Zhu et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol) 2015 16(5):329-343 329

Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology)
ISSN 1673-1581 (Print); ISSN 1862-1783 (Online)

www.zju.edu.cn/jzus; www.springerlink.com

E-mail: jzus@zju.edu.cn

Review:

JZUS

Treatment of diabetes with encapsulated pig islets:

an update on current developments*

Hai-tao ZHU ™', Lu LU%, Xing-yu LIU®, Liang YU?, Yi LYU**, Bo WANG'#
(IHeart Center, Northwest Women'’s and Children’s Hospital, Xi’an 710061, China)

(*Department of Hepatobiliary Surgery, the First Affiliated Hospital, Medical College, Xi’an Jiaotong University, Xi’an 710061, China)
(*Department of Hand Surgery, China-Japan Union Hospital, Norman Bethune Health Science Center, Jilin University, Changchun 130033, China)
(“Institute of Advanced Surgical Technology and Engineering, Xi’an Jiaotong University, Xi’an 710061, China)

E-mail: zht0915@163.com; bobwang75@yeah.net
Received Nov. 16, 2014; Revision accepted Feb. 8, 2015; Crosschecked Apr. 9, 2015

Abstract: The potential use of allogeneic islet transplantation in curing type 1 diabetes mellitus has been adequately
demonstrated, but its large-scale application is limited by the short supply of donor islets and the need for sustained
and heavy immunosuppressive therapy. Encapsulation of pig islets was therefore suggested with a view to providing a
possible alternative source of islet grafts and avoiding chronic immunosuppression and associated adverse or toxic
effects. Nevertheless, several vital elements should be taken into account before this therapy becomes a clinical reality,
including cell sources, encapsulation approaches, and implantation sites. This paper provides a comprehensive review
of xenotransplantation of encapsulated pig islets for the treatment of type 1 diabetes mellitus, including current re-

search findings and suggestions for future studies.
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1 Introduction

Pancreatic islet transplantation is a viable and
attractive option for the treatment of type 1 diabetes
mellitus (T1DM) (Shapiro et al., 2000; Leitdo et al.,
2008; Hatziavramidis et al., 2013; Ramesh et al.,
2013). Due to a shortage of human donors, the
sourcing of xenogenic islets from pig donors has
emerged as an alternative strategy for transplantation.
The pig is considered as the suitable islet donor can-
didate with advantages of the structural similarity
between the insulin of pigs and humans, the lack of
amyloid formation, resistance to recurrent autoim-
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munity, and feasibility for genetic immunomodula-
tion (Koulmanda et al., 2003; Yonekawa et al., 2005;
Potter et al., 2010; Wynyard et al., 2014; Zhu et al.,
2014a; 2014b). Recently, the demonstration of sus-
tained diabetes reversal and prolonged survival of
islet grafts (from wild-type or genetically modified
pigs) in immunosuppressed diabetic non-human
primates (NHPs) (van der Windt et al, 2009;
Thompson et al., 2011a; 2011b; 2012; Bottino et al.,
2014) has signified a major step in the advance of the
use of pig islets as a promising cellular therapy for the
treatment of T1DM. However, due to immune in-
compatibility, xenogeneic rejection is still a major
challenge in the application of pig islet xenotrans-
plantation (Scalea et al., 2012). At present, the main-
stay of immune-modulatory remedies is the use of
heavy and permanent immunosuppressants which
have been shown to have harmful effects on both
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recipients (e.g. opportunistic infection, malnutrition,
neuritis, and severe morbidity) and grafts (e.g. islet
toxicity). To promote pig islet xenotransplantation
into clinical trials safely and effectively, the problems
of life-long immunosuppressive agents must first be
overcome (Cooper and Casu, 2009; O'Connell et al.,
2013; Shin et al., 2014). Indeed, only preclinical
studies in which the NHP recipients do not need con-
tinuous immunosuppressive therapy are considered as
an acceptable and possible basis for a clinical trial
(Cooper and Casu, 2009). Immunoisolation, hiding
the grafts from the recipients’ immune system, fun-
damentally differs from the conventional strategy
of continuing immunosuppressive/tolerance-inducing
treatments, and represents a potential and appropriate
approach for effectively reducing the immunological
barriers to the use of pig islets and for promoting graft
survival and functionality (Dufrane et al., 2006b;
Elliott et al., 2007; Zimmermann et al., 2007; Dufrane
and Gianello, 2012; Sakata et al., 2012).
Immunoisolation is usually achieved by coating
islet grafts with semi-permeable membranes consist-
ing of polymer materials, creating what are often
referred to as an artificial pancreas (AP) or an en-
capsulated islet (O'Sullivan et al., 2011). The semi-
permeable, bio-compatible membranes facilitate the
exchange of oxygen, nutrients, insulin, and waste, but

protect the islet grafts from the host immune response.

