothiocyanate, sulforaphane (Fig. 3). It is rapidly absorbed,
metabolized, and excreted, with *80% appearing in the urine
within 12–24 h after consumption and/or administration (54).
There are many factors that may affect the bioavailability, and
therefore overall therapeutic benefit, of dietary sulforaphane,
including pharmacokinetic properties, genetic variation, and
food preparation (42). Hydrolytic conversion of glucor-
aphanin to sulforaphane through the action of physical dam-
age to the plant occurs either by the action of plant-derived
myrosinase (intracellular broccoli thioglucosidase) (70) or by
the microbiota of the human colon (48, 251, 252). Approxi-
mately, 60%–80% of glucoraphanin is converted to sulfor-
aphane (131), with most broccoli varieties possessing
between 0.1 and 30 lmol/g of glucoraphanin (Table 2). After
rapid diffusion into the cells of the intestinal epithelium due to
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its lipophilic nature and low molecular weight, sulforaphane
undergoes metabolism via the mercapturic acid pathway (218).
This process involves its initial conjugation with glutathione,
rapidly catalyzed by important glutathione S-transferase
(GST) enzymes (272).

As previously described, GST enzymes are important in
sulforaphane metabolism by their ability to conjugate the
isothiocyanate to glutathione, leading to its excretion (272).
The GST isoforms, GST-M1 and GST-T1 have been reported
to have the greatest activity on sulforaphane (151, 315).

FIG. 2. Genetic model of the glucosinolate biosynthetic pathway in Brassicales. (A) A simple genetic system for the
production of glucosinolates from methionine. The initial step involves the conversion of methionine to an aldoxime
through the activity of gene products of the CYP79 gene family. The aldoxime undergoes conjugation with cysteine, which
acts as a sulfur donor, and is then cleaved by a C-S lyase. Glucosinolate products are subsequently formed through
detoxification of potentially toxic thiohydroximates by glucosyltransferase-driven glucosylation, and sulfation by sulpho-
transferase. Side chain modifications occur with a high frequency, and profiles become particularly complex after elongation
of amino acids that are dependent on genetic variation. (B) Genetic model of methionine-derived glucosinolate biosynthesis.
Total level and nature of the glucosinolate is determined early in the process, and the initial entry of methionine into the
pathway is catalyzed by methylthioalkylmalate (MAM) synthase genes at the GS-ELONG loci. MAM synthases catalyze
the condensation of acetyl CoA to result in elongated methionine. Different members of this family may catalyze different
number of rounds of elongation, with genetic variation at the GS-ELONG and GS-PRO loci enabling selection for different
glucosinolate profiles, while allelic variation at the quantitative trait loci (QTL) determines overall amount.
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Genetic polymorphisms, as well as geographical and ethnic
variations in genotype frequencies have been described for
both GST-M1 and GST-T1, including null mutations, which
result in the absence of a functional gene product (101). In-
terestingly, the frequency of a homozygous null genotype for
both isoforms is relatively high, with the frequency of the
GST-M1 null genotype varying between 39% and 63%, and
the GST-T1 null genotype between 10% and 21% for Cau-
casian populations, but it may be as high as 64% in subjects of
Asian descent (53). The implication of a homozygous null
genotype has been shown to be an important variable that
determines the biodistribution, and therefore the protective
effect of broccoli consumption in human populations. Epi-
demiological studies, however, have reported conflicting
results with regard to the association between genetic poly-
morphisms in GST isoforms and cancer risk. For example,
some studies have concluded that GST-M1-positive subjects
gain greater cancer protection from either broccoli con-
sumption or total cruciferous vegetable consumption than
those who possess the GST-M1 null genotype (129, 266,
292). In contrast, others report that consumption of crucif-
erous vegetables leads to a greater protective effect in GST-
M1 and GST-T1 null subjects than those with functional GST
enzymes (173, 245). This variation, however, may be ex-
plained through the innate biological function of GST en-
zymes and their role in the metabolism and subsequent
elimination of various compounds after exposure. Specifi-
cally, molecular epidemiological studies involved in eluci-
dating the association between GST-M1 and GST-T1
genotypes with cancer susceptibility have shown that those
who carry the homozygous deletion appear to have a small
increase in the magnitude of risk (odds ratio of < 2); however,
other factors (i.e., cigarette smoking) further enhance the risk
(odds ratio of 3–5) (228). This is accounted to their ability to
regulate the conjugation of carcinogenic compounds, in-

cluding benzo(a)pyrene and styrene-7,8-oxide by GST-M1,
and ethylene oxide and methyl bromide by GST-T1, to ex-
cretable hydrophilic metabolites (10, 59, 97, 316). Through
the inability to express functional GST enzymes, individuals
possessing the homozygous null genotype have a limited
capacity to efficiently detoxify potentially carcinogenic ex-
posures. Thus, the consumption of cruciferous vegetables
may have limited protection in such subjects, as chronic
exposure to carcinogens causes a reduction in their preven-
tative activity. Conversely, studies that report an enhanced
protective effect of sulforaphane in GST-M1 and GST-T1
null genotypes hypothesize that due to the inability to effi-
ciently metabolize sulforaphane for urinary excretion, ex-
posure of target tissues to the protective compound and/or
metabolites is higher and prolonged (170).

The sulforaphane metabolites produced in such a pathway
are distributed throughout the body and accumulate in dif-
ferent tissues, with unpublished data from Franklin and co-
workers after a whole body autoradiographic study in rats
suggesting that high concentrations of isothiocyanate metab-
olites are present in the gastrointestinal tract, liver, kidneys,
and blood (26). The basis for the distribution of sulforaphane
is the high degree of binding to glutathione, and its capacity to
drive passive diffusion (47, 108). Due to analytical limita-
tions, a few studies have successfully measured the distribu-
tion of sulforaphane and its metabolites in humans. Results
from human studies demonstrated that 74% ( – 29%) of sul-
foraphane from broccoli extracts may be absorbed in the
jejunum, with a portion returning to the intestinal lumen of
jejunum as sulforaphane-glutathione (218).The amount of
sulforaphane metabolites in plasma, however, may reflect the
amount of sulforaphane exposed to tissues, and are, therefore,
considered important biomarkers in the determination of
distribution (55). In plasma, more than 50% of total sulfor-
aphane metabolites were sulforaphane-glutathione with free

Table 2. Amount of Glucoraphanin Measured in Important Members of the Family Brassicaceae

Botanical classification Range (mean) Unit Reference

Kohlrabi (Brassica oleracea var. gongylodes 7.8–8.7 mg/100 g (fw) (40)

Red cabbage (B. oleracea var. capitata f. rubra) 4.0–18.2 mg/100 g (fw) (40)

Rocket (Eruca sativa) 2.2–4.4 mg/g (dw) (144)
1.3 lmol/g (dw) (144)

Green broccoli (B. oleracea var. italica) 0.8–21.7 (7.1) lmol/g (dw) (157)
4.5–28.5 lmol/g (dw) (236)

2.4–18.4 (15.7) lmol/g (dw) (25)
1.3–8.3 (4.0) lmol/g (dw) (283)

0.3–12.6 (4.6) lmol/g (dw) (13)
24–185 (95) lmol/100 g (fw) (74)

11.6–34.0 (22.2) mg/100 g (fw) (243)
4.1–14.9 (10.5) lmol/g (dw) (32)
0.37–4.7 (2.2) lmol/g (dw) (2)

Purple broccoli (B. oleracea var. italic) 6.7 mg/100 g (fw) (243)

Purple cauliflower (B. oleracea var. botrytis) 11.6 mg/100 g (fw) (243)

Chinese broccoli (Brassica rapa var. alboglabra) 39.7 mg/100 g (fw) (243)
118.9 lmol/100 g (fw) (102)
0.01 lmol/g (dw) (210)

Green broccoli sprouts (B. oleracea var. italica) 23.3–67.6 lmol/g (dw) (217)
11.1–28.7 lmol/g (dw) (5)
17.4–49.5 lmol/g (dw) (217)

fw, fresh weight; dw, dry weight.
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sulforaphane, although other metabolites, including sulfor-
aphane-N-acetylcysteine, were present in quantifiable
amounts (121). For example, in rats, after a single dose of
(50 lmol) sulforaphane, detectable levels of the compound
were evident after 1 h, peaking at *20 lM at 4 h with a half
life of *2.2 h (114). Ye et al. have shown a rapid absorption
and appearance of isothiocyanates and their metabolites in the
blood of human subjects, with this level observed to decline
after first-order kinetics (indicating rapid distribution and/or
metabolism (305). These subjects were given a single dose of
200 lmol broccoli sprouts isothiocyanate preparation, with
isothiocyanate plasma concentrations peaking between 0.943

and 2.27 lM 1 h post exposure, with a half life calculated at
1.77 h ( – 0.13 h). Subsequent accumulation after distribution
within target tissue is also an important aspect in the context
of sulforaphane and its ability to elicit chemopreventive and
anticancer effects. In an in vivo study in mice given 300 or
600 ppm sulforaphane, accumulated sulforaphane and sul-
foraphane-glutathione plasma concentrations were recorded
at 124–254 nM and 579–770 nM, respectively (115). Con-
centrations within the small intestine were also measured, and
they were between 3–13 nmol/g of tissue and 14–32 nmol/g of
tissue, respectively (equivalent to *3–30 lM of total sulfor-
aphane). Interestingly, the accumulation of sulforaphane

FIG. 3. The conversion of glucoraphanin to sulforaphane, and its subsequent metabolism. Hydrolytic conversion of
glucoraphanin to sulforaphane occurs through the action of physical damage to the plant, by either the action of plant-derived
myrosinase (intracellular broccoli thioglucosidase) or the microbiota of the human colon. After rapid diffusion into the cells of
the intestinal epithelium, sulforaphane undergoes metabolism via the mercapturic acid pathway. This process involves its initial
conjugation with glutathione, rapidly catalyzed by important glutathione S-transferase (GST) enzymes. The process of N-
acetylation (to form sulforaphane-N-acteylcysteine) is important for the subsequent excretion of sulforaphane from the body.
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within the colonic tissue of treated mice corresponded with
decreased adenoma formation. Detoxification genes NQO1
and heme oxygenase-1 (HO-1) were also detected in the re-
moved tissue. In addition, the rapid passage of a bolus of
preformed sulforaphane in rats did not achieve equal distri-
bution across all tissues, with the highest levels reached in the
stomach wall (284). Sulforaphane distribution was decreased
in more distal parts of the digestive tract, with the rectum
accumulating *1% of that found in the stomach. At 24 h post
administration, however, levels were low and approximately
equal in all evaluated tissue, indicating the rapidity of sul-
foraphane metabolism and excretion. A study of human breast
tissue after consumption of broccoli sprouts, however,
showed that the tissue concentration of isothiocyanates failed
to be different from plasma levels (51). The kidney is the
major organ involved in the conversion of glutathione con-
jugates into the corresponding N-acetyl-S-cysteine conjugates
(176). The process of N-acetylation is important for the sub-
sequent excretion of isothiocyanates from the body. Excretion
of sulforaphane and its metabolites have been shown to follow
first-order kinetics, with most data indicating clearance from
the body within 72 h of administration (251, 305).

