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Abstract

Most sensory, cognitive and motor functions depend on the interactions of many neurons. In 

recent years, there has been rapid development and increasing use of technologies for recording 

from large numbers of neurons, either sequentially or simultaneously. A key question is what 

scientific insight can be gained by studying a population of recorded neurons beyond studying 

each neuron individually. Here, we examine three important motivations for population studies: 

single-trial hypotheses requiring statistical power, hypotheses of population response structure and 

exploratory analyses of large data sets. Many recent studies have adopted dimensionality reduction 

to analyze these populations and to find features that are not apparent at the level of individual 

neurons. We describe the dimensionality reduction methods commonly applied to population 

activity and offer practical advice about selecting methods and interpreting their outputs. This 

review is intended for experimental and computational researchers who seek to understand the role 

dimensionality reduction has had and can have in systems neuroscience, and who seek to apply 

these methods to their own data.

A central tenet of neuroscience is that the remarkable computational abilities of our brains 

arise as a result of populations of interconnected neurons. Indeed, we find ourselves at an 

exciting moment in the history of neuroscience, as the field is experiencing rapid growth in 

the quantity and complexity of the recorded neural activity. Many groups have begun to 

adopt multi-electrode1 and optical2 recording technologies that can monitor the activity of 

many neurons simultaneously in cortex and, in some cases, in deeper structures. Ongoing 

development of recording technologies promises to increase the number of simultaneously 

recorded neurons by orders of magnitude3. At the same time, massive increases in 
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computational power and algorithmic development have enabled advanced multivariate 

analyses of neural population activity, where the neurons may be recorded either 

sequentially or simultaneously.

These technological advances have enabled researchers to reconsider the types of scientific 

questions that are being posed and how neural activity is analyzed, even with classical 

behavioral tasks and in brain areas that have been studied for decades. Indeed, many studies 

of neural systems are undergoing a paradigm shift from single-neuron to population-level 

hypotheses and analyses. We begin this review by discussing three scientific motivations for 

considering a neural population jointly, rather than on a single-neuron basis: single-trial 

hypotheses requiring statistical power, hypotheses of population response structure and 

exploratory analyses of large data sets. Critically, we show that there are settings in which 

data fundamentally cannot be understood on a single-neuron basis, whether as a result of 

neural spiking variability or a hypothesis about neural mechanism that depends on how the 

responses of multiple neurons covary.

The object of this review is to focus on one class of statistical methods, dimensionality 

reduction, which is well-suited for analyzing neural population activity. Dimensionality 

reduction methods produce low-dimensional representations of high-dimensional data, 

where the representation is chosen to preserve or highlight some feature of interest in the 

data. These methods have begun to reveal tantalizing evidence of the neural mechanisms 

underlying various phenomena, including the selection and integration of sensory input 

during decision-making in prefrontal cortex4, the ability of premotor cortex to prepare 

movements without executing them5, and odor discrimination in the olfactory system6. 

Dimensionality reduction has also been fruitfully applied to population recordings in other 

studies of decision-making7–9, the motor system10–12 and the olfactory system13,14, as well 

as in working memory15,16, visual attention17, the auditory system18, rule learning19, 

speech20 and more. We introduce dimensionality reduction and bring together previous 

studies that have used these methods to address each of the three scientific motivations for 

population analyses. Because the use of dimensionality reduction is still relatively new in 

systems neuroscience, we then present methodological details and practical considerations.

Much of this work in neuroscience has developed in the last decade: as presciently noted by 

Brown et al.21, “the future challenge is to design methods that truly allow neuroscientists to 

perform multivariate analyses of multiple spike train data”. Dimensionality reduction is one 

important way in which many researchers have answered and will continue to answer this 

challenge.

Scientific motivation of population analyses

The growth in scale and resolution of recording technologies brings with it challenges for 

the analysis of neural activity. Consider a didactic example of action potentials from 

multiple simulated neurons `recorded' across multiple experimental trials of multiple 

experimental conditions (Fig. 1a). As the number of neurons, trials and conditions grows, it 

becomes increasingly challenging to extract meaningful structure from these spike trains. 

Indeed, the classic approach of averaging spike trains across putatively similar trials and 
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smoothing across time (Fig. 1b) may still yield responses that are difficult to interpret. 

Despite this apparent complexity, there is also great scientific opportunity in studying a 

population of neurons together; here we discuss these scientific motivations.