With the development of more stable and biocom-
patible encapsulation systems, pig islet xenografts are
able to survive and release insulin for a prolonged
period of time, thereby controlling glucose metabo-
lism with a reduction or even the omission of im-
munosuppressive medication (Table 1). Xenotrans-
plantation of encapsulated pig islets offers the pro-
spect of a practical treatment for insulin-dependent
diabetes mellitus (IDDM) (Dufrane and Gianello,
2012; Ramesh et al., 2013; Zhu et al., 2014b).
However, several important issues need to be ad-
dressed before large scale application can be pro-
posed, for example, seeking or generating a reliable
and transplantable source of pig islets/insulin-
producing cells, developing an encapsulation approach/
technology suitable for large-clinical application, and
determining suitable implant sites to facilitate islet
engraftment and function. The purpose of this article
is to provide a comprehensive review of these topics
of pig islet encapsulation.

2 Sources of pig islets

High-quality pig islets contribute a lot to the ef-
ficacy and functional duration of an AP. Compared
with other variables such as gender and body-weight,
donor age seems to have a greater impact on islet size,
yield, and functionality (Dufrane et al., 2005; Bottino
et al., 2007; Kim et al., 2009). Neonatal pig pancre-
atic cell clusters (NPCCs) provide additional ad-
vantages over adult pig islets (APIs), such as their
ease of isolation and purification, resistance to is-
chemia and inflammation during preparation, low
cost, and low level of T-cell response (Nagaraju et al.,
2015; Zhu et al., 2014a). After implantation, encap-
sulated immature pig islets, including NPCCs and
fetal pig islet-like cell clusters (FPICCs), can prolif-
erate and differentiate into mature B-cell masses and
show excellent metabolic control in vivo (Omer et al.,
2003b; Foster et al., 2007). Unlike APIs, immature
pig islet cells are resistant to the toxic effects of pro-
inflammatory cytokines, including tumor necrosis
factor-o, interleukin-1p, and interferon-y (Bai et al.,
2002), which may diffuse freely across the hydrogel
membranes of the capsules due to their low molecular
weight. NPCCs offer an alternative and promising
source for islet encapsulation in both preclinical and
clinical xenotransplantation (Table 1).

In consideration of the potential risk of zoonosis,
islet xenografts should be obtained from specific
pathogen-free (SPF) and designated pathogen-free
(DPF) pig breeds. Chicago Medical School miniature
pigs, New Zealand Auckland Island pigs, and trans-
genic pigs targeting porcine endogenous retrovirus
(PERV) (Elliott et al., 2000; Kim et al., 2007; Semaan
etal.,2012; Wynyard et al., 2014) represent available
donor sources for islet immunoisolation. The genetic
modification of islet cells is also a practical method
for generating new transplantable grafts with special
resistances. For example, the immunoisolation of
APIs genetically modified to overexpress antiapop-
totic Bcl-2 gene could significantly reduce islet loss
after intraportal infusion (Contreras et al., 2004). The
successful application of combined encapsulation and
genetic modification technologies opens up a new
strategy to improve the outcomes from xenoislet
transplantation. In the future, genetically engineered
pigs (e.g. transgenic pigs expressing human com-
plement regulators, human heme oxygenase-1, or
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knocking-out tissue factors, or multi-transgenic pigs)
will emerge as promising donor sources for islet im-
munoisolation in preclinical and clinical applications
with advantages of low antigenicity, resistance to in-
flammation or complement mediated islet damage or
loss, and sustained islet survival and functionality.

3 Encapsulation approaches

The introduction of the concept of immunoiso-
lation dates back to 1933. Since then, several different
types of immunoisolation devices have been created
and studied (Table 2). Overall, the designs of encap-
sulation systems can be divided into two major cat-
egories: intravascular and extravascular devices.