Glucoraphanin is relatively stable under chemical and
thermal conditions, and, therefore, hydrolysis is mainly
enzymatic (myrosinase mediated) (286). Cooking and/or
blanching (during freezing process) of cruciferous vegetables
inactivates myrosinase, and has been shown to decrease the
bioavailability of sulforaphane (47, 239, 287). In general,
results suggest that only about 30%–50% of the initial ad-
ministered dose is excreted after these preparation processes
(127, 240). Boiling for more than 1 min, or steaming for more
than 4–5 min has been shown to lead to the loss of myrosinase
activity (291). Conaway et al. performed a study to assess the
metabolic fate of glucosinolates after ingestion of steamed and
fresh broccoli in 12 male subjects in a crossover design (47).
Results of this study indicate that the bioavailability of sul-
foraphane from fresh broccoli is approximately thrice higher
than that from cooked broccoli. Interestingly, coadministra-
tion of semi-purified glucoraphanin with a myrosinase source
was reported to increase the bioavailability of the iso-
thiocyanate (54). In addition, the concentration of glucor-
aphanin varies widely among development stages of the plant,
and between different parts of the plant, which may also in-
fluence sulforaphane bioavailability (45, 210, 226). For ex-
ample, two varieties of broccoli, a purple-sprouting broccoli
and a green-sprouting broccoli, were cultivated to compare
the amount of sulforaphane and its metabolites within com-
mercial samples (234). In the initial samples, it was shown that
there were quantitative differences between organs, with the
seeds, edible sprouts, and florets determined to possess the
most intact sulforaphane (in descending order). Furthermore,
these two varieties produced higher sulforaphane levels
compared with those within the commercial samples. Higher
sulforaphane concentrations were also found in the initial
steps of the digestion process, with the concentration of sul-
foraphane and its subsequent metabolites decreased in ac-
cordance with the amount of precursor glucoraphanin.

The concentration of sulforaphane required to observe
therapeutic activity has not yet been determined in human
clinical trials, with rough estimates based on the active dose
in animal models (108). The amount of dietary glucoraphanin
that is converted to bioavailable sulforaphane is typically

calculated as 20% of the overall consumed amount in humans
(250–252). For example, the typical sulforaphane concen-
tration that has been shown to inhibit the growth of human
cancer xenografts in mice is *4.4 mg/kg per day (133). This
corresponds to 308 mg of sulforaphane daily administered to
a 70 kg person (108).

Chemopreventive Activity Against the Initiation
of Carcinogenesis

Chemoprevention, which refers to the use of a nontoxic
natural or synthetic chemical that possesses the capacity to
intervene in multistage carcinogenesis, has emerged as a
promising approach to reduce the risk of the development and
progression of malignancy (163). Microarray analyses in cell
lines, animal tissue, and human biopsy samples have shown
the capacity of sulforaphane to modulate global gene ex-
pression, especially resulting in the differential expression of
genes that are important in chemoprevention (Table 3). In
general, results indicate that sulforaphane affects the ex-
pression of genes involved in xenobiotic metabolism, anti-
oxidation, cell cycle regulation, apoptotic pathways, and
stress response (115, 179, 306).

Evidence suggests that sulforaphane, its metabolites, and
synthetic analogues possess the capacity to inhibit the ma-
lignant transformation of various cell types, and limit cancer
progression after carcinogen exposure (71, 92). For example,
sulforaphane and its conjugate metabolite N-acetylcysteine
was shown to limit the malignant progression of lung ade-
nomas in A/J mice exposed to tobacco carcinogens (49).
Prevention of mutagenesis by sulforaphane was also dem-
onstrated in mice given a single application of the sulfur
mustard analogue, 2-(chloroethyl) ethyl sulphide (CEES) (1).
Abel et al. reported that a single topical treatment with sul-
foraphane induced the production of phase II detoxification
enzymes, with an increase in the epidermal levels of the
regulatory subunit of glutamate-cysteine ligase, and reduced
glutathione. Furthermore, sulforaphane treatment limited the
CEES-induced increase in mutation frequency in the skin,
which was measured at 4 days post exposure. A reduction in
the number, size, and development of mammary tumors in
rats after exposure to the carcinogen dimethylbenz[a]an-
thracene has also been observed with sulforaphane treatment
(73, 312). Furthermore, sulforaphane possessed an ability to
decrease the amount of DNA-adduct formation in normal
mammary cells exposed to polycyclic aromatic hydrocarbons
(259). Inhibition of DNA-adduct formation has also been
displayed in human bladder cells in vitro and in mouse
bladder tissue in vivo, after treatment with sulforaphane and
exposure to the bladder carcinogen, 4-aminobiphenyl (60).
This inhibition was dependent on the activation of an im-
portant chemoprotective signaling pathway, nuclear factor
erythroid 2-related factor 2 (Nrf2), within the epithelium,
which is the main site for bladder cancer development.
Exposure to benzo[a]pyrene results in the induction of pul-
monary carcinogenesis in mice via oxidative damage, with
sulforaphane treatment found to decrease the production
of H2O2 (134). Results suggest that sulforaphane leads
to the activation of apoptotic pathways in this experimen-
tal model of chemical lung carcinogenesis, included the
increased release of cytochrome c from mitochondria, en-
hanced caspase-3 activity leading to DNA fragmentation, and
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a decrease in Bcl-2 expression coupled with an increase in the
expression of Bax. Interestingly, sulforaphane was shown to
protect primary dermal fibroblasts and keratinocytes against
oxidative stress caused by UVA radiation under basal con-
ditions and in the presence of the photosensitising drug, 6-
thioguanine (20). In this study, sulforaphane treatment re-
sulted in an *50% reduction in the formation of reactive
oxygen species (ROS). Furthermore, the protective properties
of sulforaphane were shown to be caused by an increase in
Nrf2-depednent cytoprotective responses, including those
involved in the induction of gene transcription and expression
of important metabolic and detoxification enzymes.

The chemopreventive activity of sulforaphane in carcino-
genesis is related to the inhibition of phase I enzymes, which
are responsible for the activation of pro-carcinogens (15,
313) and the induction of phase II enzymes that are respon-
sible for mutagen elimination (314). Phase I enzymes such as
cytochrome p450 (CYP) are important in the transformation
and bioactivation of pro-carcinogens to carcinogens (297).
Through common enzymatic processes, electrophilic inter-
mediates covalently bind to nucleophilic sites in important
macromolecules (77). Adduct formation, coupled with in-
adequate reparation, may, in turn, cause miscoding and mu-
tations in critical genes to initiate carcinogenesis. Multiple
studies have reported the capacity of sulforaphane to inhibit
the catalytic activity of phase I enzymes (15, 181). Specifi-
cally, Barcelo et al. reported the dose-dependent inhibition of
both cytochrome p450-1A1 and -2B1/2 enzymatic activity in
rat hepatocytes after sulforaphane treatment (15). Similar
results were also found in human hepatocytes, with sulfor-
aphane significantly decreasing the expression of CYP1A1,
1A2, and CYP3A4 genes (96). Evidence also suggests that
sulforaphane is an effective antagonist of the human steroid
and xenobiotic receptor (SXR), which is an important tran-
scriptional factor that regulates the expression of CYP3A

genes (318). In primary rat hepatocytes, sulforaphane caused
a significant inhibition of the microsomal ethoxyresorufin-O-
deethylase (EROD) activity (a selective marker for CYP1A1
and 1A2) and P-benzoquinone dioxime (BQD) activity (a
marker of CYP3As) (158).

Cells possess innate protective mechanisms in order to
minimize damage caused by highly reactive metabolites,
with the induction of phase II enzymes that are of major
importance in detoxification. These enzymes include GST,
NAD(P)H:quinine oxidoreductase (NQO-1), and UDP-
glucuronosyltransferase (UGT) (138). Phase II enzymes are
potent antioxidants that have a relatively long half life, and
have the capacity to conjugate endogenous substrates such as
glutathione to phase I metabolites in order to limit further
biotransformation and result in enhanced elimination and
excretion (35). Evidence suggests that sulforaphane is a po-
tent inducer of phase II antioxidant enzymes (61). For ex-
ample, sulforaphane significantly reduced the number and
level of DNA adducts after exposure to methyl-6-phenyli-
midazo[4,5-b]pyridine in a dose-dependent manner in hepa-
tocytes due to the induction of GST-A1 and UGT-1A1
mRNA expression (11). NQO-1 and GST activity was also
shown to be enhanced in the forestomach, duodenum, and
bladder of rats treated with 40 lmol of sulforaphane per kg
(197), while an increased dose of 200–1000 lmol of sulfor-
aphane per kg increased activity in the liver, colon, and
pancreas (183). Jones and Brooks demonstrated an increase
in enzymatic activity in prostate, liver, kidney, and bladder
tissues after administration of sulforaphane (128). Human
clinical studies also provide evidence for the induction of
phase II enzymes by sulforaphane after broccoli consumption
(Table 4).

The induction of phase II enzymes by sulforaphane has
been shown to be associated with a disruption of Nrf2-Keap1
interactions and increased translocation of Nrf2 (Fig. 4) (117,

Table 4. Human Clinical Studies Involving the Consumption of Broccoli

and Sulforaphane-Induced Production of Phase II Enzymes

Study design Conclusions Reference

Two-week, randomized, placebo-controlled study:
100 lmol glucoraphanin infusion with 200 healthy
Chinese adults

Sulforaphane is absorbed and induces the
production of phase II detoxification
enzymes.

(139)

Four-week, randomized, crossover study: > 160 g/day
of CV vs. Micronutrient + fiber with 20 healthy
adults (36–80 years)

Intake of CV is associated with lower levels
of oxidative stress indicators.

