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Human multidrug efflux transporters are known for their ability to extrude antibiotics and toxic compounds out of cells, yet
accumulating data indicate they have additional functions in diverse physiological processes not related to drug efflux. Here, we
show that the human multidrug transporter P-glycoprotein (P-gp) (also named MDR1 and ABCB1) is transcriptionally induced
in the monocytic cell line THP-1 upon infection with the human intracellular bacterial pathogen Listeria monocytogenes. Nota-
bly, we found that P-gp is important for full activation of the type I interferon response elicited against L. monocytogenes bacte-
ria. Both inhibition of P-gp function by verapamil and inhibition of its transcription using mRNA silencing led to a reduction in
the magnitude of the type I response in infected cells. This function of P-gp was specific to type I interferon cytokines elicited
against cytosolic replicating bacteria and was not observed in response to cyclic di-AMP (c-di-AMP), a molecule that was shown
to be secreted by L. monocytogenes during infection and to trigger type I interferons. Moreover, P-gp was not involved in activa-
tion of other proinflammatory cytokines, such as those triggered by vacuolar-restricted L. monocytogenes or lipopolysaccharide
(LPS). Taken together, these findings demonstrate a role for P-gp in proper development of an innate immune response against
intracellular pathogens, highlighting the complexity in employing therapeutic strategies that involve inhibition of multidrug
resistance (MDR) efflux pumps.

Multidrug transporters mediate the active efflux of a wide
range of drugs and xenobiotics, including antibiotics and

chemotherapeutics (1). This permissive efflux ability engenders
multidrug resistance (MDR)—a phenomenon that largely under-
lies the failure of various chemotherapeutic treatments (2–4). Hu-
man MDR transporters harbor an ATP-binding cassette (ABC),
which defines the ABC-type superfamily, comprising more than
45 proteins in the human genome (5). Among these, several trans-
porters have been extensively studied, such as the P-glycoprotein
(P-gp) (also named MDR1 and ABCB1) (6), BCRP (ABCG2) (7),
and MRP1 (ABCC1) (8), which were all shown to exhibit clinically
relevant MDR functions (9). P-gp, encoded by the MDR1 gene, is
the most prominent and best-characterized member of the ABC-
type superfamily, first isolated in clinical cancers (6, 10). Aside
from its well-documented multidrug resistance function in cancer
cells, P-gp is naturally expressed in a variety of normal tissues
and cells, including immune cells, such as macrophages, dendritic
cells, T and B lymphocytes, and natural killer (NK) cells, and was
shown to possess physiological functions beyond detoxification
(11–15). Several studies have indicated roles for P-gp in lipid
transport, intracellular trafficking of cholesterol, cell death, cell
differentiation, and immune responses (16, 17). Regarding the
last, P-gp was shown to exhibit immunomodulatory activity and
to influence the secretion of various inflammatory mediators,
such as steroids, prostaglandins, platelet-activating factor, and cy-
tokines (13, 18–21). Specifically, it was demonstrated that P-gp
mediates the secretion of interleukin 2 (IL-2), IL-4, tumor necro-
sis factor alpha (TNF-�), and gamma interferon (IFN-�) in T
lymphocytes (19, 22, 23) and of cytotoxic compounds in NK cells
(24). Furthermore, certain cytokines were shown to induce MDR1
transcription during inflammation (25, 26). P-gp’s function in
immune cells appears to impact distinct immune processes, such
as activation of inflammatory cells and maturation of antigen-

presenting cells (13, 15, 23, 27). Taken together, these findings
indicate an important role for P-gp in the development and func-
tion of immune cells and in the progression of inflammatory re-
sponses (15).

Listeria monocytogenes is a Gram-positive, foodborne faculta-
tive intracellular pathogen that has been extensively studied due to
its interactions with the human innate immune system (28–32). L.
monocytogenes enters mammalian cells either by phagocytosis or
by active invasion. The bacterium evades phagosomal killing by
escaping the vacuole into the host cell cytosol. This action involves
several bacterial virulence factors, primarily the pore-forming
hemolysin listeriolysin O (LLO) (encoded by the hly gene); two
phospholipases, PlcA and PlcB; and some components of the
competence system (33–35). Following phagosomal escape, L.
monocytogenes replicates in the cytosol and spreads from cell to
cell using actin-based motility without causing cell lysis (36, 37).
The presence of replicating bacteria within host cells is rapidly
sensed by cytosolic receptors of the innate immune system, lead-
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ing to robust induction of a type I interferon response, which is
manifested by expression and secretion of IFN-� (28, 31, 38–40).
This response was shown to be independent of Toll-like receptors
(TLRs) but dependent on various cytosolic innate immune recep-
tors and adaptor molecules (e.g., IRF3, TBK1, RIG-I, MDA5,
STING, and DDX41 helicase) (41–46). In contrast to wild-type
cytosolic replicating bacteria, L. monocytogenes mutants that fail to
access the cytosol (i.e., hly mutants) do not activate the type I
interferon response but rather induce a TLR-dependent vacuolar-
specific response (42, 47).

