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Tumor-Associated and Disease-Associated Autoantibody
Repertoires in Healthy Colostrum and Maternal and
Newborn Cord Sera

Asaf Madi,*,†,‡,1 Sharron Bransburg-Zabary,*,†,1,2 Ayala Maayan-Metzger,*,‡

Gittit Dar,† Eshel Ben-Jacob,†,x and Irun R. Cohen{

In this work, we studied autoantibody repertoires and Ig isotypes in 71mothers and their 104 healthy newborns (including twins and

triplets delivered term or premature). Newborns receive maternal IgG Abs via the placenta before birth, but developing infants

must produce their own IgM and IgA Abs. We used an Ag microarray analysis to detect binding to a selection of 295 self-Ags,

compared with 27 standard foreign Ags. The magnitude of binding to specific self-Ags was found to be not less than that to

the foreign Ags. As expected, each newborn shared with its mother a similar IgG repertoire—manifest as early as the 24th week

of gestation. IgM and IgA autoantibody repertoires in cord sera were highly correlated among the newborns and differed from

their mothers’ repertoires; the latter differed in sera and milk. The autoantibodies bound to self-Ags known to be associated with

tumors and to autoimmune diseases. Thus, autoantibody repertoires in healthy humans—the immunological homunculus—arise

congenitally, differ in maternal milk and sera, and mark the potential of the immune system to attack tumors, beneficially, or

healthy tissues, harmfully; regulation of the tissue site, the dynamics, and the response phenotype of homuncular autoimmunity

very likely affects health. The Journal of Immunology, 2015, 194: 5272–5281.

T
heimmune system is a key player in bodymaintenance and
defense, and its proper functioning is vital to the survival and
well-being of the individual. The immune system is com-

posed of complex networks of molecules and cells that act together to
orchestrate the beneficial inflammation needed to maintain and repair
the body as well as to protect it from neoplastic cells and invading
pathogens (1–6). Abs binding to body molecules—autoantibodies—
would appear to mark the self-reactivity needed for tissue healing
(7) and for tumor surveillance (8); autoantibodies also mark au-
toimmune diseases (9). Thus, it would be important to investigate
the characteristics of autoantibodies at birth in healthy humans
as a starting point for subsequent evolution of the autoreactive
repertoire.
The healthy newborn enters the environment armed with maternal

IgG Abs actively transported across with placenta; after delivery the

newborn receives mother’s secretory IgG, IgM, and IgA Abs from
her colostrum. In addition, the healthy newborn produces IgM and
IgA Abs in utero, detectable in cord blood. Previously, we studied
sera obtained from 10 pairs of mothers and their newborns reactive
to 295 defined self-Ags. In this work, we constructed a new Ag
microarray chip that included a modified selection of 295 self-Ags
along with 27 nonself Ags as a benchmark for the magnitude of Ab
binding. We included a larger dataset of newborns (104), and their
mothers (71), and we included premature births to learn whether
gestational age might influence the newborn’s Ab repertoires. We
also included twins and triplets to analyze the effects of close ge-
netic similarity. Finally, we compared maternal milk samples with
their corresponding serum samples. Inspired by the ideas of Jerne
(10–12), we adopted a correlation-based system-level informatics
approach to extract information about functional relations between
Ag reactivities; we computed the matrices of subject correlations in
addition to the reactivity matrices, as is usually done.

Materials and Methods
Serum samples

Blood samples were obtained by random availability from 71 healthy
women at the onset or immediately after labor and from 104 serum samples
of the cord blood of their newborns, in the neonatal department, Sheba
Medical Center. All samples were collected with informed consent and
approval of the Helsinki committee of the Sheba Medical Center. The
newborns’ gestational age ranged from week 24 to 41. The newborns at the
term of pregnancy (weeks 38–41; n = 31) were all normal in development
and weight for their gestational age. The cord samples included 26 twins
and 1 triplet. The blood samples were allowed to clot at room temperature.
After centrifugation, sera were collected and stored at 220˚C (13, 14).

Milk samples

Colostrum samples, along with matched serum samples, were obtained by
random availability from 22 healthy women at the onset or up to 24 h after
delivery, in the neonatal department, Sheba Medical Center. All samples
were collected with informed consent and approval of the Helsinki com-
mittee of the Sheba Medical Center. The women were all healthy, and their
newborns’ gestational age ranged from week 27 to 41. The soluble fraction
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of the milk was separated from the fat by centrifugation, collected, and
stored at 220˚C (13, 14).