3.1 Intravascular devices

In intravascular devices, islet grafts are en-
closed in a large semi-permeable chamber contain-
ing a number of small diameter artificial capillaries
made of polyacrylonitrile-polyvinylchloride co-
polymer (PAN-PVC) (Lanza et al., 1996; Borg and
Bonifacio, 2011). For implantation, this device is
connected directly to the circulatory system of the
recipient by vascular anastomosis. The close contact
between the islets and the host’s blood stream en-
sures a rapid exchange of insulin and glucose,
thereby inducing a strict and prompt regulation of
blood glucose (BG). In diabetic dogs, intravascular
devices containing pig islets (160000—430000 islet
equivalents (IEQs)/device) provided good glycemic
control for more than eight months without
immunosuppression (Maki et al., 1996). However,
thrombus formation in the lumen of the intravascular
device or at the anastomotic site proved to be a major
obstacle, in spite of anticoagulant therapy in massive
doses. Also, it is quite plausible that the relatively
high flow-rates through the device could not allow
an adequate exchange of nutrients to sustain the
prolonged survival and favorable function of islet
grafts. Complications (e.g. bleeding, intimal hyper-
plasia, and infection) associated with vascular
prosthetic surgery still remain a serious threat lim-
iting the therapeutic potential of this approach. Thus,
research on intravascular devices has remained on
hold since the 1990s (Petruzzo et al., 1991; Maki
et al., 1996; Maki and Monaco, 1997). But in 2008,

Prochorov et al. (2008) conducted an intravascular
implantation of fetal rabbit islets (>6000 IEQs/kg)
contained in nylon microporous macrocapsules into
the arterial-venous fistulas of TIDM patients with-
out immunosuppression. All recipients were given
the current standard antithrombotic therapy. After
two years of follow-up, the authors reported a sig-
nificant reduction in exogenous insulin demands,
together with increases in C-peptide and immunore-
active insulin levels in 14 of the 19 patients. Moreover,
neither vascular lumen narrowing nor thrombosis was
observed. This encouraging achievement raises the
prospect that new biomaterials with new intravas-
cular approaches may lead to good outcomes, which
will produce a clinically relevant intravascular device.

3.2 Extravascular devices

This type of device does not require anastomosis
when it is transplanted into the recipient and therefore
has an advantage over intravascular devices in terms
of preclinical and clinical applications (Table 2).
Usually, extravascular devices are categorized into
two main types by their sizes: macroencapsules (as
large as 3 cmx8 cm) and microencapsules (ranging
from 150 to 1000 pm) (de Vos et al., 2010; Buder
etal., 2013).

3.2.1 Macrocapsules

Macrocapsules contain large numbers of islet
grafts within a tubular diffusion chamber or planar
chamber. One advantage of macrocapsules is that
they can be implanted and removed with minimal risk.
On the other hand, their major drawback is the limited
oxygen diffusion and nutrient transport, which tends
to result in impaired viability, dysfunction, or even
central necrosis in islets (Beck et al., 2007; Weir,
2013). Current research on macroencapsulation sys-
tems focuses largely on the development of tech-
niques and configurations, which can promote neo-
vascularization and provide sufficient oxygen and
nutrition for islet cells (Grundfest-Broniatowski et al.,
2009; Dufrane et al., 2010; Barkai et al., 2013; Vér-
iter et al., 2014; Scharp and Marchetti, 2014).