We have previously shown that activation of the type I inter-
feron response by L. monocytogenes relies on the expression of a
set of bacterial multidrug-resistant transporters—MdrM, MdrT,
MdrA, and MdrC—that together are responsible for most of the
response in murine macrophages (48, 49). Among these trans-
porters, MdrM was found to be most critical, as deletion of its gene
alone led to �70% reduction in IFN-� induction compared to
that induced by wild-type bacteria. Further studies have identified
cyclic di-AMP (c-di-AMP) as a substrate of MdrM and as the
ligand that triggers the innate immune system to express type I
interferons (46, 50). While immune cells rapidly sense this cyclic
dinucleotide as a signal for bacterial invasion, within the bacteria it
was shown to play a regulatory role in cell wall stress responses and
homeostasis (49, 51).

We were prompted by our findings that bacterial MDR trans-
porters play a role in activation of innate immune responses to
ask whether host MDR transporters might also be involved. Here,
we show that P-gp, the mammalian MDR transporter, is tran-
scriptionally induced upon L. monocytogenes infection of THP-1
monocytes. Notably, this response correlated with the magnitude
of the type I interferon response that was elicited during Listeria
infection and was shown to be specific to cytosolic replicating
bacteria and not to occur upon exposure to bacterium-derived
ligands, such as c-di-AMP. Inhibition of P-gp function or tran-
scription led to significant reduction in IFN-� expression in in-
fected cells. These observations suggest an amplification role for
P-gp in development of the type I interferon response during L.
monocytogenes infection.

MATERIALS AND METHODS
Materials. RPMI 1640 and �-mercaptoethanol were purchased from
Gibco. Fetal bovine serum (FBS), glutamine, pyruvate, gentamicin, and
minimal essential medium (MEM)-Eagle-nonessential amino acids were
purchased from Biological Industries, Beit-ha-Emek, Israel. Verapamil,
Escherichia coli lipopolysaccharide (LPS), and TRIzol were purchased
from Sigma and fumitremorgen C from Enzo. Purified c-di-AMP and
c-di-GMP were purchased from Biolog. FVB mdr1a/mdr1b double-
knockout mice and their parental strain were purchased from the Taconic
knockout repository.

The use of animals and the experimental protocols were approved by
the Tel Aviv University Animal Care and Use Committee (L-10-040 and
L-13-039) according to the Israel Welfare Law (1994) and the National
Research Council guide (Guide for the Care and Use of Laboratory Animals,
2010).

Bacterial strains. L. monocytogenes 10403S was used as the wild-type
(WT) strain and served as the parental strain to generate in-frame dele-
tions of the indicated genes (48). Single colonies were inoculated into 2 ml
of brain heart infusion (BHI) broth (BD237500; Merck) and incubated
overnight at 30°C without shaking for infection assays or at 37°C with
shaking (at 250 rpm) for growth in laboratory media.

Cell cultures. The human monocyte THP-1 cell line was a kind gift
from Isaac P. Witz (Tel Aviv University, Tel Aviv, Israel). The murine

RAW264.7 cell line was obtained from the Tsaffrir Zor laboratory (Tel
Aviv University, Tel Aviv, Israel), and human ovarian carcinoma Ovcar-8
cells were obtained from the Yehuda G. Assaraf laboratory (Technion,
Israel). THP-1 cells were propagated in suspension in RPMI 1640 me-
dium (Gibco) supplemented with 20% inactivated FBS, glutamine (2
mM), pyruvate (1 mM), �-mercaptoethanol (0.05 mM), and MEM-Ea-
gle-nonessential amino acids (Biological Industries, Beit-ha-Emek, Is-
rael). RAW264.7 cells were propagated in Dulbecco’s modified Eagle’s
medium (DMEM) (Gibco) supplemented with 10% inactivated FBS and
glutamine (2 mM) and Ovcar-8 cells in RPMI 1640 medium (Gibco)
supplemented with 10% inactivated FBS and glutamine (2 mM).

Reverse transcription (RT)-qPCR analysis. RNA was harvested from
cells using TRIzol reagent (Sigma), followed by DNase treatment, phenol-
chloroform extraction, and ethanol precipitation. cDNA was synthesized
from 1 �g of total RNA using a high-capacity reverse transcription kit
(Applied Biosystems). For regular PCR analysis, 10 ng of cDNA was used
with specific primers. SYBR green-based quantitative-PCR (qPCR) am-
plification was performed in 96-well plates using SYBR green PCR master
mix and the StepOnePlus real-time PCR system (Applied Biosystems).
For each indicated gene, ��CT was calculated using a standard relative-
quantity (RQ) algorithm applied using the StepOnePlus program, with
the GAPDH (glyceraldehyde-3-phosphate dehydrogenase) gene as a ref-
erence gene. Data analysis of at least three biological repeats was per-
formed using the StepOnePlus V2.3 study algorithm. Error bars represent
95% confidence intervals, i.e., the values fall within the bar range in 95%
of repeat experiments. When the error bars of two samples do not overlap,
the significance of the difference (P value) is ��0.01.