(81)

Single-dose perfusion of proximal jejunum: 2 ml/min
broccoli extract with 11 subjects

Sulforaphane is efficiently absorbed in the
small intestine (74%) and rapidly induces
phase II (GSTA3) mRNA.

(218)

Single-dose, randomized, three-phase crossover study
with standard broccoli and broccoli containing
threefold amounts of glucoraphanin with 16
subjects (18–46 years)

Sulforaphane is bioavailable and is
correlated with dose.

Rapidly induces phase II (TrxR) mRNA.

(86)

Placebo-controlled, dose-escalation trial (25–100 g
broccoli sprout homogenate) with 65 healthy
subjects ( > 18 years)

Broccoli sulforaphane rapidly induces phase
II (NQO1, GST-M1, GST-P1, and HO-1)
mRNA in upper airways of humans.

(231)

Four-week, placebo-controlled, randomized, double-
blind, two-dose trial: 5 and 10 g/day broccoli sprout
powder with 63 type II diabetic patients

Biomarkers of oxidative stress were reduced
at both doses.

Oxidized low-density lipoprotein reduced by
5% with the 10g/day treatment.

(12)

CV, cruciferous vegetables; mRNA, messenger RNA.
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148, 206). In unstimulated cells, Kelch-like ECH-associated
protein 1 (Keap1) mediates the function of Nrf2 through
sequestration mechanisms in order to bind it to Cul-3-
dependent ubiquitinase for subsequent ubiquitination and
targeted proteosomal degradation. After stimulation due to
environmental insult, the Nrf2-Keap1 complex is disrupted
with conformational changes, leading to a switch in ubiqui-
tination from Nrf2 to Keap1, and the nuclear translocation of
Nrf2. Activation of Nrf2 in the nucleus occurs through its
heterodimerization with small Maf transcription factors to
form a complex that binds to the antioxidant/electrophile
response element (ARE/EpRE) that is found in the promoters
of many phase II enzymes. Sulforaphane has the ability to
induce nuclear translocation of Nrf2 through the disruption of
the Nrf2-Keap1 complex via the degradative loss of Keap1
via conformational changes (62). Specifically, sulforaphane
has been demonstrated, with the use of spectroscopic evi-
dence, to react with the thiol groups of Keap1 to form thio-
noacyl adducts (62, 110). This specific modification of Keap1
released Nrf2 from sequestration, promoting the subsequent
activation of ARE-driven gene expression. Conceptual proof
of this action by sulforaphane has been shown through ex-
periments in Nrf2 knockout mice (279). Thimmulappa et al.
generated a transcriptional profile of the small intestine of
wild-type (Nrf2 + / + ) and knockout (Nrf2 - / - ) mice treated
with sulforaphane. Numerous genes were found to be regu-
lated by Nrf2, including the previously reported phase II
xenobiotic metabolizing enzymes, as well as antioxidative
and cytoprotective proteins that are important in limiting
cancer progression.

Anticancer Properties of Sulforaphane
Limiting Tumor Progression

In addition, evidence suggests that sulforaphane possesses
the capacity to limit the progression of tumor development

through a number of mechanisms, including activation of
apoptosis, NFjB pathway inhibition, and cell cycle arrest
induction (Fig. 5).

Apoptosis or programmed cell death is an important and
selective mechanism in the regulation of cell proliferation in
both physiological and pathological conditions (229). The
activation of apoptotic pathways in malignant cells is a major
focus for current cancer therapeutic research, with evidence
suggesting that sulforaphane possesses the capacity to induce
apoptosis through the activation of several proapoptotic
pathways (238). For example, sulforaphane induced apop-
totsis in both human cervical HeLa cancer and hepatocellular
HepG2 carcinoma cell lines in vitro, demonstrated by the
formation of apoptotic bodies and the accumulation of cells in
the sub-G1 phase (215). Administration of 10 lM sulfor-
aphane reduced cell viability and induced apoptosis in pros-
tate DU145 cancer cells as indicated by the cleavage of
poly(ADP-ribose) polymerase (PARP) and increased release
of histone-associated DNA fragments (38). In HCT-116 colon
cancer cells, 15 lM sulforaphane induced activation of pro-
apoptotic caspase-7 and caspase-9, independent of p53 ex-
pression (212). Recently, sulforaphane-induced apoptotis was
also associated with the activation of caspase-8 and caspase-9,
the initiating caspases that are important in both extrinsic and
intrinsic apoptotic pathways in human bladder 5637 cancer
cells (214). Park et al. also reported the ability of sulforaphane
to affect important molecular targets that are intimately in-
volved in apoptotic pathways, including the downregulation of
anti-apoptotic Bcl-2 and Bcl-XL gene expression, the upre-
gulated expression of pro-apoptotic Bax, proteolytic activation
of caspase-3, and the degradation/cleavage of PARP (215).
The activation of Bax, the downregulation of the inhibitors of
apoptosis (IAP) protein family, and the induction of apoptotic
protease activating factor-1 have been shown to be involved in
the regulation of sulforaphane-induced cell death (39). A study
using Jurkat T-leukemia cells suggests that vulnerability to

FIG. 4. Sulforaphane-modulated
Nrf2-Keap1 interactions in the
transcription of phase II antioxi-
dant enzymes. Sulforaphane has the
ability to induce nuclear transloca-
tion of Nrf2 through the disruption
of the Nrf2-Keap1 complex via the
degradative loss of Keap1 via con-
formational changes. Specific mod-
ifications of Keap1 release Nrf2
from sequestration, promoting its
nuclear translocation and activation.
Activation of Nrf2 in the nucleus
occurs through its heterodimeriza-
tion with small Maf transcription
factors to form a complex that binds
to the antioxidant/electrophile re-
sponse element (ARE/EpRE) that is
found in the promoters of many
phase II enzymes, ultimately lead-
ing to ARE-driven gene expression
(and subsequent upregulation of
phase II antioxidant enzymes).
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sulforaphane-mediated apoptosis was dependent on cell-cycle
mechanisms, with cells most sensitive to sulforaphane-induced
apoptosis in the G1 phase, less sensitive in the G2/M phase,
and least sensitive during the S phase (78).

The proposed initiating signal of sulforaphane-mediated
apoptosis is the formation of ROS and the disruption of mi-
tochondrial membrane potential, leading to cytosolic release
of cytochrome c via both death-receptor and mitochondrial
caspase cascade pathways, as observed in human prostate
cancer PC3 cells (258). More specifically, sulforaphane was
capable of inducing apoptosis through the activation of
the ROS-dependent, caspase-3 in multiple tumor necrosis
factor-a-resistant leukemia cell lines (194). Interestingly,
administration of the antioxidant N-acetylcysteine and the
overexpression of catalase resulted in the reversal of sulfor-
aphane-induced ROS formation in the same study. Singh and
co-workers thus indicated a necessity for the conjugation of
sulforaphane with glutathione during metabolism, in order to
deplete intracellular concentrations of glutathione and po-
tentially lower the oxidative stress threshold of cells. In
general, high concentrations of sulforaphane are required in
order to induce ROS formation. For example, mitochondrial
ROS generation and disruption of mitochondrial membrane
potential leading to the formation of acidic vesicular organ-
elles and autophagy in PC3 and LNCap cells may only be
observed after administration of 40 lM sulforaphane (105).
This response has unique morphological effects and was
shown to possess the ability to inhibit the release of mito-
chondrial cytochrome c and apoptosis. Therefore, it has been

suggested that ROS production after sulforaphane treatment
has the capacity to influence cell death in an alternative
pathway to apoptosis.

While activation of apoptosis by sulforaphane in the human
breast cancer MDA-MB-231 cells was reported to be initiated
through the induction of Fas ligand, which resulted in the
activation of caspase-8, caspase-3, and PARP, sulforaphane
induced apoptosis in the human breast cancer cell lines,
MDA-MB-468, MCF-7, and T47 via mechanisms involved
with decreased Bcl-2 expression, release of cytochrome c into
the cytosol, activation of caspase-9 and caspase-3 (but not
caspase-8), and poly(ADP-ribose) polyermase cleavage
(219). Taken together, these findings indicate that sulfor-
aphane has an innate ability to modulate both extrinsic and
intrinsic apoptotic pathways, via the production of ROS and
regulation of gene expression.

In contrast to the well-documented induction of apoptotic
pathways by sulforaphane, recent studies have indicated that
sulforaphane may also possess the capacity to cause autop-
hagy in cancer cells. The significance of these findings is
displayed in the publication by Herman-Antosiewicz et al.,
which associated the induction of autophagy with the inhi-
bition of cytochrome c release and, ultimately, apoptosis
(106). In this study, treatment of prostate cancer cell lines,
PC-3 and LNCap with sulforaphane resulted in the upregu-
lation, processing, and recruitment to autophagosomes of
microtubule-associated protein light chain 3 (LC3). In addi-
tion, inhibition of autophagy (incubation of cells with
3-methyladenine) potentiated the proapoptotic effects of

FIG. 5. Summary of chemopre-
ventive mechanisms involved in
limiting tumor progression after
sulforaphane exposure. Both in vitro
and in vivo studies have demon-
strated that sulforaphane possesses
the capacity to activate apoptotic
pathways, induce cell cycle arrest,
inhibit NFjB signaling, and stimu-
late MAPK activity.
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sulforaphane in human colon cancer cells (207). Similar re-
sults were also demonstrated in human breast cancer cell
lines, MCF-7 and MDA-MB-231 (136). Investigation pro-
viding mechanistic insights indicates that autophagy and cell
death signaling after sulforaphane treatment of pancreatic
cells are independent pathways which depend on ROS pro-
duction (204). Pharmacologic inhibition of autophagy in vivo
validated cell culture studies, with most suggesting that au-
tophagy is a cytoprotective mechanism against sulforaphane-
induced apoptosis (290).