3.2.1.1 Current approaches

A commonly used commercial macrocapsule is
the TheraCyte device, which is made of bilayered
polytetrafluoroethylene (PTFE) membranes (Sérenby
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et al., 2008; Malavasi et al., 2010; Kirk et al., 2014).
The outer membrane of the TheraCyte device is de-
signed for strength and to facilitate neovasculariza-
tion, and the inner membrane provides immune pro-
tection. In diabetic mice, subcutaneous transplanta-
tion of NPCCs encapsulated in the TheraCyte device
greatly reversed diabetes for up to 10 weeks. In
non-diabetic monkeys, histology of the retrieved
device showed that it had no coating of cellular debris
and no inflammatory reaction was observed in the
adjacent tissues (Elliott ez al., 2005a). The TheraCyte
device is impermeable to immune cells, but the pore
size suggests that the membrane may be permeable to
antibodies and complements. The absence of pig islet
damage inside the device can possibly be explained
by the slow passage of IgG antibodies and little ex-
pression of o galactose antigens (activators of acute
rejection) on islet cells (Kin et al., 2000; Marigliano
et al., 2011; Kumagai-Braesch et al, 2013). Fur-
thermore, a novel implantable macrochamber (B-Air
device) has been created to offer immune protection
and an adequate oxygen supply for islet grafts (Lud-
wig et al., 2010; Barkai et al., 2013). This disc-shaped
combinational device consists of two compartments,
an oxygen supply compartment and an immune pro-
tected compartment containing islet grafts immobi-
lized in alginate hydrogel. Ludwig et al. (2010)
demonstrated that API allografts remained morpho-
logically intact, viable, and functional for significant
times within the double-chambered bioreactor con-
nected to subcutaneous refueling ports through which
an oxygen-CO, mixture was delivered by daily in-
jection. With structural improvements (e.g. increased
islet mass (up to (4160+380) IEQs/cmz), a better gas
ventilation system, and an improved immune barrier)
and successful applications in large animals (Ludwig
et al., 2013; Neufeld et al., 2013), the B-Air device
provides a potential alternative strategy for preclinical
pig islet xenotransplantation. Nevertheless, the pri-
mary obstacle is that the cell density in this device
needs to be quite low to ensure an adequate oxygen
supply. This indicates that if large numbers of pig
islets (25000-100000 IEQs/kg) are required to
achieve insulin independence in diabetic NHPs (He-
ring et al., 2006; Casu et al., 2008; van der Windt
et al.,2009; Thompson et al., 2011a; 2012; Zhu et al.,
2014a), numerous or larger devices must be im-
planted. However, it is impossible to find a suitable

surgical site to accommodate such macrodevices. The
challenge will be settled if approaches can be found to
offer more oxygen by improved delivery methods or
better vascularisation.

More recently, a monolayer configuration (made
of alginate) of macroencapsulated APIs implanted
subcutaneously showed the ability to correct hyper-
glycemia for up to six months in diabetic monkeys
without immunosuppression (Dufrane et al., 2010).
In this device, pig islets were seeded as a monolayer
on a human decellularized collagen matrix (mean
50000 IEQs/cm?) to improve the number of islets per
unit surface area and to enhance biological support
(e.g. oxygen delivery and nutrient exchange). Sub-
sequently, a better and longer diabetic control (up to
32 weeks) was obtained in diabetic monkeys after
subcutaneous implantation of APIs and mesenchymal
stem cells (MSCs) which were co-encapsulated in the
same monolayer device (Vériter et al., 2014). The
co-transplantation of MSCs significantly improved
the vascularization (neoangiogenesis) and oxygena-
tion of the macrodevice in terms of an increased
number of vessels and elevated generation of vascular
endothelial growth factor (VEGF). Also, the pig
MSCs could be expanded and differentiated, there-
fore potentially constituting an alternative, renewable,
and continuous source of insulin-producing cells. A
phase I clinical trial is ongoing in Belgium to further
investigate the safety and effectiveness of this mon-
olayer cellular device for allotransplantation of en-
capsulated islets into humans.

3.2.1.2 Clinical trials

Valdés-Gonzalez et al. (2005) reported accepta-
ble clinical outcomes from xenotransplantation of
NPCCs encapsulated in an autologous collagen-
generating device with homologous Sertoli cells,
which had excellent immunomodulatory properties.
Prior to islet-Sertoli cell infusion (30-100 Sertoli
cells per islet), the macrodevices (6 cmx0.8 cm)
consisting of two steel mesh tubes and a PTFE rod
interior were implanted subcutaneously for two
months to allow tissue ingrowth and vascularization.
Without the use of any immunosuppressants, 6 of 12
patients showed a 50% or greater reduction in exog-
enous insulin requirements, and this reduction was
maintained for up to four years. Three years post-
implantation, histological samples of tissue extracted
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from the device stained positive for insulin-producing
cells. Moreover, routine microbiological screening of
the recipients was constantly negative. With technical
improvements, Valdés-Gonzalez et al. (2007) further
demonstrated the safety and feasibility of this xeno-
transplantation procedure for the control of TIDM in
a single detailed case study. Valdes-Gonzalez et al.
(2010) reported a longitudinal study of 23 T1DM
patients xenotransplanted with collagen macroen-
capsulated NPCC-Sertoli cells between 2000 and
2004. All recipients produced detectable porcine
C-peptide in their urine and more than 50% of recip-
ients presented a greater reduction (>33%) in their
exogenous insulin requirement. Unfortunately, this
pilot study did not contain a diabetic control under-
going tightly controlled treatment to validate the
results.