Bacterial growth analysis and drug resistance assays. Growth of bac-
teria in the rich BHI medium at 37°C was assayed by following the optical
density at 600 nm (OD600) every 15 min utilizing the Synergy HT Biotek
plate reader with continuous shaking. Overnight cultures were diluted to
an OD600 of 0.05 and supplemented with the indicated compounds: rho-
damine 6G (R6G) (2 �M), ciprofloxacin (4.5 �g/ml), and verapamil (20
�M). The OD600 was recorded for 16 h of incubation, using Breathe-Easy
(USA Scientific; 9123-6100) gas-permeable sealing for the plates.

Mammalian-cell infection. WT L. monocytogenes (1 	 107 CFU; 0.15
ml of overnight culture grown at 30°C) was used to infect 3 	 106 mam-
malian cells in 3 ml of medium. One hour postinfection (p.i.), the cells
were washed with phosphate-buffered saline (PBS) and resuspended in
medium with 50 �g/ml gentamicin. For RNA analysis, infections were
terminated at 6 h p.i. To determine intracellular bacterial growth in
THP-1 cells, 0.5-ml aliquots of infected THP-1 cell suspension were with-
drawn, centrifuged, and lysed with 0.5 ml of water. Bacteria released by
lysis were plated on BHI-agar plates in serial dilutions. CFU were
counted after 24 h of growth at 37°C. Bone marrow-derived macro-
phages (BMDMs) were isolated and infected as described previously
(52).

Stimulation of THP-1 cells with bacterium-derived ligands. For ac-
tivation of cytokines by bacterial ligands, 2 	 106 THP-1 cells in 2 ml of
permeabilization buffer (50 mM HEPES, pH 7.0, 100 mM KCl, 3 mM
MgCl2, 0.1 mM dithiothreitol [DTT], 85 mM sucrose, 0.2% bovine serum
albumin [BSA], 1 mM ATP, 0.1 mM GTP, 10 �g/ml digitonin [53]) were
incubated for 30 min in the presence of 2 �g/ml listerial DNA, 2 �g/ml
listerial RNA, 1.8 �g/ml c-di-AMP, or 3.5 �g/ml c-di-GMP with or with-
out 20 �M verapamil. Both listerial RNA and DNA were extracted from
exponentially grown bacteria using standard procedures; 150 ng/ml LPS
was added directly to cells without permeabilization buffer. Following
incubation, the buffer/medium was removed and the cells were resus-
pended in fresh medium. After 3.5 h, RNA from the THP-1 cells was
harvested and analyzed for cytokine induction by RT-qPCR (as described
above).

RNA interference. THP-1 cells (2.5 	 105) in 2 ml of medium were
transfected with 25 pmol of small interfering RNA (siRNA) targeted
against the MDR1 gene (sense strand sequence, UCGAGUCACUGCCU
AAUAA, for siP-gp) or against an irrelevant sequence of the luciferase
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gene (sense strand sequence, CUUACGCUGAGUACUUCGA, for siLuc).
Lipofectamine 2000 (5 �l; Life Technologies) was used for transfection
according to the manufacturer’s instructions. Cells were washed 6 h post-
transfection and resuspended in medium supplemented with penicillin
and streptomycin. The cells were incubated for 72 h and then infected
with L. monocytogenes as described above.

Flow cytometry analysis of P-gp expression. Flow cytometry analysis
of P-gp was performed as reported previously (54, 55). Briefly, 72 h post-
transfection with siLuc siRNA or siP-gp siRNA, 0.5 	 106 cells from each
sample were incubated with either mouse monoclonal anti-human P-gp
antibody (clone 4E3), which recognizes an external epitope of P-gp
(ABCAM, Cambridge, MA, USA) or mouse IGg2a antibody isotype as a
control (BioLegend, San Diego, CA, USA) on ice for 30 min. After being
washed, the samples were incubated with a phycoerythrin (PE)-labeled
F(ab=)2 anti-mouse antibody (ABCAM, Cambridge, MA, USA) for 30 min
at 4°C in the dark. The samples were centrifuged and resuspended in PBS
containing 1% fetal calf serum (FCS) for analysis on a Becton Dickinson
FACSCalibur flow cytometer with CellQuest software (Becton Dickinson,
Franklin Lakes, NJ). Ten thousand events were determined for each test
sample. Excitation was done with a single 15-mW argon ion laser beam
(488 nm). Emission was collected through a 530-nm band-pass filter.
Data analysis was performed using FlowJo software (Tree Star, Inc., OR,
USA).