Inhibition of cellular growth may also be caused by an
irreversible arrest during the cell cycle, with sulforaphane
shown to possess such inhibitory effects on cells (84, 257). A
significant increase in G2/M cell cycle arrest was observed
in LNCap prostate cancer cells after sulforaphane incubation
in a concentration- and time-dependent manner (107). A re-
duction in cell viability after the induction of G2/M cell cycle
arrest after treatment of DU145 prostate cancer cells with
10 lM sulforaphane has also been demonstrated (38). In
human ovarian PA-1 cancer cells treated with sulforaphane,
an accumulation in the G2/M (metaphase) phase was reported
through the downregulation of CDC2, as well as through the
downregulation and dissociation of the cyclinB1/CDC2
complex (31). A decrease in protein levels of cyclin B1, cell
division cycle Cdc25B, Cdc25C, and an accumulation of Tyr-
15-phosphorylated (inactive) Cdk1 has also shown to be
important in sulforaphane-mediated cell cycle arrest in PC3
cells after incubation with 20 lM sulforaphane (257). In ad-
dition, sulforaphane treatment resulted in a rapid and sus-
tained phosphorylation of Cdc25C at Ser-216, which was a
result of Chk2 activation, leading to translocation of Cdc25C
from the nucleus to the cytoplasm, and increased binding to
14–3-3beta. It is thus proposed that Chk2-mediated phos-
phorylation of Cdc25C is an important regulation mechanism
in irreversible sulforaphane-induced G2/M arrest.

The tumor suppressor and cell cycle inhibitor protein p21
also appears to play an important role in sulforaphane-
induced cell cycle arrest with its induction observed in a
number of studies irrespective of cell type and expression of
p53. Sulforaphane treatment of p53 negative colon cancer
cell lines (HT-29 and Caco-2) was shown to induce p21 ex-
pression (216). In LNCap prostate cancer cells, induction of
p53 and p21 was observed after 20 lM sulforaphane treat-
ment (199). Interestingly, cell cycle arrest in LNCap cells
occurred after the p21 expression induction but not p53. In
this same study, induction of p21 expression by sulforaphane
was shown to occur in p53-null PC3 prostate cancer cells,
suggesting a possible p53-independent regulatory pathway.
Treatment of acute lymphoblastic leukemia cells from human
patients with sulforaphane resulted in dose-dependent apo-
ptosis and G2/M cell cycle arrest (274). These anticancer
mechanisms were associated with the activation of caspases
(3, 8, and 9), inactivation of PARP, p53-independent upre-
gulation of p21, and inhibition of the CDC2/cyclin B1
complex. Colon tissue surgically removed from three human
subjects treated with sulforaphane for 2 h exhibited a strong
induction of p21 in cancer tissue, with expression failing to be
significant in the normal tissue of two patients (282).

Although G2/M arrest is the predominant stage of cell
cycle arrest induced by sulforaphane (84, 216), arrest at other
phases of the cell cycle has been observed. For example, a
G1 cell cycle arrest was shown to occur in HT-29 cells

concomitant with an increase in p21CIP1, and a decrease in
cyclin D1, cyclin A, and c-myc (254). G1/S cell cycle arrest
has also been reported in LNCap and DU145 cells (37, 293).
Evidence suggests that the phase in which cell cycle arrest
occurs after sulforaphane treatment is dependent on admin-
istered concentration and incubation time. In human colon
adenocarcinoma Caco-2 cells, G2/M cell cycle arrest was
observed at a dose of 20 lM sulforaphane (120). Conversely,
administration of sulforaphane at concentrations > 20 lM
induced an accumulation of sub-G1 cells and the loss of
mitochondrial membrane potential. Pappa et al. demon-
strated reversible G2/M cycle arrest and cytostatic growth of
p53 wild-type 40–16 colon cancer cells after transient ex-
posure till 6 h (211). Treatment with sulforaphane for longer
than 12 h, however, resulted in irreversible G2/M arrest and
subsequent apoptosis. Interestingly, cytostatic growth effects
observed with 12 h of exposure was sustained till 72 h post
sulforaphane removal and the IC50 calculated was compara-
ble to cells transiently exposed to sulforaphane for 72 h.

Mitogen-activated protein kinases (MAPKs), including
the extracellular signal-regulated kinases (ERKs), c-Jun
NH2-terminal kinases ( JNK), and p38, are believed to be
involved in carcinogenesis and tumor progression (41). The
activation of the MAPK/ERK pathway has been reported
after sulforaphane treatment in a number of cell lines, in-
cluding PC3 cells, through the activation of the activator
protein-1 (AP-1) transcription factor that is involved in the
regulation of cell death (303). The modulatory effect on AP-1
transcription is dependent on the concentration of sulfor-
aphane administered. In HT-29 colon cancer cells, activation
of AP-1 luciferase activity occurred at low concentrations of
sulforaphane treatment ( £ 35 lM), while activity was in-
hibited at high concentrations ( ‡ 50 lM) (124). In addition,
cyclin D1 levels increased at lower concentrations, and de-
creased at high concentrations. Interestingly, however, is that
despite the difference in modulation after varying concen-
trations of sulforaphane, cell viability decreased in a dose-
dependent manner. Administration of 50 lM sulforaphane in
cells corresponded to activation of the 46-kDa isoform of
phospho-JNK (p46-JNK) but not the p54-JNK isoform, in-
dicating the importance of the 54-kDa isoform for persistent
activation of AP-1. Consistent with this report, Shen et al.
also observed a decrease in cell viability and the activation of
MAPK pathways (including, ERK, JNK, and p38) (254).
Furthermore, activated JNK was shown to decrease cyclin D1
expression at high concentrations of administered sulfor-
aphane. The treatment of Caco-2 human colon adenocarci-
noma cells with sulforaphane was shown to induce ERK
activation, but failed to significantly increase the activation
of JNK and p38 (120). In another study, DU-145 prostate
cancer cells were exposed to sulforaphane with the activation
of the JNK pathway shown to be important in cell death
induction (38). Activation of p38 was also shown to be im-
portant in the upregulation of Nrf2-ARE-driven enzymes,
and the downregulation of pro-inflammatory COX-2 in hu-
man bladder T24 cancer cells (247). The MAPK pathway is,
therefore, an important mechanism activated by sulfor-
aphane, and indirectly contributes to cell death and cell via-
bility regulation, as well as to Nrf2-Keap1 interactions and
the transcription of phase II antioxidant enzymes.

Nuclear factor B (NFjB) and its active role in inflamma-
tion, cancer cell survival, and progression has been widely
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reported, with the ability to bind to the promoter of many pro-
inflammatory genes, including inducible nitric oxide synthase
(iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis
factor (TNF) (137). After incubation of PC3 cells with 20 lM
sulforaphane for 1 h, a reduction in nuclear localization of
p65-NFjB was observed (39). In addition, inhibition of NFjB
transcriptional activity in PC3 cells resulted in the suppression
of the nuclear translocation of p65 and the decreased gene
expression of NFjB-regulated VEGF, cyclin D1, and Bcl-xL

(302). The decreased nuclear translocation and activation of
p65-NFjB was attributed to the inhibition of IjB kinase
(IKK) phosphorylation, which is necessary for IjB degrada-
tion, and subsequent release of inactive NFjB to become
active. Similar effects are observed in HT-29 cells in a dose-
dependent manner (125). Interestingly, an initial increase in
NFjB activity at 6–12 h post sulforaphane treatment in
LNCap cells has also been observed, followed by inhibition at
the 24 h time point (39). In this same study, the modulation of
the IAP family, downstream factors that are shown to be
upregulated by NFjB activation, was directly proportional to
the level of NFjB activity. Studies also suggest that sulfor-
aphane has the capacity to reduce the DNA binding ability
of NFjB directly, with two mechanisms proposed (36). The
first involves the modification of NFjB subunits via thiol-
dependent interactions to cause dithiocarbamate formation
and the direct binding to essential cysteine (Cys) residues of
NFjB, thereby decreasing the capacity to bind to nuclear
DNA (104). The other suggests that sulforaphane may interact
with glutathione and other redox regulators such as thior-
edoxin or redox factor-1 (Ref-1), which, in turn, indirectly
interferes with NFjB-DNA binding. Sulforaphane has been
identified as an inhibitor of the thioredoxin/thioredoxin re-
ductase (TrxR) enzymatic activity in vitro (103). Findings also
suggest that the inhibition of 12-O-Tetradecanoylphorbol-13-
acetate (TPA)-induced matrix metalloproteinase-9 (MMP-9)
expression and cell invasion by sulforaphane is mediated by
the suppression of the NFjB pathway in human breast MCF-7
cancer cells (162). Furthermore, the selective inhibition
of NFjB by sulforaphane has been demonstrated in recep-
tor activator of nuclear factor kappa-B ligand (RANKL)-
induced osteoclastogenesis through the interaction with the
thiol groups of NFjB (145). Coactivators of NFjB may also
be affected by sulforaphane, including CCAAT-enhancer-
binding proteins, cAMP response element-binding protein,
and AP-1 (299). Woo and Kwon demonstrated the capacity
of sulforaphane to inhibit such coactivators, and, ultimately,
its indirect ability to downregulate the expression of pro-
inflammatory COX-2. Despite the evidence, the inactivation
of the NFjB pathway by sulforaphane requires further eluci-
dation to determine its impact as an important molecular
chemopreventative mechanism.

The regulation of endogenous receptor expression in se-
lected cells may also be an important chemopreventative
mechanism of sulforaphane. For example, sulforaphane has
been shown to inhibit the expression of estrogen receptor
alpha (ERa) in the human MCF-7 breast cancer cell line due
to an inhibition of ERa mRNA transcription as well as due to
increased proteosome-mediated degradation (225). These
data suggest that sulforaphane has the potential to inhibit
cancer cell proliferation caused by aberrant hormone ER
receptor expression in MCF-7 cells. In addition, sulforaphane
significantly increased the reactivation of ERa expression

in ER-negative breast cancer cells, and was consistently
correlated with ERa promoter hypomethylation and hyper-
acetylation (185). Treatment of Caco-2 cells with sulfor-
aphane for 48 h also led to the downregulation of serotonin
receptor 5-HT to undetectable levels as compared with the
control (182).

The ability of sulforaphane to sensitize drug-resistant
cancer cells to tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL)-induced apoptosis has been dem-
onstrated in multiple studies, with reports demonstrating
sulforaphane-enhanced TRAIL-induced apoptosis in human
osteosarcoma cells (Saos2 and MG63) and hepatoma cells
(143, 182). The induction of cell death in various tumor cell
lines by sulforaphane was coupled with increased p53, acti-
vated caspase-3 proteins, and decreased hypoxia-inducible
factor-1a activation under hypoxic conditions (which medi-
ates resistance to TRAIL) (123). It was also shown that sul-
forphane may mediate sensitization to TRAIL-induced
apoptosis through the upregulation of death receptor 5 (DR5)
mRNA and protein expression (182).