Ags

A total of 322 Ags was spotted on each microarray, as described previously
(9, 14). We used some of the same Ags as in the previous studies of healthy
autoimmune repertoires (13, 14); these included proteins, synthetic pep-
tides from the sequences of key proteins, nucleotides, phospholipids, and
other self and nonself molecules. See Supplemental Table I for the full list.

Ag microarray

Ag microarrays were prepared, as described previously (9). Briefly, Ags
were spotted in replicates of 4, and the microarrays were blocked for 1 h at
37˚C with 1% BSA and incubated under a coverslip overnight at 4˚C with
a 1:10 dilution of the test serum in blocking buffer. The quantitative range
of signal intensity of binding to each Ag spot was 0.01–65,000, and this
range of detection made it possible to record reliable data with this low
dilution of test samples. The arrays were then washed and incubated for 1 h
at 37˚C with a 1:500 dilution of detection Abs. Three detection Abs were
used, as follows: a goat anti-human IgG Cy3-conjugated Ab, a goat anti-
human IgM Cy5-conjugated Ab, and a goat anti-human IgA Cy5-conjugated
Ab (all purchased from Jackson ImmunoResearch Laboratories, West Grove,
PA). Each sample was analyzed using two microarray slides: one with the
IgG and IgM fluorescence-labeled anti-isotypes, and one with the IgG and
IgA fluorescence-labeled anti-isotypes. Thus, the IgG repertoires—which
showed no significant difference between maternal and cord samples because
maternal IgG Abs cross the placenta to the fetus (15)—served as controls for
the maternal and cord IgM and IgA determinations measured simultaneously
along with the IgG on each slide. These detection Abs could not distinguish
between the particular isotype found in serum and the secretory isotype
found in milk. Image acquisition by laser and quantification were performed,
as previously described (9, 14).

Ethics statement

All procedures were performed in compliance with Tel Aviv University,
Sackler School of Medicine guidelines, and all samples were collected with
informed consent and approval of the Helsinki committee of the Sheba
Medical Center.

Data preprocessing, background filtering, and analysis

Problematic spots due to smudges or grainy texture were removed manually
upon inspection. We then subtracted the background from the foreground
for each of the test spots. Ag reactivity was defined by the mean intensity of
three replicates binding to that Ag on the microarray (the fourth replicate
had to be removed due to a technical problem with the robot); Ag intensities
with a mean value lower than zero were removed from further calculations.
Each chip was then normalized by its mean reactivity divided by the SD.
This was done to account for differences in total protein concentrations that
affect the background intensity level. Analysis of the microarray data were
done using GenePix Pro 7 Microarray Acquisition & Analysis Software.
Statistical tests of significance were done using Statistics Toolbox func-
tions. We have previously compared our microarray reactivities with a stan-
dard ELISA to heat shock protein 60 molecules and to other salient self-Ags
and found that the microarray was at least one to two orders of magnitude
more sensitive (16) (see Supplemental Table II); similar results have been
reported by others (17) (see Supplemental Fig. 1 for additional details). For
dimensional reduction we used the Principal Component Analysis (PCA)
algorithm (18) on the normalized Pearson correlation matrices, as previously
described (13). Note that subjects manifesting relatively high normalized
correlations are closely located in the three-dimensional space. To retrieve
information embedded in higher dimensions that might have been lost in the
dimension reduction process, we linked each pair of nodes by lines colored
according to their normalized correlations.

Results
Maternal serum and milk Ag reactivities

To characterize at a coarse level the isotypes of Abs in human milk
and sera, we examined the Ab binding of 18 mothers’ milk samples
and their matching serum samples to the 322 self and foreign Ags
in the microarray (see Supplemental Table I for the full list). Fig. 1
shows the averaged reactivity (foreground–background) of each
sample for each of the three isotypes; this provides an integrated
overview of total reactivity of each isotype to all of the Ags on the

microarray. It can be seen that the most reactive Ig isotypes in
serum are IgG and IgM; the most reactive isotypes in milk are
IgA and IgM (19). What are the Ag-binding specificities of the
Abs present in mother’s serum and milk and in baby’s cord
blood serum?