RESULTS
P-gp is transcriptionally induced upon L. monocytogenes infec-
tion and correlates with IFN-� response. To examine if P-gp
plays a role during L. monocytogenes infection, we first analyzed its
transcription level using RT-qPCR analysis of human monocyte
THP-1 cells infected with L. monocytogenes strain 10403S. MDR1
mRNA levels were observed to be upregulated �2-fold in L.
monocytogenes-infected cells (P � 0.01) relative to noninfected
cells at 6 h p.i. (Fig. 1A). This is a relatively modest transcriptional
induction but is typical of membrane transporters. The trend of
induction was corroborated by our discovery that MDR1 mRNA
levels further increased if cells were infected with L. monocytogenes
bacteria overexpressing MdrM (�4-fold, using a mutant with the
MdrM repressor, MarR, gene deleted: the marR mutant [48]),
whereas the levels did not change in cells infected with an L. mono-
cytogenes mutant that becomes trapped within the phagosome
(the hly mutant). The toxic dye R6G, which is a known P-gp sub-
strate and induces its transcriptional expression (56), was ex-
ploited as a positive control and induced MDR1 levels (�4-fold)
comparably to the marR mutant (Fig. 1A).

We noted that MDR1 transcription in infected cells directly
correlated with IFN-� levels elicited by the different listerial
strains (Fig. 1B). While the marR mutant resulted in enhanced
induction of both P-gp and IFN-� in comparison to WT bacteria,
the hly mutant failed to induce either P-gp or IFN-�. These find-
ings demonstrate upregulation of MDR1 transcription in re-
sponse to L. monocytogenes intracellular infection but also raise
the possibility that P-gp may be associated with the type I inter-
feron response.

P-gp contributes to induction of IFN-� in response to L.
monocytogenes infection. We first examined whether P-gp plays
any role in IFN-� activation. To this end, THP-1 cells treated and
not treated with the P-gp preferential inhibitor verapamil (57)
were infected with WT bacteria, and IFN-� induction was ana-
lyzed at 6 h p.i. Two concentrations of verapamil were used, 20
and 50 �M, which were shown previously to effectively block P-gp
function (references 56 and 57 and FDA). As shown in Fig. 2A,
infected THP-1 cells treated with verapamil transcribed reduced

levels of IFN-� in comparison to nontreated infected cells (40%
and 20%, respectively).

To exclude the possibility that verapamil inhibits L. monocyto-
genes intracellular growth, which by itself can lead to reduced
IFN-� induction, the intracellular growth of WT bacteria was an-
alyzed in THP-1 cells treated with 0, 20, and 50 �M verapamil. As
demonstrated in Fig. 2B, verapamil had no effect on L. monocyto-
genes intracellular growth in THP-1 cells or on growth in the rich
laboratory medium BHI (see Fig. S2 in the supplemental mate-
rial). Next, to confirm that verapamil inhibits P-gp function dur-
ing L. monocytogenes infection, the ability of P-gp to export cipro-
floxacin, a P-gp substrate and an antibacterial drug (58, 59), was
assessed. Ciprofloxacin has been shown to inhibit L. monocyto-
genes growth in laboratory media (also shown in Fig. S2 in the
supplemental material) and, likewise, intracellularly if added to
THP-1 cells (58, 60). Indeed, treating infected THP-1 cells with
ciprofloxacin (4.5 �M) strongly inhibited intracellular growth of
L. monocytogenes (by 2.5 orders of magnitude) (Fig. 2C). This
growth restriction was further enhanced (up to 3 orders of mag-
nitude) when verapamil was added to the cells (20 �M) (Fig. 2C),
demonstrating its ability to inhibit ciprofloxacin efflux. Of note,
the antibacterial effect of ciprofloxacin on L. monocytogenes was
not enhanced by verapamil when the bacteria were grown in broth
culture (BHI medium) (see Fig. S1 in the supplemental material).
Taken together, the results corroborate the fact that verapamil
indeed inhibits P-gp during L. monocytogenes infection and,
moreover, support the premise that P-gp is involved in stimula-
tion of the IFN-� response. Of note, in addition to P-gp, we ex-
amined another clinically relevant human MDR transporter,

FIG 1 MDR1 transcription is specifically upregulated in response to L. mono-
cytogenes infection of THP-1 cells. (A) RT-qPCR analysis of P-gp transcription
levels in THP-1 cells infected with wild-type L. monocytogenes (WT L.m.) and
hly and marR deletion mutants of L. monocytogenes or treated with R6G. (B)
RT-qPCR analysis of IFN-� transcription levels in THP-1 cells infected with
WT L. monocytogenes and hly and marR deletion mutants of L. monocytogenes
or treated with R6G. Transcription levels are represented as RQs relative to
uninfected/untreated cells (un). The data represent at least 3 biological repeats.
The error bars indicate 95% confidence intervals. *, P � 0.01.
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BCRP (also named ABCG2). While BCRP was found to also be
induced during L. monocytogenes infection (�2-fold), inhibition
of its function, using the specific inhibitor fumitremorgen C, did
not affect IFN-� transcription (see Fig. S1 in the supplemental
material). We therefore continued to focus our study on P-gp.