3.2.1.3 Some considerations

Although interesting data have come from
macroencapsulation studies, additional issues have to
be addressed before the macroencapsulation of pig
islets can emerge as a practical clinical option for the
treatment of TIDM. (1) Macrocapsules with optimal
geometry and structure are needed to enhance the
supply of oxygen and nutrients for the contained pig
islets, and to minimize the diffusion distance for in-
sulin and glucose. (2) Studies have demonstrated that
macroencapsulation of pig islets can result in
normoglycemia in diabetic recipients; however, very
little is known about the kinetics of insulin release
from the encapsulated pig islets. Is there an adequate
and timely insulin response to changes in glucose
levels? (3) Vascularization of the membrane, a man-
datory process for favorable function and prolonged
survival of macroencapsulated islets, is preceded by
inflammation which involves the recruitment of in-
flammatory cells around the macrodevices and the
formation of an extracellular matrix to facilitate in-
growth of endotheliocytes (de Vos et al., 2010). It is
essential to explore which factors need protection in
a macrodevice during the early and late implant
stages. (4) What is the optimal amount of pig islet
grafts that can be well supported by a certain surface
(i.e. the optimal packing density of islet cells) that
receives oxygen and nutrient supply from the pe-
ripheral tissues?

3.2.2 Microcapsules

Microcapsules incorporate individual or small
groups of'islets in a spherical hydrogel polymer with a
stable mechanical structure. A number of considera-
tions favor microcapsules over macrocapsules (Table 2).
The spherical geometry and low volume of micro-
capsules offer better oxygen and nutrient transport
due to a higher surface area-to-volume ratio (van
Schilfgaarde and de Vos, 1999; Beck et al., 2007).
Furthermore, microcapsules require less complex or
expensive manufacturing procedures, and can be
simply injected without major surgery (Scharp and
Marchetti, 2014). Their primary drawback is that it is
difficult to remove them completely, especially if
there is pericapsular fibrotic overgrowth (PFO) after
implantation. Nevertheless, a novel method, attach-
ment of microcapsules to a plasma-treated polydi-
methylsiloxane (PDMS) sheet, appears to be appli-
cable for retrieving microencapsulated pig islets when
required (Shin et al., 2013).

3.2.2.1 Current approaches

Currently, there seems to be a great deal more
researches and developments on microdevices than
on macrodevices in preclinical pig islets xenotrans-
plantation (Table 1). In this area, alginate is the most
suitable and commonly used biomaterial to entrap
islet cells (de Vos et al., 2014; Orlando et al., 2014)
(Tables 1 and 2). In general, islet-containing alginate
solution is dropped through a nozzle into calcium or
barium solution to generate a microbead incorporat-
ing an individual or few islet grafts. The surface of
the device can be further coated with polycation/
alginate to confer better permselectivity and me-
chanical stability. Moreover, a variety of capsule
sizes and structures are available, including a core-
shell version, double core/shell version, and a solid-
like/liquid core version. However, a lack of stand-
ardized formulations contributes greatly to current
reported lab-to-lab variation in biocompatibility and
immune-protection of microencapsulation systems.