The most highly reactive Ags in milk and sera

To obtain a high-level view of the healthy repertoire, we focused on
the most highly reactive and prevalent Abs. Using a relative binding
threshold, we sorted the Abs from the most reactive to the least
reactive determined by their amount of labeled second Ab binding;
we then marked the top 5% as the most highly reactive Ags. To
provide some measure of the prevalence of a given reactivity in the
tested groups, we required that a highly reactive Ag had to be
shared by at least 50% for the serum samples and 15% for the milk
samples to enter the list; this percentage determination was chosen
to avoid outliers, and as an indication of group robustness. Thus, the
results reported in this work are restricted to the most reactive and
abundant Abs in the repertoires of reactivity to our Ag set. Table I
summarizes the highly reactive Ags of the three isotypes (IgG,
IgM, and IgA) for both mothers and newborns (see Supplemental
Tables 2 and 3 for additional comparisons). Note that both self and
nonself Ags appear in the list.

Antiforeign pathogen reactivities

The category of Abs binding to foreign viral or bacterial Ags can
be divided into two groups. The first is composed of reactivities
probably resulting from previous maternal vaccination—diphtheria,
hepatitis B, and varicella/zoster virus. The second group includes
HSV, EBV, and West Nile virus, which can be attributed to natural
exposure of the mothers to these viruses. Compatible with maternal
transfer, the only isotype of these Abs detected in cord sera was
IgG—IgM and IgA Abs to these Ags were found only in ma-
ternal sera. Note that some of the viral and bacterial Ags highly
reactive with serum Abs were less reactive with milk Abs; thus,
systemic and secretory immunization appear to differ (19–23).

Healthy repertoires include autoantibodies binding to
disease-associated and tumor-associated self-Ags

Similar to our previous results (14), many self-Ags were bound by
newborn and maternal serum Abs; the present results show that
autoantibodies are also present in mother’s milk. Table I shows
that the degree of reactivity to some of the self-Ags was compa-
rable to the reactivity detected to some nonself, foreign Ags. The
lists of self-Ags bound by prevalent, highly reactive autoanti-
bodies can be categorized as hormones, plasma proteins, tissue Ags,
enzymes, and immune modulators; Table I also marks whether the
self-Ag molecule has been associated with an autoimmune disease
or with tumors. It can be seen that many of the bound self-Ags
manifest such associations; we shall touch upon specific associa-
tions in Discussion. In the remaining sections, we shall examine the
global Ig isotype associations of the various repertoires without
limitation to highly reactive and prevalent reactivities.

Correlations among IgG, IgM, and IgA isotype repertoires

We analyzed the correlations among the global Ab reactivities in
the three isotype repertoires shared by all subjects: IgG, IgM, and
IgA. In this analysis, we used only those subjects that had been
tested for all three isotypes for both the mother and her offspring;
this narrowed our subject dataset to 32 newborns and 26 mothers.
Fig. 2 shows the correlations between the isotype repertoires in
two formats: Pearson’s correlations (Fig. 2A, mothers; Fig. 2B,
newborns) and three-dimensional PCA analysis (Fig. 2C, mothers;
Fig. 2D, newborns). Each subject is represented three times in
each panel of Fig. 2; the order of the individual subjects remains
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the same for each of the isotypes. Inspection of Fig. 2A and 2B
shows that maternal IgG and IgA serum repertoires manifested a
relatively high degree of correlation; newborn cord sera, in con-
trast, showed a relatively higher correlation between IgM and IgA,
the two Ig isotypes that the newborns did not receive from the
mothers. Fig. 2C and 2D show that individual newborn IgM and
IgA repertoires, relative to the scatter of maternal repertoires, were
much more tightly packed in repertoire space; thus, the IgM and
IgA cord serum isotypes showed a much higher correlation be-
tween the repertoires of individual newborns than did the indi-
vidual IgM and IgA isotypes of their mothers. In other words, the
IgM and IgA Abs produced by developing babies in utero mani-
fest relatively similar global repertoires (13, 14).
Fig. 3 shows the normalized repertoire correlations of IgG, IgM,

and IgA in the milk and corresponding sera in mothers who had
been tested for all three isotypes; the data are shown in two for-
mats: Pearson’s correlations matrices and PCA projections. In the
milk, Fig. 3A, the IgG repertoire was the most uniform between
subjects, followed by IgA; the IgM repertoires were the least
correlated between the individual mothers. Note that there were
different correlations between the isotypes in milk, Fig. 3A, and
serum, Fig. 3B. The serum IgA repertoire was more closely cor-
related with the serum IgG repertoire; in contrast, the milk IgA
repertoire was more closely correlated to the milk IgM repertoire.
The PCA projections, Fig. 3C and 3D, illustrate the different
characters of the repertoires in milk and serum.