P-gp specifically influences activation of type I interferon-
related cytokines in response to intracytosolic replicating L.
monocytogenes. We next asked if P-gp influences the expression
of cytokines other than IFN-�. To this end, the transcriptional
levels of additional cytokines, such as IL-8, IL-1�, MCP-1, IP-10,
and TNF-�, were measured upon L. monocytogenes infection of
verapamil-treated and untreated cells using RT-qPCR analysis (at
6 h p.i.) (Fig. 3A). Of note, all of these cytokines, except TNF-�,
were shown to be part of the type I interferon response to L. mono-
cytogenes infection or associated with its activation (61). We found
that P-gp does indeed contribute to induction of each tested cyto-
kine, except TNF-�, as their transcription levels were reduced in
verapamil-treated infected cells (by 40 to 70%). Notably, induc-
tion of P-gp itself in L. monocytogenes-infected cells was indepen-
dent of verapamil treatment (Fig. 3A). These results suggest that
during L. monocytogenes infection, P-gp specifically enhances ac-
tivation of the type I interferon response and not of other proin-
flammatory responses, such as those associated with TNF-�.

To corroborate this model, the role of P-gp in cytokine induc-
tion was evaluated upon infection with the L. monocytogenes hly
mutant (a phagosomally restricted mutant) and in response to
stimulation with LPS. As mentioned above, the hly mutant does
not induce a type I interferon response but rather induces many
proinflammatory cytokines in a TLR/Myd88-dependent manner
(some of these cytokines overlap cytokines induced by the type I
interferon response) (61). As shown in Fig. 3B, the hly mutant
induced neither IFN-� nor P-gp levels but induced IL-8, IL-1�,
MCP-1, IP-10, and TNF-�, all independently of P-gp (Fig. 3B).
Similar results were observed with LPS stimulation (150 ng/ml),

supplemented extracellularly, which did not induce P-gp or a
strong IFN-� response yet triggered robust induction of various
proinflammatory cytokines, such as IL-8, IL-1�, and TNF-�, in a
P-gp-independent manner (Fig. 3C). To exclude the possibility
that P-gp induction by itself leads to enhanced cytokine response,
THP-1 cells were treated with R6G (a toxic dye that triggers in-
duction of P-gp transcription) with and without verapamil treat-
ment, and cytokine levels were analyzed. We observed that while
R6G indeed activates MDR1 transcription (�3- to 4-fold), this by
itself does not elicit a cytokine response (Fig. 3D). Overall, these
findings support the premise that P-gp is specifically involved in
elicitation of the type I interferon response against intracytosolic
replicating L. monocytogenes bacteria. Specifically, verapamil does
not generally inhibit cytokine transcription but instead inhibits
P-gp under conditions where P-gp is expressed and thereby im-
pacts the type I interferon response.

P-gp neither is induced by nor mediates IFN-� induction
upon stimulation with L. monocytogenes-derived ligands. The
activation of type I interferons by cytosolic replicating L. monocy-
togenes bacteria has been extensively studied. So far, several Liste-
ria-derived ligands, such as c-di-AMP, double-stranded DNA
(dsDNA), and RNA, have been suggested to stimulate type I in-
terferons (44, 50, 62). Although c-di-AMP is the most prominent
ligand candidate (studied mainly in murine cells), a recent report
indicated that sensing of L. monocytogenes by THP-1 cells treated
with phorbol 12-myristate 13-acetate (PMA) relies on recognition
of Listeria-derived dsDNA rather than c-di-AMP (63). In light of
these observations, we examined whether any of these ligands can
recapitulate the P-gp-dependent IFN-� stimulation we observed
upon L. monocytogenes infection. To this end, commercially avail-
able c-di-AMP and c-di-GMP, as well as listerial RNA and dsDNA
extracted from BHI-grown bacteria, were employed to stimulate
THP-1 cells, and the transcription levels of MDR1 and IFN-� were
measured. As shown in Fig. 4A, c-di-AMP and c-di-GMP trig-