Recently, the ability of sulforaphane to modulate toll-like
receptor (TLR) activation and signaling has been implicated
as an additional chemopreventive property. TLRs recognize
specific patterns derived from invading microorganisms and
pathogens, or damaged cells and tissues to elicit the innate
and/or adaptive immune response (153). Zhu et al. observed
that sulforaphane caused inhibition of TLR3, with the ability
to modulate NFjB signaling and downstream gene expres-
sion, including the downregulation of IL-8 and TNF-a
(320). Sulforaphane has also been reported to form adducts
with cysteine residues in the extracellular domain of TLR4,
which results in the inhibition of TLR4 dimerization in a
thiol-dependent manner (307). In addition, sulforaphane in-
terfered with the binding of lipopolysaccharide to myeloid
differentiation 2 (MD2) by its ability to preferentially bind to
the cysteine 133 residue in the hydrophobic pocket of MD2
(154). Although this inhibition is important for the attenua-
tion of the inflammatory response (an important factor in the
development of cancer), modulation of downstream mecha-
nisms to TLR signaling may also limit the progression of
cancer. Specifically, sulforaphane inhibited the expression of
intercellular adhesion molecule-1 and vascular cell adhesion
molecule-1 through TLR4-dependent pathway in cultured
endothelial cells (246). Blocking the expression of adhesion
molecules is important in limiting cancer cell invasion and
metastasis (147, 178).

Targeting Cancer Stem Cells with Sulforaphane

Most recently, tumor heterogeneity has been considered to
arise through the aberrant differentiation of cancer cells,
as well as a result of continuing mutagenesis (230). The ex-
istence of cancer cells with stem cell-like properties in a
number of cancer types has recently been identified (23, 34,
63, 177, 209, 256). It is proposed that the growth of a tumor is
driven by a small population of cancer cells, which have the
ability to undergo self-renewal, and may be responsible for
tumor relapse, metastasis, and resistance (155, 230, 317).

A number of studies have suggested that sulforaphane
possesses the capacity to target cancer stem cells through
direct and indirect mechanisms, alone or in combination with
other anticancer compounds (168). As previously described,
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sulforaphane is able to attenuate NFjB activity and nuclear
translocation of the NFjB subunit, resulting in decreased
expression of NFjB-regulated genes (125, 302). Kallifatidis
et al. demonstrated the ability of sulforaphane to abrogate the
resistance of pancreatic tumor-initiating cells to TRAIL by
interfering with TRAIL-activated NFjB signaling (133).
Specifically, sulforaphane reduced the DNA binding capacity
of transactivation-competent NFjB dimers that were found
in a tumor initiating cell-enriched cell population. Thus,
sulforaphane was shown to impair the expression of NFjB
target genes with antiapoptotic effects.

In addition, the sonic hedgehog (SHH) signaling pathway
is linked to NFjB signaling, with reports of an over-
expression of SHH activated by NFjB in pancreatic cancer
(203). After sulforaphane treatment, inhibition of SHH sig-
naling has been demonstrated, and may contribute to the
regulation of the self-renewal capacity of human pancreatic
cancer stem cells (167, 233). In an in vitro model, sulfor-
aphane was shown to inhibit the SHH signaling pathway, and
reduced the expression of Smo, Gli1, and Gli2 (233). Sul-
foraphane was also shown to inhibit the nuclear translocation
and transcriptional activity of Gli1 and Gli2 in a dose-
dependent manner. After treatment for 1 week, the formation
of human pancreatic cancer stem cell-derived spheres was
significantly inhibited, suggesting the clonogenic depletion
of the cancer stem cells. Similarly, sulforaphane treatment
resulted in a significant reduction in the tumor growth of
orthotopically impanted primary pancreatic cancer stem cells
isolated from human pancreatic tumors into the pancreas of
mice in vivo (167). Through the modulation of SHH signal-
ing, decreased expression of downstream target genes (i.e.,
Nanog, Oct-4, VEGF, and ZEB-1) was also demonstrated.

The epithelial-mesenchymal transition (EMT), which is of
critical importance in tumorgenesis and metastasis (118), has
also been shown to be modulated after sulforaphane treat-
ment with the downregulation of EMT markers, including
ZEB-1, Twist-1, and vimentin (267). Consistent with this
finding, sulforaphane was shown to inhibit the EMT pro-
cess via COX2/MMP2,9/ZEB1, Snail, and miR-200c/ZEB1
pathways, and possessed the ability to suppress metastasis in
human bladder cancer cells (249). Several studies have also
shown that sulforaphane may inhibit the pro-survival PI3K/
Akt pathway, which has been implicated in cellular survival
and growth, and resistance (33, 83, 253). Sulforaphane alone
and in combination with quercetin suppressed the growth of
pancreatic cancer stem cells derived from pancreatic cancer
cell lines in vitro, through the inhibition of the PI3K/Akt and
MAPK/ERK pathways (237).

b-catenin, an important protein subunit of the cadherin
protein complex and that functions as an intracellular signal
transducer in the Wnt signaling pathway, has been shown to
be important in the self-renewal of cancer stem cells and in
the EMT process. In the human cervical carcinoma (HeLa)
and hepatocarcinoma (HepG2) cell lines, sulforaphane
has displayed a capacity to induce the downregulation of b-
catenin (215). Li et al. evaluated the effect of sulforaphane on
breast cancer stem cells with profound implications (169).
Sulforaphane (1–5 lM) decreased aldehyde dehydrogenase
(ADH)-positive cell population by 65%–80%, and reduced
the size and number of primary mammospheres by 8- to 125-
fold and 45%–75%, respectively, in vitro. A daily injec-
tion with 50 mg/kg sulforaphane for 2 weeks in nonobese

diabetic/severe combined immunodeficient xenograft mice
reduced the ADH-positive cell population by > 50%. Sul-
forphane successfully eliminated breast cancer stem cells
in vivo, thereby limiting tumor growth after implantation of
primary tumor cells into secondary mice. Through Western
blotting analysis and b-catenin reporter assay results, sul-
foraphane was shown to promote b-catenin phosphorylation
and its subsequent degradation. It was thus proposed that the
inhibition of breast cancer stem cells was caused, at least
in part, by the downregulation of the Wnt/b-catenin self-
renewal pathway.

Due to the finding that sulforaphane may possess thera-
peutic potential against cancer stem cells, its use in combi-
nation with clinically relevant drugs that limit tumor growth
through its toxicity to differentiated stem cells may overcome
limitations observed in current cancer management strategies,
including resistance and reoccurrence (168). Kallifatidis et al.
also demonstrated that sulforaphane enhanced the toxicity of
various cytotoxic compounds, including cisplatin, gemcita-
bine, doxorubicin, and 5-flurouracil, toward pancreatic and
prostate cancer stem cells (132). Sulforaphane increased the
chemotherapeutic effects on self-renewal and ALDH activity,
while limiting toxicity in normal cells. Significantly, the
combination therapy abrogated tumor-initiating potential
in vivo, with no adverse effects reported. Another study sug-
gested that sulforaphane had the ability to potentiate the drug
efficacy of imatinib by limiting leukemia cancer stem cells
through the downregulation of b-catenin (171).

Epigenetic Modulation by Sulforaphane
to Exert Anticancer Effects

The modulation of the epigenome is critical in the devel-
opment and progression of cancer, contributing to the ma-
lignant transformation of cells through the ability to regulate
gene expression without modifying the underlying DNA se-
quence (196). Dysregulated epigenetic processes, including
aberrant DNA methylation, histone modifications, and post-
transcriptional regulation of gene expression by noncoding
microRNA, are implicated in multistage carcinogenesis, and
may be regarded as promising targets for cancer prevention
and management strategies (18). Dietary isothiocyanates,
including sulforaphane and their subsequent metabolites,
have displayed a capacity to regulate gene expression
through epigenetic mechanisms, with further studies required
in order to completely elucidate their impact in cancer che-
moprevention (Fig. 6).

In general, the addition of acetyl groups to histones by
histone acetyltransferase (HAT) promote gene expression
through the ability to create an ‘‘open’’ chromatin confor-
mation, allowing the transcription machinery to access DNA
(304). Conversely, removal of acetyl groups by (histone
deacetylase enzymes) HDACs results in a ‘‘closed’’ confor-
mation, repressing transcription and inhibiting gene expres-
sion. An increase in HDAC activity and expression has been
demonstrated in a number of cancer types, and may result in a
repression of gene transcription that results in the deregula-
tion of differentiation, cell cycle, and apoptotic mechanisms
(68). In addition, important tumor suppressor genes, includ-
ing p21, are observed to be a target for HDAC-mediated
transcriptional silencing. HDAC inhibition has also been
reported to disrupt the cell cycle in the G2 phase, allowing
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cells to prematurely enter the M phase, as well as to directly
interfere with the mitotic spindle checkpoint (235).

HDAC inhibition was first reported by Myzak et al., who
observed that sulforaphane increased TOPflash reporter ac-
tivity without altering protein levels of b-catenin or HDAC1,
indicating that the activity of HDAC itself was altered (200).
Previous results had shown that TOPflash reporter activity
may be used as an indirect measure of HDAC activity, with
an increase in reporter activity corresponding to a decrease in
HDAC activity in cells (22). In cytoplasmic and nuclear ex-
tracts from human embryonic kidney 293 (HEK293) cells
treated with sulforaphane, HDAC activity was attenuated
compared with untreated cells, global histone acetylation was
increased, and activation of TOPflash was observed after its
association with acetylated histones H3 and H4 (200). In
addition, results from this study displayed the importance of
sulforaphane metabolites (sulforaphane-N-acetylcysteine,

SFN-NAC, and sulforaphane-cysteine, SFN-Cys) to produce
a concentration-dependent inhibition of HDAC activity. It is
proposed that SFN-Cys is the ideal dietary HDAC inhibitor,
due to its formation during sulforaphane metabolism, and its
regeneration from SFN-NAC (56, 57). Sulforaphane treat-
ment also markedly increased p21Cip1/Waf1 protein expression
due to an increase in acetylated histone H4 bound to the
promoter region of p21. Similar results were observed in
three prostate epithelial cell lines (BPH-1, LNCap, and PC3)
with HDAC inhibition significant at a concentration of 15 lM
sulforaphane (199). Interestingly, 15 lM sulforaphane also
increased acetylated histone H4 association with the pro-
apoptotic bax promoter and regulated bax mRNA expression,
indicating that sulforaphane may directly mediate bax in-
duction through chromatin remodeling. After a single oral
gavage dose of sulforaphane in Apcmin mice, significant in-
hibition of HDAC activity in the mouse colonic mucosa was