Several studies have demonstrated the successful
protection of alginate-microencapsulated pig islets
against immune destruction and long-term reversal or
control of hyperglycemia (ranging from four months
to over 450 d) in diabetic rodents (Lanza et al., 1999;
Omer et al., 2003b; Foster et al., 2007; Cui et al.,
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2009). More importantly, studies describing xeno-
transplantation of pig islets (APIs or NPCCs) mi-
croencapsulated in an alginate-matrix confirmed their
biocompatibility and safety (no evidence of porcine
viral transmission) in nondiabetic NHPs (Elliott et a!.,
2005a; Dufrane ef al., 2006b), and demonstrated their
capacity to achieve metabolic control and reduce
insulin requirements in diabetic dogs and NHPs (Sun
et al., 1996; Elliott et al., 2005b; Abalovich et al.,
2009). However, the clinical application of microen-
capsulated pig islets is not yet supported by more
solid preclinical achievements. Only one historical
study (Sun et al., 1996) indicated that spontaneously
diabetic monkeys could become insulin independent
for periods ranging from 120 to 803 d with normal-
ized fasting BG levels following 1-3 transplants of
microencapsulated APIs. Although the data obtained
were encouraging for clinical practice, they might be
largely dependent on the primate model. To achieve
long-term biocompatibility and viability (e.g.
>6 months) and favorable immunoprotection of al-
ginate microencapsulated pig islets in primate recip-
ients, several suggestions should be considered (Sun
et al., 1996; Dufrane et al., 2006b; Calafiore and
Basta, 2014): (1) the use of donor pigs with a
well-defined genetic background; (2) the use of pig
islets with high-purity (>90% purity); (3) fabrication
of microcapsules using highly purified material with
improved stability, low heavy metal, protein and
endotoxin content, and a “clinical-grade” basic algi-
nate is recommended; (4) the culture of microen-
capsulated islets in a medium containing 1.8 mmol/L
CaCl, for 18 or 24 h prior to implantation; and (5)
the transplantation of grafts composed of more than
90% well-shaped capsules (of regular and spherical
shape).

3.2.2.2 Clinical trials

Elliott et al. (2007) first reported a case of
long-term survival (>9.5 years) of microencapsulated
NPCCs in a male patient with TIDM who received
a single implantation of alginate based grafts
(15000 IEQs/kg) into the peritoneal cavity in 1996.
Following transplantation, the daily insulin dose was
reduced by up to 30% and the urinary porcine
C-peptide remained detectable for over one year. Ten
years later, laparoscopic examination revealed living
and functional NPCCs in his abdomen, and no evi-

dence of xenosis or gross peritoneal reaction or fi-
brosis was observed. In 2007, a larger clinical study
of commercial microencapsulated pig islets (also
called “Diabecell”) was conducted by the Living
Cell Technologies (LCT) Company (Tan, 2010)
(DIABECELL® is currently in late-stage clinical trials.
Further information is available from http://www.
Ictglobal.com/products/diabecell/development-to-date).
After implantation (5000-10000 IEQs/kg), two pa-
tients were completely independent of insulin ad-
ministration for up to 32 weeks, and six patients dis-
played improved BG control as reflected by their
reduced glycated haemoglobin (HbAlc) levels and
daily insulin dose. Currently, other phase Ila trials are
being conducted in New Zealand and Argentina.

3.2.2.3 Some considerations

All these clinical trials cannot be considered as
true breakthroughs for the treatment of T1DM, since
no exogenous insulin administration was interrupted
and the metabolic control was not excellent. Never-
theless, these pilot clinical trials confirmed the safety
and potential therapeutic effects of microencapsulated
islet xenografts in human recipients. Improvements in
microcapsule design and fabrication, coupled with the
emergence of sufficient or renewable islet cell mass
with low xenoantigenicity and high-quality (e.g. high
purity, with inflammation- and hypoxia-resistance),
as well as advances in optimized biomaterials and the
bioengineering of implantation sites may help to
provide a favorable and stable metabolic control in
diabetic patients.

3.3 Future directions: conformal coating

Traditional methods of islet microencapsulation
can still result in diffusional limitations associated
with capsules of larger size (>600 um in diameter),
which may lead to blunted insulin secretion in re-
sponse to glucose, and even core hypoxia or necrosis
of islets. In addition, the mean diameter of islets is
about 150 pm, increasing the total volume of the
implant by dozens of times after microencapsulation.
Usually, transplant sites able to accommodate such
large volumes of implants are confined to the peri-
toneal cavity (Sun et al., 1996; Elliott et al., 2005b;
2007; Cui et al., 2009), which is poorly vascularized
and constitutes a preferential location for inflammatory
and immunological reactions (Hsu ef al., 1999; Omer
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et al., 2003a; de Groot et al., 2004). Thus, intraperi-
toneal injection seems less appropriate for promoting
engraftment of encapsulated pig islets (Dufrane et al.,
2006a).