FIG 2 Verapamil inhibits P-gp and leads to a reduced IFN-� response in infected THP-1 cells. (A) RT-qPCR analysis of IFN-� transcription levels in THP-1 cells
infected with wild-type L. monocytogenes supplemented with 20 �M or 50 �M verapamil (Ver 20 and Ver 50, respectively). Transcription levels are represented
as RQs relative to uninfected cells. An experiment representative of 3 independent repeats is shown. The error bars indicate 95% confidence intervals. (B)
Intracellular growth curves of WT L. monocytogenes in THP-1 cells supplemented with 20 or 50 �M verapamil. Representative growth curves from 3 independent
experiments are shown. The error bars represent standard deviations of triplicates. (C) Intracellular bacterial counts of THP-1 cells infected with wild-type L.
monocytogenes and supplemented as indicated with 4.5 �M ciprofloxacin (Cipro) and 20 �M verapamil. An experiment representative of 3 independent repeats
is shown. The error bars represent standard deviations of triplicates. *, P � 0.05.
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FIG 3 P-gp contributes to elicitation of cytokines in response to L. monocytogenes infection. RT-qPCR analysis of cytokine transcription levels in THP-1 cells
infected with L. monocytogenes and treated with the indicated reagents in the presence or absence of 20 �M verapamil. Transcription levels are represented as RQs
relative to uninfected/untreated cells. The error bars indicate 95% confidence intervals. *, P � 0.01. The data represent at least 3 biological repeats. (A) THP-1
cells infected with WT L. monocytogenes. (B) THP-1 cells infected with the hly mutant of L. monocytogenes. (C) THP-1 cells stimulated with 150 ng/ml LPS. (D)
THP-1 cells supplemented with 2 �M R6G.
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gered high levels of IFN-�, while listerial RNA and dsDNA had no
stimulatory effect. The discrepancy with the aforementioned
study likely arises from the use of PMA-treated versus nontreated
THP-1 cells (the latter were used in the present study). Next, in-
duction levels of IFN-� by the cyclic dinucleotides with and with-
out verapamil treatment were compared and found to be similar
(Fig. 4A). Remarkably, we observed that MDR1 was not induced
by the cyclic dinucleotides (it was even downregulated by c-di-
AMP) or by any of the tested bacterial ligands (Fig. 4B), suggesting
that P-gp induction by L. monocytogenes bacteria is part of the
general host response to infection and is not mediated by a specific
ligand. In addition, the data indicate that P-gp is not essentially
part of the type I interferon response but, rather, can enhance it
independently.

Specific silencing of P-gp transcription leads to a reduced
type I interferon response upon L. monocytogenes infection. Al-
though the effect of verapamil on P-gp is well documented (refer-
ences 56 and 57 and FDA), we wanted to validate our observations
by directly inhibiting MDR1 transcription using the siRNA ap-
proach. To this end, THP-1 cells were transfected with siRNA
sequences targeting the MDR1 gene (siP-gp) or the luciferase gene
(siLuc), with the latter as a control. Following transfection, MDR1
transcription was measured using RT-qPCR analysis, and P-gp
abundance on THP-1 cells was determined by fluorescence-acti-
vated cell sorter (FACS) analysis using a P-gp-specific antibody.
An �30 to 40% reduction in P-gp transcription was observed in
cells treated with siP-gp (Fig. 5A and B), with �60% of the cells
exhibiting an �60% reduction in P-gp abundance (Fig. 5B). Next,
the impact of P-gp transcriptional inhibition on the induction of

several cytokines was examined during L. monocytogenes infec-
tion. siRNA-transfected cells were infected with WT L. monocyto-
genes bacteria, and the P-gp, IFN-�, IP-10, and TNF-� mRNA
levels were analyzed using RT-qPCR analysis at 6 h p.i. As shown
in Fig. 5C, cells treated with siP-gp exhibited an �30% decrease in
MDR1 transcription and a similar reduction in the transcription
levels of IFN-� and IP-10, but not in TNF-� levels, similar to what
was observed with verapamil treatment (Fig. 3A). Collectively
these data support the hypothesis that P-gp plays a role in full
activation of the type I interferon response during L. monocyto-
genes infection.

P-gp enhances type I interferon response during L. monocy-
togenes infection only in human cells. Finally, to address the
question of whether the contribution of P-gp to the activation of
the type I interferon response to L. monocytogenes infection is a
general feature of mammalian cells or specific to human cells,
several human and murine cell types were examined. First, the
activation of the murine mdr1a and mdr1b genes (homologues
of the human MDR1 gene) in both murine BMDMs (prepared
from FVB mice) and RAW264.7 monocytes were examined. As
shown in Fig. 6A and C, both murine-derived cells induced
mdr1a transcription in response to L. monocytogenes infection
(up to 5-fold in BMDMs and 2-fold in RAW264.7 cells), whereas
mdr1b was induced 2-fold only in the BMDMs. To address the role
of the murine P-gp transporters in the activation of the type I
interferon response to L. monocytogenes, BMDMs were generated
from isogenic mice with both mdr1a and mdr1b genes deleted
(FVB mdr1a/mdr1b
/
; Taconic), while RAW264.7 cells were
supplemented with verapamil (20 �M). Contrary to what we ob-