FIG. 6. Impact of sulforaphane
on DNA methylation and histone-
modifyingenzymesontheregulation
of genes commonly dysregulated
during carcinogenesis. Inhibition/
modulation of HDAC and DNMT
activity by sulforaphane may lead
to the reactivation of epigenetically
silenced genes in order to enhance
chemoprevention. Further studies
are required in order to completely
elucidate the significance of sul-
foraphane in the regulation of epi-
genetic changes, including its
ability to modulate microRNA ex-
pression (not illustrated).
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observed in vivo (198). HDAC activity was decreased by
50% with SFN-NAC and by *65% with sulforaphane in
comparison to untreated mice. Both sulforaphane and its
metabolite produced an increase in acetylated histone H3 and
histone H4 in the colon, with a *two-fold increase at both
the 6 and 24 h time points before returning to baseline levels.
In Apcmin mice, sulforaphane suppressed tumor multiplicity,
with the average tumor yield lowered by *50% in all regions
of the intestine. Similar to the results from the in vitro studies,
sulforaphane induced global histone acetylation, with a
marked increase in acetylated histone H2 associated with the
promoter regions of both the p21 and bax genes. Moreover, in
human subjects, HDAC acitivity was significantly inhibited
in the peripheral blood mononuclear cells of all three sub-
jects, with detection at 3 h post consumption of 68g broccoli
sprouts (201). In two of the subjects, HDAC inhibition was
observed at the 6 h time point, with levels returning to
baseline by 24–48 h post consumption. In the third subject,
HDAC activity at baseline was lower than expected, and,
therefore, the highest HDAC activity was observed at the 48 h
time point. In continuation, healthy subjects consumed either
the 68 g of broccoli sprouts or six supplements (*3 g of
freeze-dried broccoli sprouts) to assess isothiocyanate me-
tabolite levels and HDAC activity (44). In addition to con-
firming that active myrosine is required for sulforaphane
metabolism, inhibition of HDAC activity was measured and
statistically significant at 12 and 48 h post consumption of
either the sprouts or the supplementation, when compared
with baseline HDAC activity. Further human studies are re-
quired in order to determine the significance of HDAC in-
hibition in disease, and the ability to provide therapeutic
benefit via decreased HDAC activity.

Studies involved in the evaluation of sulforaphane as an
HDAC inhibitor, and those aimed at providing insights into
the mechanisms associated with sulforaphane-regulated in-
hibition of HDAC activity, have focused on the roles of
HDAC3 and HDAC6 as important targets (43, 89, 223, 224).
After the incubation of HCT116 human colon cancer cells
with 15 lM sulforaphane, a significant reduction in HDAC1,
HDAC2, HDAC3, and HDAC8 was observed compared with
vehicle-treated cells at 36 h post administration (223).
Among the class I HDACs, HDAC3 protein expression was
the most susceptible to sulforaphane-induced loss, with cells
treated with 35 lM reporting a reduction of HDAC3 ex-
pression by more than 95%. HDAC4 and HDAC6 were also
shown to be reduced after 24 h. Overexpression of either
HDAC3 or HDAC6 was shown to inhibit sulforaphane-
induced histone H4-K12 acetylation (important in the regu-
lation of gene expression). The silencing mediator for
retinoid and thyroid hormone receptors (SMRT) was phos-
phorylated in the nucleus within 6 h of sulforaphane treat-
ment, and was, subsequently, implicated in HDAC3 turnover
mechanisms. Sulforaphane-induced association of HDAC3/
SMRT complexes coincided with increased binding of
HDAC3 to 14–3-3 and peptidyl-prolyl cis/trans isomerise 1
(PIN1), ultimately directing HDAC3 for degradation. Further
investigations led to the finding that sulforaphane metabo-
lites may interact with the allosteric site between HDAC3
and SMRT, providing new insights into the dissociation of
HDAC3/SMRT complex in colon cancer cells (224). Sul-
foraphane and its metabolites were also shown to alter the
acetylation status of key DNA repair protein CtIP, with a

significant increase at 6 h post treatment. The induction of
double-strand breaks (measured by cH2AX immunofluores-
cence) increased after sulforaphane treatment of cancer cells,
but failed to effect noncancer controls. Collectively, this
evidence suggests that sulforaphane may also compromise
DNA repair mechanisms in cancer cells with selectivity.

In prostate cancer cells, sulforaphane treatment increased
acetylation of two HDAC6 target proteins: heat shock protein
90 (HSP90) and a-tubulin (89). Despite unchanged HDAC6
protein levels at early time points, HSP90 became hyper-
acetylated and dissociation of the androgen receptor (AR)
from HSP90 was observed. At later time points, AR protein
levels declined after sulforaphane treatment, indicating the
ability of sulforaphane to destabilize AR. Importantly, in-
cubation of recombinant HDAC6 with sulforaphane inhibited
HDAC6 deacetylase activity, with sulforaphane leading to
reduced HDAC6 protein levels at the 16 h time point in
prostate cancer cells. Clarke et al. demonstrated the ability of
sulforaphane to preferentially induce apoptosis and cell cycle
arrest in the benign prostatic hyperplasia (BPH-1) cell line
and the LNCap and PC3 prostate cancer cell lines, as well as
the induction of phase II enzymes (43). At 24 h post incu-
bation, HDAC inhibition was observed in all cells lines, with
LNCap cells with a significant inhibition compared with
healthy controls. By the 48 h time point, sulforaphane in-
duced sustained HDAC inhibition in all cancer cell lines.
Specifically, HDAC2 and HDAC3 protein levels were de-
creased in BPH-1 cells and HDAC3 in both LNCap and PC3
cell lines at 48 h post treatment. HDAC4 protein expression
was decreased in all cell lines at one or both time points.
HDAC6 showed the most significant and consistent decrease
in protein levels in all prostate cancer cell lines at both 24
and 48 h time points, with this decrease not observed in
healthy prostate cells (PrEC). Interestingly, overexpression
of HDAC6 protected PC3 cells from the sulforaphane-
induced decrease in cell viability, indicating the likely im-
portance of HDAC6 in sulforaphane-mediated chemopre-
vention in prostate cancer.

The modulation of patterns in DNA methylation are ob-
served during cancer development and progression, and is
characterized by global- and site-specific DNA hypomethy-
lation as well as gene-specific promoter hypermethylation
(17, 220). While DNA hypomethylation may contribute to
genome instability and increased expression of oncogenes,
DNA hypermethylation may lead to the inhibition of tumor
suppressor genes, transcription factors, and genes involved in
cell cycle regulation and apoptosis. DNA methylation pat-
terns are mediated by DNA methyltransferases (DNMTs),
and an overexpression of DNMTs is observed in a number
of cancers, including leukemic, gastric, lung, and prostate
camcer (69, 172, 193, 195).

Meeran et al. first observed the significant inhibition of
DNMT1 and DNMT3a expression by sulforaphane in a dose-
dependent manner in human breast cancer cells (MCF-7 and
MDA-MB-231 cell lines), and to a lesser extent in normal
MCF10A cells (186). Specifically, 10 lM sulforaphane in 6
days inhibited DNMT1 and DNMT3a expression by 48% and
78%, respectively. Ultimately, this study aimed at assessing
the telomerase activity and human telomerase reverse tran-
scriptase (hTERT; important catalytic component of telomer-
ase) in human breast cancer, and the effect of sulforaphane
on hTERT expression. Sulforaphane treatment led to the
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significant downregulation of hTERT in breast cancer cells,
with a negligible inhibitory activity in the normal control,
indicating specificity. Investigation into the molecular mech-
anisms of sulforaphane-induced inhibition of hTERT expres-
sion found significant demethylation of CpGs in the CTCF
binding region on the hTERT regulatory region in both breast
cancer cell lines after treatment with sulforaphane. It is known
that the transcription repressor CTCF binds to exon 1 of the
hTERT gene and, in turn, reduces the expression of hTERT.
Treatment with sulforaphane was shown to increase CTCF
binding to the hTERT exon 1 binding site to subsequently
inhibit hTERT expression. It is suggested that the down-
regulation of hTERT expression facilitated the induction of
cellular apoptosis in the cancer cell lines.

Similar results in prostate cancer cell lines established the
ability of sulforaphane to significantly decrease DNMT1 and
DNMT3a mRNA expression (113). Decreased global meth-
ylation in LNCap cells after treatment with sulforaphane for
24 h was also observed. In prostate cancer, cyclin D2 si-
lencing has been observed to be associated with cancer pro-
gression, with restoration of cyclin D2 inducing cell death in
prostate LNCap cancer cells (149). Investigation of the pro-
moter methylation status of cyclin D2 in prostate cancer cells
reported a significant decrease in methylated CpG sites in the
region after sulforaphane incubation. In particular, sulfor-
aphane significantly decreased methylation at the binding site
of the c-Myc transcription factor (observed to be hyper-
methylated in untreated tumor cells). Due to the demethy-
lation of the cyclin D2 promoter, sulforaphane increased
cyclin D2 mRNA expression in a dose-dependent manner.
Conversely, treatment of colon cancer cells with sulfor-
aphane in varying concentrations failed to impact abnormal
methylation patterns in critical genes involved in colon
carcinogenesis in vitro (16). However, Barrera et al. suggest
that their finding may be due to heterogeneity in cancer,
with some cell lines and/or tissue affected by sulforaphane-
induced gene-specific methylation, while others are more
resistant.