Subject correlations among mother and newborn IgG, IgM,
and IgA repertoires

We analyzed the correlations between subject samples to detect
relationships between particular Ag reactivities in the populations
of maternal milk and serum and their newborn cord sera in their
IgG, IgM, and IgA repertoires. The analysis included only paired
data: maternal milk–serum pairs and mother–newborn serum pairs
(or triplets); single (nonpaired) data were not included.
Pearson’s correlation matrix (Fig. 4A) showed a high correla-

tion (dark red in the off-diagonal) between the serum of each
mother (red bordered square) and her offspring (black bordered
square) in IgG repertoires. The small clusters of high correlation
values within the newborns (black bordered squares) along the
central diagonal reflect the similarity of the IgG autoantibody
repertoire of twins and triplets. These close relationships of these
related repertoires can also be observed in the PCA plot (Fig. 4B);
note that each mother is closely positioned next to her offspring—
singletons, twins, and triplets—in repertoire space. The high
correlation between twins and triplets was significant (p value =
5.7e-19 using two-sample t test) compared with other newborns.
The relatively low IgG correlation values between each of the
adults indicate the individuality of the healthy IgG repertoire.
It is known that active transfer of IgG frommother to fetus begins

as early as 13 wk of gestation, and that transport takes place in

a linear fashion as the pregnancy progresses; the largest amount
of IgG is transferred in the third trimester (90). Total IgG concen-
trations in newborns, therefore, are directly related to the length of
gestation, and infants born at ,33 wk of gestation have substan-
tially lower IgG levels than full-term babies (91). Nevertheless, we
found no statistically significant differences between term and
preterm babies in the correlation of their IgG repertoires with their
mothers (data not shown); thus, there was no evidence of selective
transport of certain IgG Abs related to gestational age.
The IgM and IgA subject correlation matrices (Fig. 4A) showed

very weak correlation values between the serum repertoires of
each mother (black bordered square) and her newborn’s cord se-
rum (red bordered square); these two clusters manifested very
different geometries, which are further amplified in the PCA plot
(Fig. 4C), in which the newborns’ cluster was very compact, in-
dicating that individual newborns shared very similar IgM and IgA
repertoires; moreover, siblings were yet more similar to each other
than were unrelated newborns (p value = 9.72e-05 using two-
sample t test). No significant difference in correlation was detected
between monozygotic compared with dizygotic twins. In contrast, the
maternal cluster was relatively less correlated, indicating that each
mother evolved individualized IgM and IgA repertoires.
Fig. 4D shows a lack of correlation between serum and milk in

the IgG, IgM, and IgA isotype repertoires of each mother. Indeed,
there appeared to be a greater variability of individual IgA and
IgM repertoires in milk compared with serum, along with differ-
ences between milk and serum in the same woman.

Discussion
This study investigated repertoires of autoantibodies and anti-
pathogen Abs present in the cord serum of newborn humans and
in the blood serum and breast milk of their mothers; two features of
these repertoires are reported. The first is an overview of the Ig
isotypes and isotype correlations in the subjects, and the second is
a closer look at the most highly reactive self-Ags and pathogen Ags
bound by the Abs in each group. The basic question relates to the
Abs made available to the newborn by its mother and the Abs
produced by the newborn in utero; the maternal Ab endowment to
baby can be viewed as an epigenetic heritage of part of mother’s
immune experience; the Abs actively produced by baby in utero
can be viewed as evolution’s way of priming baby’s immune
system with a basic repertoire. T cell repertoires were not part of
this Ab-binding microarray study, but the presence of IgG and IgA
Abs would infer T cell help (92), In fact, a recent study of the
CDR3 TCR types in a dataset of 28 healthy mice reports a subset
of highly abundant shared TCRs that were found to be associated
with autoimmune conditions, tumor immune responses, and al-
logeneic graft reactions (93); thus, the healthy T cell repertoire is
also enriched in shared self-reactivity.
Note that we have designated as autoantibodies any Abs binding

to self-Ags spotted on the microarray chip; however, we cannot

FIGURE 1. Averaged isotype reactivity of in-

dividual maternal serum and milk integrated to all

of the Ags on the microarrays. The averaged re-

activity (foreground–background) (A) for the 18

serum and (B) corresponding milk samples ob-

served for the three isotypes: IgG, IgM, and IgA.