FIG 4 P-gp is not involved in IFN-� activation upon stimulation with L. monocytogenes-derived ligands. Shown is RT-qPCR analysis of IFN-� transcrip-
tion levels (A) and P-gp transcription levels (B) in THP-1 cells treated with the indicated ligands in the presence or absence of 20 �M verapamil. Transcription
levels are represented as RQs relative to untreated cells. The error bars indicate 95% confidence intervals. *, P � 0.01. The data represent at least 3 biological
repeats.
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FIG 5 P-gp expression is required for full activation of the type I interferon response to L. monocytogenes infection. (A) RT-qPCR analysis of P-gp transcription
levels upon siRNA treatment (siP-gp). siRNA targeted to the luciferase gene was employed as a control (siLuc). (B) FACS analysis of cells expressing P-gp on their
surfaces, using mouse monoclonal anti-human P-gp antibody (clone 4E3), and probed with PE-labeled F(ab=)2 anti-mouse antibody. (C to F) RT-qPCR analyses
of various host genes in uninfected cells and cells infected with WT L. monocytogenes bacteria, treated or not treated with siRNA. (C) MDR1. (D) IFN-�. (E) IP-10.
(F) TNF-�. Mock, untransfected cells; siP-gp, cells transfected with siRNA against the MDR1 gene; siLuc, cells transfected with siRNA against the luciferase gene
(control). Transcription levels are presented as RQs relative to levels in uninfected cells. Data analysis of at least two independent biological repeats was performed
using the StepOnePlus study algorithm. The error bars indicate 95% confidence intervals. *, P � 0.05.
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served with THP-1 cells, deletion of the mdr genes or their inhibi-
tion with verapamil did not lead to a decrease in IFN-� transcrip-
tion. In BMDMs, an increase in IFN-� levels was observed, while
in RAW264.7 cells, no effect was apparent (Fig. 6B and D). Next,
we analyzed additional human cell lines frequently used in L.
monocytogenes research, such as embryonic kidney HEK293, epi-
thelial Caco-2, and HeLa cells. Surprisingly, we found that none of
these cells express P-gp in response to L. monocytogenes infection
(data not shown). However, another human cell line commonly
used in P-gp studies, the ovarian tumor Ovcar-8 cell line, demon-
strated 2-fold induction of P-gp upon L. monocytogenes infection,
similar to THP-1 cells (Fig. 6E). Furthermore, inhibition of P-gp

by verapamil in these cells resulted in a decrease in IFN-� tran-
scription by �50% (Fig. 6F), essentially recapitulating the obser-
vations in THP-1 cells. Taken together, these results indicate a role
for P-gp in activation of the type I interferon response to L. mono-
cytogenes infection in human cells that express P-gp.

DISCUSSION

In this study, we analyzed the role of the human MDR transporter
P-gp during L. monocytogenes infection. Here, we show that P-gp
is induced upon L. monocytogenes intracellular invasion and that
its expression levels directly correlate with the type I interferon
response elicited by the bacteria. We further found that P-gp is

FIG 6 P-gp contribution to elicitation of cytokines by host cells in response to L. monocytogenes infection is specific to human cells. Shown is RT-qPCR analysis
of the transcription levels of the indicated genes in different cell types infected with WT L. monocytogenes. (A) BMDMs derived from FVB mice. (B) BMDMs
derived from FVB mice and FVB mdr1a/mdr1b
/
 mice (Taconic). (C and D) RAW264.7 cells supplemented or not with 20 �M verapamil. (E and F) Ovcar-8
cells supplemented or not with 20 �M verapamil. Transcription levels are represented as RQs relative to uninfected cells. The error bars indicate 95% confidence
intervals. The data represent at least 3 biological repeats. *, P � 0.01.
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required for full activation of this response, while it has no effect
on other proinflammatory responses. P-gp activation was specific
to cytosolic replicating bacteria and could not be recapitulated by
stimulation with various bacterial ligands, including those that
trigger type I interferons. Overall, based on these data, we propose
that during L. monocytogenes invasion P-gp is induced concomi-
tantly with the type I interferon response and that P-gp enhances
the type I interferon response. In summary, we hypothesize that
P-gp is part of the host response to cytosolic infection that ampli-
fies cytokine production.