To address these issues, investigators developed
an approach to encapsulate islets by conformal coat-
ing, which may increase capsule stability, minimize
capsule thickness and size and graft volume, and
allow graft transplantation into the liver through the
portal vein (Teramura and Iwata, 2008; 2009; Kizilel
et al., 2010; Tomei et al., 2014). Conformal coating
can be defined as the application of hydrogels to the
surface of an islet cell by interfacial polymerization to
form a cross-linked hydrogel and a thin (<50 pm)
coating (Cruise et al., 1998; Sefton et al., 2000;
Wilson et al., 2008; Scharp and Marchetti, 2014).
Islet surface modification with the biologically inert,
amphiphilic polymer polyethylene glycol (PEG) has
emerged as a promising and alternative approach. Not
only did PEGylation have no adverse effects on islet
morphology, viability, or functionality (Cruise ef al.,
1998; Contreras et al., 2004; Teramura and Iwata,
2009), but it was also found to prevent islet recogni-
tion by activated immune cells in vitro (Lee et al.,
2004) and to reduce islet allograft damage or loss
after intraportal transplantation (Teramura and Iwata,
2009). However, some in vivo studies suggested that
islet surface modification alone, either with a PEG or
heparin coating, was not a very stable immunopro-
tective method since combinatory treatments of low-
dose immunosuppressants (e.g. cyclosporine or anti-
co-stimulatory antibodies) had highly synergic effects
on the maintenance of normoglycemia and inhibition
of sensitized host immune responses (Lee et al.,
2006a; 2006b; Jung et al., 2012; Jeong et al., 2013).
It is unlikely that this technology will prove to be
highly effective and applicable in pig islet xeno-
transplantation using present methods. Intraportal
infusion of APIs (5000 IEQs/recipient) modified with
PEG derivatives into non-obese diabetic/severe
combined immune-deficient (NOD-SCID) mice gave
better glucose control, but the euglycemia (non-fasting
glucose <200 mg/dl) was very transient (<2 weeks)
(Contreras et al., 2004). In a study by Cabric et al.
(2007), although transplantation of APIs (7500 IEQs/kg)
coated with heparin into the livers of piglets resulted
in lower insulin release (an indicator of cell damage),
as well as decreased thrombin antithrombin (TAT)

and C3a generation, the observation period was
too short (<60 min) and long-term graft viability/
functionality was not assessed.

Currently, by using the layer-by-layer (LbL)
method, it is possible to fabricate complex coatings (e.g.
PLL-g-PEG-biotin/streptavidin, chitosan/alginate, PEG-
N-hydroxysuccinimide/alginate, or PEG-complement
receptor 1/heparin multilayer films) of nanometer
thickness to significantly improve the stability of the
layers, enhance nutrient diffusion, promote growth of
new microvasculature, inhibit complement activa-
tion/blood-mediated inflammatory responses, and
prolong islet graft survival (Cabric et al, 2007,
Teramura and Iwata, 2008; Wilson et al., 2008; 2011;
Zhi et al., 2012; Gattas-Asfura and Stabler, 2013;
Luan and Iwata, 2013; Scharp and Marchetti, 2014).
The main drawback of this innovative approach is the
possible cytotoxicity of the compounds used. Thus, it
is necessary to develop new methods to fabricate
novel multifunctional coatings with excellent im-
munomodulatory capacities which can facilitate the
reconstruction of the microenvironment (e.g. provide
extracellular matrix support) and satisfy the physical
demands of islet grafts. In this sense, the LbL strategy
is still able to offer an opportunity to combine the
inherent advantages of microencapsulation and con-
formal coating. In the future, the use of LbL with
multifunctional materials derived from non-toxic
biologically-active polymers or living regulatory cells
will serve as a useful approach for sustained and fa-
vorable islet viability and functionality.

4 Implantation sites

The microenvironment of the implant site plays
a major role in engraftment and survival of encapsu-
lated pig islets xenografts. An optimal site should
provide (1) a simple and safe implanting/removal
operation, (2) immune protection, (3) a physiological
route for insulin delivery, (4) a sufficient blood and
oxygen supply, (5) enough space for a large volume
of encapsulated islets, and (6) compatibility with
immunoisolation systems (Zhu et al., 2014b).