The different colors correspond to the different

samples of milk and serum.
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know the immunogenic stimulus that initially induced such auto-
antibodies. Nevertheless, the IgM and IgA autoantibodies present in
the cord bloods of newborn babies must have been induced in utero
before birth and could reflect induction by immunogenic self-Ags
present in the sterile fetus (13, 14). It is conceivable that mother’s
IgG Abs transferred across the placenta could induce the fetus to
produce IgM or IgA anti-idiotypic Abs (94), but the lack of cor-
relation between cord and maternal IgM and IgA repertoires
(Fig. 4A) suggests that the maternal IgG repertoire does not exert
a strong influence on the Ag specificities of the newborn IgM and
IgA repertoires.
The high correlation between IgM and IgA autoantibody rep-

ertoires in different cord bloods and the lack of correlation between
cord blood autoantibody repertoires with the IgM and IgA auto-
antibody repertoires of their individual mothers suggest that these
congenital autoantibody reactivities must be encoded in some
presently unknownmechanism of positive B cell selection common
to different individuals during their development (see Fig. 4A).
Indeed, the increased correlation between the autoantibody rep-
ertoires of twins and triplets (Fig. 4A) suggests that there is some
genetic basis for the congenital selection of autoantibodies bind-
ing to certain shared self-Ags (95, 96). It is reasonable to assume
that the mothers of these newborns were also born with the
common sets of shared IgM and IgA autoantibodies we detected in
their babies; the divergence of the maternal serum IgM and IgA
repertoires from the shared congenital repertoire indicates that
autoantibody repertoires evolve after birth as a result of evolving
individual immune experience (13). It has been reported that many
natural autoantibodies are polyreactive and so the same autoan-
tibody can bind a variety of different self molecules (97); however,

the divergence of IgM and IgA repertoires between cord and
maternal samples and within maternal samples (Fig. 4A) would
suggest that most of these autoantibodies are not polyreactive to
the same sets of self molecules.
The presence at birth of a shared set of IgM and IgA autoan-

tibody reactivities in healthy infants would imply some evolu-
tionary advantage, but, at present, we do not know what it might be.
We have speculated that IgM autoantibodies might actually prevent
autoimmune disease by blocking the access of potentially patho-
genic, self-reactive T cells to key body molecules (98). It is also
conceivable that autoantibodies to key body molecules might
serve as sensors for biomarker molecules that disclose the needs of
cells and tissues for immune maintenance (96). However they may
function, healthy individuals express autoantibodies to a particular
set of body molecules—we and others have referred to this phe-
nomenon as constituting an immunological homunculus—an im-
munological representation of the body inscribed in the repertoires
of both B cells and T cells (2, 95, 99, 100).
The high correlation between maternal and cord IgG repertoires

can be explained by the active transport of maternal IgG Abs to the
developing fetus (15). Most of the maternal IgG transmitted to the
developing fetus takes place toward the end of gestation (91), but
our finding of a high maternal-cord correlation even in premature
births (Fig. 4A) indicates that there is probably no preference for
specific Abs as global transport increases. One may wonder why
evolution arranged for baby to receive passively mother’s blood
IgG repertoire exclusively, whereas her IgA and IgM repertoires are
transported only in mother’s milk. Only a small sample, if any, of
the milk Abs are likely to be absorbed into the baby’s circulation,
but mother’s milk Abs, obtained by nursing, could influence the

FIGURE 2. The IgG, IgM, and IgA Pearson’s correlation matrix for (A) 26 mothers and (B) 32 newborns. Each subject is represented three times in the

figure; the order of the subjects remains the same in each of the isotypes. (C and D) PCA projection of the three isotypes of each sample for the (C) mothers

and (D) newborns. The nodes are colored according to the isotype (IgG, green; IgM, red; and IgA, blue). The lines connecting the nodes were drawn

between isotypes of the same subject. The lines are colored according to the normalized correlation between the samples.
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development of baby’s gut microbiome and affect gut viruses (101);
ingested Abs could also influence the absorption of ingested foods
and affect oral tolerance (102). In any case, it is clear that mother
makes different isotype repertoires available to baby in different
anatomical compartments.
The list of autoantibodies binding to specific self-Ags, the ho-