The activation of type I interferons during L. monocytogenes
infection has been the subject of extensive study over the last de-
cade. The studies were premised on the model that a cytosolic
surveillance system exists to detect replicating bacteria within cells
(40). In line with this, several listerial ligands that could elicit a
specific response were identified, all representing nucleic acids or
their derivatives (such as RNA, dsDNA, and cyclic dinucleotides,
primarily c-di-AMP) (44, 50, 62). Subsequently, multiple cognate
innate immune receptors and adaptors (such as RIG-I, MDA5,
STING, DDX41, LRRFIP1, and cGAS) that were shown to sense
listerial ligands and activate signaling pathways leading to IFN-�
activation were identified (29). Notably, most of these findings are
based on experiments conducted in murine cells using murine
knockout strains, and accordingly, our understanding of the acti-
vation of type I interferons in human cells, the natural host of L.
monocytogenes, is somewhat limited. In this respect, several re-
ports have indicated fundamental differences between murine
and human cells regarding the activation of type I interferons by L.
monocytogenes. For example, a study by Reimer et al. has demon-
strated that IRF-3 and IRF-7, which are essential for IFN-� acti-
vation in murine cells, are dispensable in human cells, while p38
MAPK, ATF2, and NF-�B are critical (64). Furthermore, while in
murine cells c-di-AMP is the prominent listerial ligand that trig-
gers the type I interferon response, in PMA-treated THP-1 cells,
listerial dsDNA, not c-di-AMP, was shown to be the prominent
trigger (63). Of note, it is for this reason that we focused our study
on non-PMA-treated THP-1 cells, as this protocol recapitulates
the induction of the type I interferon response to L. monocytogenes
infection and c-di-AMP that was observed in murine cells (50).
More generally, such reports contradict fundamental knowledge
gained using the murine model over the years and highlight po-
tential disparities that can be resolved only by conducting more
experiments in human-derived cells (activated and nonactivated).
Indeed, in this study, we found a role for P-gp in enhancing the
type I interferon response during L. monocytogenes infection that
is specific to human cells that express the protein. Therefore, the
phenomenon described here represents another example of a host
response to bacterial infection that is mediated differently in hu-
man and murine cells.

This is the first report linking P-gp to activation of innate im-
munity in response to bacterial infection. There is no evidence
that P-gp is directly involved in sensing bacterial ligands; however,
there is burgeoning evidence that the membrane transporter in-
fluences the development of immune responses, including cyto-
kine production (15). We noted that P-gp is activated and medi-
ates cytokine enhancement only when bacteria invade the cytosol
of host cells. Stimulation of cells with purified bacterial ligands did
not activate P-gp, and infection with an L. monocytogenes isogenic
strain that becomes trapped within phagosomes also proved inef-

fective at inducing P-gp expression. These results suggest that ac-
tivation of P-gp is part of a general host sensing machinery that
detects invading bacteria. In this regard, an association between
P-gp and bacterial-pathogen invasion has been documented (65,
66). P-gp was found to protect against L. monocytogenes invasion
and dissemination within intestinal epithelial cells, as its overex-
pression led to reduced L. monocytogenes invasion, whereas inhi-
bition enhanced bacterial invasion (67). Helicobacter pylori infec-
tion was also shown to be associated with P-gp overexpression in
the intestine (68), whereas Salmonella enterica serovar Typhimu-
rium was shown to dampen P-gp function in order to promote
epithelial cell invasion (69). In the case of Pseudomonas aerugi-
nosa, it was shown that the bacteria secrete a toxin, called Cif,
which selectively inhibits P-gp expression in a variety of epithelial
cells (70). Taken together, these examples indicate an intimate
interaction between bacterial pathogens and P-gp, though the
molecular mechanisms that govern this interaction and their as-
sociation with the innate immune system are not clear.

There are few reports that suggest potential mediators of the
association between P-gp and the type I interferon response to L.
monocytogenes infection. One such mediator is p38 MAPK, a crit-
ical player in the induction of IFN-� against L. monocytogenes
bacteria in both human and murine cells (40, 64), which was
shown to activate the transcription of P-gp in cancer cells and thus
mediate multidrug resistance (71, 72). Another is phosphoinosi-
tide 3-kinase (PI3K), which is also activated during L. monocyto-
genes infection (73) and was shown to regulate P-gp under differ-
ent conditions (74). Though both look promising, inhibiting the
functions of the two kinases, using the specific inhibitors
SB202190 and wortmannin, respectively, did not alter P-gp tran-
scription during L. monocytogenes infection, though, as expected,
it did reduce IFN-� transcription (see Fig. S3 in the supplemental
material). So far, our knowledge of the regulation of P-gp tran-
scription in vivo, and particularly during bacterial infection, is
very limited, and further investigation is warranted in order to
understand the phenomenon described here.

Lastly, the ability of P-gp to enhance the type I interferon re-
sponse may be related to its documented role in secretion of cyto-
kines and host immunomodulatory molecules (15). Alternatively,
P-gp could potentially export molecules of bacterial origin outside
infected cells and thus lead to immune activation of neighboring
cells, essentially enhancing inflammation. In this respect, it was
suggested that mammalian and bacterial MDRs share substrates
and thus could potentially propagate innate immune responses by
cotransporting bacterial ligands (60). Altogether, this study raises
important questions regarding the function of P-gp in the devel-
opment of innate immune responses and in interaction with bac-
terial pathogens. Our findings are particularly relevant to the de-
velopment of anticancer and antimicrobial treatments, since
many include MDR inhibitors. For example, in cancer patients,
inhibition of P-gp could lead to increased sensitivity to bacterial
infections and, potentially, to reduced positive antitumor effects
of the immune system. A deeper understanding of the role of
human MDR transporters in innate immune responses is critical
for improvement of current therapeutic strategies.
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