Recently, assessment on the DNA methylation profile in
normal prostate epithelial cells (PrEC), androgen-dependent
(LNCap) and androgen-independent (PC3) prostate cancer
cells was shown to be altered depending on the cell line (298).
Untreated LNCap and PC3 cells had significantly higher
baseline expression of DNMT1, DNMT3a, and DNMT3b
compared with untreated PrEC cells. While sulforaphane
treatment of PrEC and LNCap cells decreased DNMT1 and
DNMT3b gene expression, the expression of all three
DNMTs was downregulated in the PC3 cell line. Hierarchical
clustering analysis showed that 64% of the 54,876 probes and
49% of the 78,272 probes in LNCap cells displayed hy-
permethylation relative to PrEC cells (298). This represented
10,315 and 8013 genes differentially methylated in LNCap
and PC3 genes, respectively, compared with the normal
control. Functional annotation analyses indicated that genes
with altered methylation profiles in the prostate cancer cell
lines were genes involved in cancer progression, and asso-
ciated with cell migration, cell adhesion, cell–cell signalling,
as well as transcription regulation (298). After sulforaphane
treatment, 2472 (in PrEC cells), 3508 (in LNCap cells) and
6778 (in PC3 cells) differentially methylated genes were
detected. Interestingly, sulforaphane altered methylation in
distinct sets of genes in each of the cell lines (298). In PrEC

cells, genes involved in transcription, apoptosis, and chro-
matin organization/modification were altered with sulfor-
aphane treatment. Functional annotation analysis in LNCap
cells found that two general categories of genes were af-
fected: (1) genes associated with cell movement, including
cell migration, adhesion, and localization, and (2) genes as-
sociated with the immune response, including inflammation,
leukocyte activation, and immune regulation. Sulforaphane
treatment in PC3 cells altered genes shared both PrEC and
LNCap cell lines, including those involved in transcription,
apoptosis, cell migration, and immune response (298). Per-
haps the most interesting finding was the reversal of the
methylation profiles of 1509 (14.6%) genes (out of 10,315
genes) after sulforaphane treatment in LNCap cells. Many of
these genes are known to be dysregulated or are highly in-
volved in cancer progression, including transforming growth
factor-b1 receptor type I (TGFBR1), C-C chemokine recep-
tor type 4 (CCR4), C-X-C chemokine receptor receptor
type 4 (CXCR4), and cysteine-rich angiogenic inducer 61
(CYR61). Overall, this study demonstrated the capacity of
sulforaphane to modulate DNA methylation and regulate
gene expression in order to act as a chemopreventive com-
pound in prostate cancer in vitro (298). Further studies are
required in order to enhance understanding of the epigenetic
modulatory mechanisms of sulforaphane.

As previously described, sulforaphane was first identified
as a potent inducer of phase II detoxifying enzymes via the
disruption of Nrf2-Keap1 interactions, and an increased
translocation and therefore activation of Nrf2 (117, 148,
206). Zhang et al. aimed at investigating the potential of
sulforaphane to reactive the expression of Nrf2 through
epigenetic regulation (310). In prostate cancer TRAMP
C1cells, Nrf2 transcription was significantly inhibited when
the first five CpG regions of the Nrf2 gene promoter were
hypermethylated (309). Treatment with sulforaphane (1.0 and
2.5 lM) reduced the level of methylation to 56.0% and 38.7%,
respectively. Demethylation of the promoter region was
shown to result in the transcription activation of Nrf2, with
increased mRNA and protein expression measured. This study
also demonstrated decreased protein levels of DNMT1 and
DNMT3a after sulforaphane treatment in a dose-dependent
manner in TRAMP C1 cells. In addition, sulforaphane de-
creased protein levels of HDAC1, HDAC4, HDAC5, and
HDAC7, indicating HDAC inhibitory activity. The global
level of acetylated histone 3 was also highly induced by sul-
foraphane treatment. Comparable to this study, sulforaphane
significantly inhibited 12-O-tetradecanoylphorbol-13-acetate
(TPA)-induced mouse skin epidermal ( JB6) transformation
via its ability to enhance nuclear translocation of Nrf2 and
increase expression of Nrf2-target antioxidant genes, includ-
ing HO-1, NQO1, and UGT1A1 (273). Bisulfite sequencing
determined that 15 CpG regions in the Nrf2 gene promoter
were hypermethylated in the untreated cells. The ratio of
methylated CpG regions was decreased to 68.7% by 2.5 lM
sulforaphane. Furthermore, sulforaphane decreased the pro-
tein expression of DNMT1, DNMT3a, and DNMT3b in a
concentration-dependent manner in TPA-induced JB6 cells
post treatment (5 day period). In addition, treatment with either
2.5 or 5.0 lM sulforaphane significantly inhibited relative
HDAC activity by 50%, with reduced protein expression
levels of HDAC1, HDAC2, HDAC3, and HDAC4 observed.
These findings suggest that sulforaphane has the ability to
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restore expression and activation of Nrf2 via a number of
epigenetic regulatory mechanisms.

MicroRNAs (miRNAs) are short noncoding RNAs, 18 to
25 nucleotides in length, that regulate gene expression post-
translation through binding to 3¢ untranslated regions of
target mRNA (261). Bioinformatic studies predict that
miRNAs regulate almost 30% of all mammalian genes, and
are dysregulated in the majority of human cancers (29). The
assessment of sulforaphane in the regulation of miRNA
expression is limited in the literature, and further inves-
tigation is required in order to complete understanding.
The treatment of nontransformed human colonic epithe-
lial cells with sulforaphane resulted in significant changes
in miRNA expression profiles (15 upregulated and three
downregulated) as analyzed by quantitative real-time
reverse-transcription polymerase chain reaction (260). Glo-
bal downregulation of miRNA expression was demonstrated
from colorectal tumor tissue. Focusing on miRNA expres-
sion changes in both cell lines, the upregulation of miR-23b
and miR-27b was significant due to a previous observation
of decreased levels in clinical tumor tissue (241). MiR-23b
has been shown to be critical in tumor suppression and
regulation of EMT (30, 311). Conversely, downregulation of
miR-155 (a well-known oncogenic miRNA) by sulforaphane
was also identified as important (280). In addition, the ex-
pression of miR-200c, which has been identified in the
regulation of EMT in human bladder cancer (3), was sig-
nificantly induced by sulforaphane in the human bladder T24
cancer cell line (248).

In basal-like ductal carcinoma in situ (DCIS) lesions, 68
miRNAs were significantly dysregulated in tissue compared
with controls via microarray analysis (166). The down-
regulation of miRNA-140 expression was indicated to be the
most reproducible miRNA signature in the lesions that was
implicated in tumor suppression. In a subsequent analysis of
22 DCIS samples, Li et al. observed the miR-140 loss in all
tumors irrespective of histological grade and breast malig-
nancy type. Also demonstrated was the finding that the 72
miRNAs were found to be differentially expressed between
normal mammary epithelial stem cells (isolated from MCF-
10A cells) and stem-like cells isolated from the DCIS lesions
(denoted as MCF10DCIS cells). Interestingly, miR-140 was
one of the most significantly downregulated in cancer stem-
like cells, with a 13.55-fold difference compared with normal
stem cells. Treatment of DCIS tissue with sulforaphane was
shown to activate miR-140 expression and downregulation of
SOX9 and ALDH1 (important in stem cell regulation, and
targets of miR-140 in DCIS stem-like cells), resulting in a
decrease in stem-like cell frequency in vitro and a significant
inhibition of tumor growth in vivo. Further characterization
of exosomal trafficking of a stem-like population in basal-
like DCIS lesions resulted in the finding that the exosomal
miRNA expression pattern in DCIS stem-like cells possessed
an inverse trend in comparison to nontumorigenic MCF10A
stem cells (165). For example, miR-21 and miR-29 were
secreted in high levels in the DCIS stem-like cells, with
normal stem cells secreting much lower levels. In the context
of sulforaphane, treatment resulted in increased exosomal
miR-140 (with the capacity to transfer into breast cancer
cells) and decreased miR-21 and miR-29. Collectively, this
evidence suggests that sulforaphane may have the capacity to
inhibit DCIS stem cell signaling in neighboring cells through

epigenetic mechanisms by increasing exosomal miR-140
secretion in the tumor microenvironment.

Sulforaphane in Human Clinical Trials

Multiple commercially developed sulforaphane supple-
ments are currently available; however, the difficulty in
manufacturing a potent and bioavailable formula has proved
to be difficult, with an intrinsic instability of the sulforaphane
molecule preventing this method of delivery (64). Manu-
facturing a sulforaphane-yielding supplement requires the
ability to retain both the glucoraphanin precursor and the
myrosinase enzyme for subsequent metabolism and trans-
formation to the bioactive isothiocyanate (111). A number of
phase I and II clinical trials on sulforaphane, however, are in
progress or have been completed to assess its safety, toler-
ance, pharmacokinetics, and therapeutic benefit in healthy
human subjects and in the context of cancer (Table 5).

Residents of Qidong are at high risk for the development of
hepatocellular carcinoma, which was in part due to long-term
exposure to aflatoxin-contaminated food, and the airborne
carcinogen, phenanthrene (67). An inverse association be-
tween the level of sulforaphane metabolites and carcinogen-
related markers, including aflatoxin-DNA adducts, was
demonstrated (139). It was also reported that sulforaphane
increased the excretion of airborne pollutants in individuals
consuming the broccoli extract beverage, with the adminis-
tration of a broccoli sprout-infused beverage containing
400 lM glucoraphanin nightly for 2 weeks causing no ad-
verse effects and being well tolerated in 200 subjects (140).
Although promising, results displayed significant variability
in the bioavailability of the active compound. Consistent
with this finding, Fahey et al. found that administration of a
sulforaphane-rich broccoli sprout extract to two distinct
populations (Chinese and Baltimoreans) resulted in varied
bioavailability between individuals in both populations,
ranging from 1% to 40% (72). In a recent intervention study,
the total sulforaphane metabolite concentration in plasma
was the highest ( > 2 lM) at 3 h in human subjects who con-
sumed fresh broccoli sprouts (40g) in the first phase of study,
compared with that measured after administration of a
commercially available broccoli supplementation in the
second phase (42).

A randomized, placebo-controlled double-blind Phase I
clinical trial involving healthy volunteers and the adminis-
tration of glucoraphanin or isothiocyanate as the sulfor-
aphane source examined parameters of safety, tolerance, and
pharmacokinetics (250). No significant toxicity was observed
with the dose concentrations administered in this study. Al-
though the plasma concentration of total bioactive sulfor-
aphane may be measured in order to provide a crude estimate
of bioavailability and therapeutically significant dosage,
accumulation within the tumor site itself may not be signif-
icant. For example, a pilot study detected an accumulation
of sulforaphane in human breast tissue after consumption of
broccoli extract containing 200 lM sulforaphane *1 h be-
fore elective reduction mammoplasty (51). Mean epithelial-/
stromal-enriched breast tissue dithiocarbamate concentration
was 1.45 – 1.12 pmol/mg in the right breast, and 2.00 –
1.95 pmol/mg in the left breast. In comparison, the plasma
concentration post sulforaphane administration was mea-
sured at 0.92 – 0.72 lM.
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Future Directions and Combinatorial Cancer
Management Strategies, Including Sulforaphane

Although the chemopreventive properties of sulforaphane
have been widely investigated and extensively reported, the
difficulty in the administration of a dose that may confer
therapeutic significance limits its potential for clinical use. In
addition, the estimated consumption required to observe
benefits in limiting cancer development and progression has
been shown to be unrealistic in the average diet. Limitations
in the bioavailability of the compound after administration
and/or consumption may also become problematic in human
trials as genetic variance and patient compliance become
factors. The use of a combination of anticancer compounds
that affect different functional pathways may possess the
capacity to generate additive or synergistic activity. In the-
ory, this is an attractive approach for the prevention and/or
treatment of complex disease, including cancer.