muncular Ags, disclosed in this study is interesting. The current
version of the Ag chip included only 26 of the self-Ags that were
most prevalent on the microarray of self-Ags spotted byMerbl et al.
(14), who did not limit reactivity to the 95th percentile as we did
in this work (see Table 2 in Ref. 14); nevertheless, 11 of the 26
prevalent autoantibody reactivities reported by Merbl et al. (14)
also appeared in our more restricted list of highly reactive self-
Ags. Autoantibodies to other self-Ags reported in the earlier study
were also detected in this work, but these reactivities were ex-
cluded from Table I by the high reactivity threshold we used.
Similar to the results obtained by Merbl et al. (14), the list of

highly reactive self-Ags in Table I includes hormones, enzymes,
tissue molecules, and immune modulators. Many of the self-Ags
among this highly reactive set are known to be associated with
various autoimmune diseases such as myelin oligodendrocyte
glycoprotein with multiple sclerosis (53, 103); MIF and CA125
with rheumatoid arthritis (104); glucagon with type 1 diabetes
(105); and Laminin, low-density lipoprotein, and high-density li-
poprotein with systemic lupus erythematosus (106, 107). Thus, the
prevalence of some autoimmune diseases may be associated with
the underlying prevalence in health of some autoantibody specif-
icities; autoimmune disease, then, can be related to the loss of
healthy regulation rather than to the accidental emergence of a for-
bidden clone (108).

Some self-Ags that were unique to milk appear to be involved in
birth and development. For example, Atosiban (Tractocile, Antocin),
which is an inhibitor of the hormones oxytocin and vasopressin, is
used (tocolytic) to halt premature labor (24); stem cell factor, which
plays an important role in the survival, proliferation, and migration
of stem cells and melanoblasts during both development and
maturation (109, 110); and EIF4G1, which is involved in the
recognition of the mRNA cap, ATP-dependent unwinding of 59-
terminal secondary structure, and recruitment of mRNA to the
ribosome (111).
Note that most of the highly reactive, prevalent autoantibodies

shown in Table I have some association with cancer-related self-
Ags, including BIRC2 (41), CA125 (43), MUC1 (54), stem cell
factor (60), S-100 (61), myosin (56), GHRH (26, 27), glucagon
(29), HGH (31), leptin (33), F3 coagulation factor III (36),
EEF1A1 (45), fibronectin (48, 49), neurotrophin-3 (58), BCMO1
(63), citrate synthase (66), GST (68), PTGDS (70), laminin (83),
and MIF (85). Indeed, we have found that dynamic changes in
autoantibody repertoires mark the natural history in mice of var-
iants of a syngeneic, transplantable tumor (112). The functions of
these and other autoantibodies to tumor-associated and other self-
Ags in healthy mothers and newborns need to be studied. It would
be important to know whether the T cell repertoire in healthy
subjects—the T cell homunculus—likewise contains clones po-
tentially reactive to these particular self-Ags (23). In any case, the
prevalence of highly reactive autoantibodies to tumor-associated
self-Ags supports the idea that the healthy immune system is out-
fitted, even from birth, to express some form of tumor-associated
immune reactivity. The recent reports that treatments with Abs to
the immune suppressor molecules PD-1 and CTLA-4 can unleash

FIGURE 3. Isotype normalized Pearson’s correlation matrix and PCA projection of the milk and corresponding maternal serum samples. (A and B) show

the Pearson’s correlation matrix, and (C and D) show the PCA. In (A and B), IgG is in the green bordered square 1–20; IgM in the red bordered square 21–

40; and IgA in the blue bordered square 41–60. The matrix was ordered so that sample 1 corresponds to 21 and 41, 2 to 22 and 42, etc. In (C) and (D), the

three isotypes of each sample are colored according to the isotype (IgG, green; IgM, red; and IgA, blue). The lines connecting the nodes were drawn

between isotypes of the same subject. The lines are colored according to the normalized correlation between the samples.
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antitumor immune rejection provide evidence that the immune
system does contain latent tumor-associated effector autoimmunity
that can be realized by depriving the tumor of protective immune
downregulation (113–115). It would be interesting to test the effects
of these treatments on the reactivity to the tumor-associated Ags
manifested in the healthy repertoire.
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