Due to its lower restriction on the volume of
grafts, intraperitoneal space has been used most often
for the transplantation of encapsulated islets (Vériter
et al., 2013), especially in xenotransplantations of
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encapsulated pig islets into experimental or preclini-
cal models (Lanza et al., 1991; Sun et al., 1996; Kin
et al., 2002; Omer et al., 2003a; Elliott et al., 2005a;
2005b; 2007; Vinerean et al., 2008; Grundfest-
Broniatowski et al., 2009). Although the procedure is
easy and less invasive by laparoscopy, the peritoneal
cavity may not be the ideal location for islet en-
graftment. Drawbacks include the lack of close con-
tact with the bloodstream and the difficulty of re-
trieving the capsules if needed. Moreover, transplan-
tation of encapsulated islets into the peritoneum may
aggravate hypoxia and hamper the insulin secretory
response since oxygen and insulin delivery through
the peritoneal cavity is by passive transport only (de
Groot et al., 2004). Studies in rodent models have
demonstrated that macrophages and lymphocytes in
the peritoneum are directly involved in the cellular
infiltration, PFO, and rapid degradation of the capsule
(Omer et al., 2003a; Dufrane et al., 2006a; Vaithil-
ingam et al., 2013). Despite the administration of
immunosuppressive agents showing beneficial effects
in improving the biocompatibility and prolonging the
survival of encapsulated pig islets (either via macro-
encapsulation or microencapsulation) after intraperi-
toneal implantation (Omer et al., 2003a; Safley et al.,
2005), the combination of immune suppression and
encapsulation potentially reduces to nihil the interest
in encapsulation (Orlando et al., 2014).

By contrast, subcapsular kidney (suitable only
for microcapsules) and subcutaneous spaces (suitable
for different encapsulation devices) showed weaker
cellular reactions, better islet viability, and fewer
broken capsules than the peritoneal cavity for trans-
plantation of encapsulated pig islets (Dufrane et al.,
2006a), rendering them interesting alternative sites
for receiving encapsulated pig islets in preclinical
studies (Elliott et al., 2005a; Dufrane et al., 2006b;
2010). Pre-vascularization of the implant site or
co-encapsulation of pig islets and MSCs, especially
for a subcutaneous space, is a very useful strategy to
promote neovascularization around the implanted
devices and to reduce hypoxic stress in the capsulated
islets (Wang et al., 2002; 2003; Vériter et al., 2014).
Nowadays, with the emergence of conformal coating
and surface modification technology, the liver is
again being investigated as a possible implant site for
both allo- and xeno-islet grafts due to the resultant
reduction in graft volume, prevention of instant

blood-mediated inflammatory reaction (IBMIR) and
intraportal thrombosis, and improvement in graft
survival (Cabric et al., 2007; Teramura and Iwata,
2008; 2009; Luan and Iwata, 2013).

Other novel sites reported recently, such as
striated muscle (Christoffersson et al., 2010; Espes
et al., 2011) and bone marrow (Meier et al., 2014),
represent feasible locations for the transplantation of
microencapsulated or conformal coated islets with
the advantages of good vascularization and rela-
tively easy access. Nevertheless, further studies need
to be performed in large animal models to evaluate
the long-term graft survival and function in such sites.

5 Conclusions

Xenotransplantation of encapsulated pig islets
may overcome the two major hurdles of conventional
islet transplantation: limited human donor supply and
the extensive use of immunesuppressants. Though
studies conducted in both animal models and human
recipients (early phase clinical trials) have demon-
strated the feasibility of encapsulated pig islet
xenontransplantation in the treatment of T1DM,
clinical application is still a long way off. The suc-
cesses are difficult to replicate (lab-to-lab variation)
and there is a lack of a standard protocol for the
preparation, engineering, and implantation of encap-
sulated islet xenografts. A consensus among special-
ists needs to be reached to further advance the current
encapsulation technology. Among the encapsulation
approaches, in our opinion, conformal coating of
micron and submicron scale on individual islets or
cell aggregates represents a promising direction. In
the near future, with advances in genetically modified
pig islets or stem-cell derived functional islets, im-
provements in encapsulation design and process, the
emergence of novel biocompatible encapsulation
materials and well bioengineered microenvironments
for graft colonization, and greater preclinical and
clinical experience with xenotransplantation will
probably provide a clinically useful means of
achieving B-cell replacement for IDDM.
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