Current chemotherapeutic agents fail to adequately treat
malignancy with multivariable dose-restricting factors, in-
cluding systemic toxicity and multi-drug resistance limiting
therapeutic benefits and long-term remission rates. Interest-
ingly, a number of studies have aimed at using sulforaphane
in combination with a range of cytotoxic compounds in order
to enhance drug efficacy, and, therefore, limit adverse effects
observed in chronic administration and high concentration
regimens. To demonstrate, sulforaphane was shown to en-
hance the antitumor activity of oxaliplatin and synergistically
activate apoptotic pathways in the colorectal cancer cell line,
Caco-2 (135). Fimognari et al. investigated the effects of
sulforaphane in combination with doxorubicin on cell via-
bility and apoptosis in fibroblasts characterized by a different
p53 status (wild-type, knockout, and with a mutation at codon
220) (79, 80). This mutation has been implicated in reduced
efficacy and drug resistance in osteosarcomas and breast
cancer treated with doxorubicin (28, 87). Sulforaphane was
shown to restore chemosensitivity and to induce apoptosis in
doxorubicin-resistant p53 mutated and p53 knockout cells,
irrespective of p53 status. The induction of apoptosis was
caspase-3 dependent and caspase-8 independent. Interest-
ingly, proliferation of salivary gland adenoid cystic carci-
noma high metastatic cell line (ACC-M) and low metastasis
cell line (ACC-2) observed to be relatively resistant to a
classic chemotherapeutic agent, 5-fluroracil, was inhibited
with a synergistic combination using sulforaphane (294). A
decreased expression of NFjB p65 protein was also dem-
onstrated, with results more significant in ACC-M cells. Al-
though effective in acute promyelocyctic leukemia (APL),
arsenic trioxide fails to adequately treat non-APL blood
cancers (65). Significantly, sulforaphane enhanced arsenic
trioxide-mediated cytotoxicity and apoptosis in a panel of
leukemic cell lines, with a dramatic increase in the number of
ROS compared with treatment with either agent alone. Con-
tinuing with this combination, Doudican et al. co-treatment of
multiple myeloma cells resulted in elevated expression of the
molecular chaperone HSP90, along with increased protein
kinase RNA-like endoplasmic reticulum kinase (PERK), and
important makers of unfolded protein response (UPR) acti-
vation (66). Sulforaphane in combination with arsenic triox-
ide effectively disrupted protein homeostasis through the
production of ROS and induction of apoptotic processes.
Synergistic effects in pancreatic cancer stem cells were

demonstrated when sulforaphane was administered in com-
bination with sorafenib (multikinase inhibitor in clinical
trials) (227). It was proposed that these effects were mediated
by the reduction of sorafenib-induced NFjB binding by sul-
foraphane. Although treatment with sulforaphane at vary-
ing concentrations resulted in a dose- and time-dependent
decrease in cell viability of MCF-7 cells, a combination
of sulforaphane and gemcitabine demonstrated the capac-
ity of sulforaphane to enhance the growth inhibitory effects
of gemcitabine at sub-lethal doses (116). Administration of
sub-lethal doses of sulforaphane (5–10 lM) when used in
various combinations with lower doses of gemcitabine (5–
10 mM) resulted in a decrease in cell viability that was more
pronounced than either of the compounds alone and the
combination index (CI) was found to be < 1, indicting syn-
ergistic effects.

In addition, interactions with other known chemopre-
ventive and antioxidant dietary components have also ob-
served synergistic activity after administration in a number
of models and systems. For example, the administration
of sulforaphane and resveratrol (polyphenolic compound)
inhibited cell proliferation and migration, reduced cell via-
bility, induced lactate dehydrogenase release, decreased
pro-survival Akt phosphorylation, and increased caspase-3
activation in human U251 glioma cells (126). A combination
of sulforaphane and the flavonoid apigenin was shown to
modulate gene expression of phase II detoxifying enzymes
(including GST and UGT) in the human epithelial colorectal
adenocarcinoma cell line, Caco-2 (275). This combination
resulted in a synergistic induction of UGT1A1 mRNA by
approximately 12-fold. The indole, 3,3¢-diindolylmethane
(DIM) also derived from cruciferous vegetables has been
shown to have cytostatic mechanisms in human colon cancer
cell lines (213). In this same study, sulforaphane (10 lM) in
combination with DIM (10 lM) resulted in strong G2/M cell
cycle arrest, which was not observed with either com-
pound alone. Nair et al. also demonstrated a synergistic ef-
fect after administration of sulforaphane and the catechin
epigallocatechin-3-gallate in HT-29 AP-1 human colon car-
cinoma cells (202). This combination dramatically enhanced
transcriptional activation of the Ap-1 reporter, with analysis
finding that the CI was < 1. Cell viability assays showed that
low-dose combinations decreased cell viability to 70%, and
to 40% with high-dose combinations at 48 h post treatment.
Pretreatment with 100 ng/ml of TSA (a potent HDAC in-
hibitor) potentiated (by 88-fold) the synergism observed with
the low-dose combination on the AP-1 reporter transcrip-
tional activation. Pancreatic stem cells and their self-renewal
capacity may also be modulated with a combination of sul-
foraphane and the dietary polyphenol, quercetin (267, 319).
The synergistic effect of this combination has also been ob-
served in melanoma B16F10 cells, with the suppression of
proliferation and migration due to an implicated decrease in
MMP-9 expression (221).

Recent data published by Grandhi et al. reported a novel
combinatorial nano-based delivery of chemopreventative
agents in the suppression of pancreatic carcinogenesis induced
by N-nitroso-bis(2-oxopropyl)amine in hamsters (95). A
combination of aspirin and curcumin in a solid lipid nano-
particle formulation, and sulforaphane in solution was ad-
ministered to hamsters by daily oral gavage, which resulted in
a decrease in the effective inhibitory dosages by a factor of 10
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as compared with these compounds in free forms. This com-
bination of chemopreventive compounds reduced tumor in-
cidence, tumor multiplicity, and severity of histologic lesions.

Conclusion

The importance of a diet that is rich in cruciferous vege-
table and the role of isothiocyanates, including sulforaphane,
in promoting good health has been extensively studied and
consistently demonstrated in a wide variety of models
and systems. Understanding the phylogeny of glucosinolate-
producing plants, in conjunction with the molecular genetics
of the Brassicaceae family may enable us to further enhance
bioavailability of the bioactive compounds through the de-
velopment of cultivars with significantly higher amounts of
glucoraphanin. Bioavailability and therefore pharmacoki-
netics of sulforaphane are also dependent on a range of other
factors, including active myrosinase content, preparation, and
human genetic patterns. Although commercially available as
a supplement, sulforaphane has yet to be FDA approved for
the treatment of human disease, including cancer. However,
the chemopreventive properties of sulforaphane, and its ca-
pacity to be selectively toxic to malignant cells and impart
these effects through a number of mechanisms, provide ra-
tionale to completely elucidate and evaluate its potential as an
anti-cancer compound alone, and in combination with clini-
cally relevant therapeutic and management strategies.
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Abbreviations Used

ADH¼ aldehyde dehydrogenase
AKR¼ aldo-keto reductase
AP-1¼ activator protein-1
APG¼ angiosperm phylogeny group
APL¼ acute promyelocytic leukemia

AR¼ androgen receptor
ARE¼ antioxidant response element

BPH-1¼ benign prostatic hyperplasia
BQD¼ p-benzoquinone dioxime

BSE¼ broccoli sprout extract
CCR¼ chemokine receptor

CEES¼ 2—(chloroethyl) ethyl sulphide
CI¼ combination index

CV¼ cruciferous vegetables
CYP¼ cytochrome p450
Cys¼ cysteine

DCIS¼ ductal carcinoma in situ
DNMT¼DNA methyltransferase

EMT¼ epithelial-mesenchymal transition
EpRE¼ electrophile response element

EROD¼ ethoxyresofurin-O-deethylase
ERa¼ estrogen receptor alpha
GST¼ glutathione S-transferase
HAT¼ histone acetyltransferase

HDAC¼ histone deacetylase
HEK¼ human embryonic kidney
HO-1¼ heme oxygenase-1

HR¼ hazard ratio
HSP¼ heat shock protein

hTERT¼ human telomerase reverse transcriptase
IAP¼ inhibitors of apoptosis

Keap1¼Kelch-like ECH-associated protein 1
LSF¼ sulforaphane

MAM¼methylthioalkylmalate
MAPK¼mitogen-activated protein kinases

MMP¼matrix metalloproteinase
Nrf2¼ nuclear factor erythroid 2-related factor 2

OR¼ odds ratio
PARP¼ poly(ADP-ribose) polymerase
PERK¼ protein kinase RNA-like endoplasmic

reticulum kinase
PIN¼ peptidyl-prolyl cis/trans isomerise
ppm¼ parts per million

qRT-PCR¼ quantitative real-time reverse-transcription
polymerase chain reaction

QTL¼ quantitative trait loci
RANK-L¼ receptor activator of nuclear factor

kappa-B ligand
ROS¼ reactive oxygen species

RR¼ relative risk
SFN-Cys¼ sulforaphane cysteine

SFN-NAC¼ sulforaphane N-acetyl cysteine
SHH¼ sonic hedgehog

SILAC¼ stable isotope labelling by amino acids
in cell culture

sqRT-PCR¼ semi-quantitative real-time reverse-
transcription polymerase chain reaction

TLR¼ toll-like receptor
TPA¼ 12-O-tetradecanoylphorbol-13-acetate

TRAIL¼ tumor necrosis factor-related
apoptosis-inducing ligand

Trx¼ thioredoxin
TrxR¼ thioredoxin reductase
UGT¼UDP-glucuronosyltransferase
UPR¼ unfolded protein response

1424 TORTORELLA ET AL.