Single-trial statistical power

If the neural activity is not a direct function of externally measurable or controllable 

variables (for example, if activity is more a reflection of internal processing than stimulus 

drive or measurable behavior), the time course of neural responses may differ substantially 

on nominally identical trials. One suspects this to be especially true of cognitively 

demanding tasks that involve attention, decision-making and more. In this setting, averaging 

responses across trials may obscure the neural time course of interest, and single-trial 

analyses are therefore essential. By recording the response of a single neuron, it is usually 

difficult to identify the moment-by-moment fluctuations of these types of internal cognitive 

processes. However, if multiple neurons are recorded simultaneously, one can leverage 

statistical power across neurons to extract a succinct summary of the population activity on 

individual experimental trials12,22–24.

For example, consider a decision-making task in which the subject might abruptly change 

his/her mind or vacillate between possible choices on individual trials25,26. If these switches 

occur at different times on different trials, the act of trial averaging will obscure the 

switching times of each trial. At worst, trial averaging can mislead scientific interpretation: 

in this example, abrupt, but temporally variable, switches appear as a slow transition when 

averaged, suggestive of a different neural mechanism. Population recordings critically 

address this shortcoming of trial averaging: one can consider multiple neurons on a single 

trial, rather than a single neuron on multiple trials, to gain the statistical power necessary to 

extract de-noised single-trial neural time courses. These time courses can then be related to 

the subject's behavior on a trial-by-trial basis, potentially leading to new insights about the 

neural basis of decision-making7,9,24,26. Below, we will show that dimensionality reduction 

methods are a natural choice for this statistical analysis, as used in the above studies.

Population response structure

Population analyses are necessary in settings in which there may be neural mechanisms that 

involve coordination of responses across neurons. These mechanisms exist only at the level 

of the population and not at the level of single neurons, such that single-neuron responses 

can appear hopelessly confusing or, worse, can mislead the search for the true biological 

mechanism27. Indeed, recordings in higher level brain areas16, as well as areas closer to 

sensory inputs28 and motor outputs29, have yielded highly heterogeneous and complex 

single-neuron responses, both across neurons and across experimental conditions. In some 

cases, single-neuron responses may bear no obvious moment-by-moment relationship with 

the sensory input or motor output that can be externally measured. Classically, such 

heterogeneity has been considered to be a result of biological noise or other confounds, and 

often researchers study only neurons that `make sense' in terms of externally measurable 

quantities. However, this single-neuron complexity may be the realization of a coherent and 

testable neural mechanism that exists only at the level of the population.
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To make this concept concrete, consider a hypothetical neural circuit as a dynamical system, 

in the sense that the activity of its constituent neurons changes over time30. Just as the 

motion of a bouncing ball is governed by Newton's laws, the activity in this neural circuit is 

governed by dynamical rules (for example, point attractors, line attractors or oscillations). 

Although single-neuron responses certainly express aspects of these dynamical rules, the 

critical conceptual point is that neither the single-neuron responses in isolation nor the true 

mechanism can be understood without the population of neurons. By analyzing the recorded 

neurons together, one can test for the presence or absence of a neural mechanism, be that a 

dynamical process or some other type of population activity structure. Dimensionality 

reduction is a key statistical tool for forming and evaluating hypotheses about population 

activity structure4–6,11,16.

Exploratory data analysis

Studying a population of neurons together facilitates data-driven hypothesis generation. 

There is a subtle, but important, difference between this and the previous motivation. 

Population response structure is concerned with mechanisms that exist at the population 

level and are not interpretable as single-neuron hypotheses or mechanisms. On the other 

hand, exploratory data analysis involves visualizing a large amount of data, which can help 

to generate hypotheses regarding either single neurons or the population. When the neurons 

show heterogeneous response properties, it can be challenging to interpret all responses 

simultaneously and cohesively (Fig. 1). Consideration of the population as a whole provides 

a way in which all of the data (across neurons, conditions, trials and time) can be interpreted 

together. This step provides an initial assessment of the salient features of the data and can 

guide subsequent analyses. Furthermore, visualization is an efficient way to perform sanity 

checks on large data sets (for example, to see that neural activity is more similar across trials 

of the same experimental condition than across trials of different conditions, or to check for 

recording stability across an experimental session), which facilitates rapid iteration of the 

experimental design. Dimensionality reduction, by giving a low-dimensional summary of 

the high-dimensional population activity, is a natural approach for performing exploratory 

data analysis.

Intuition behind dimensionality reduction

Dimensionality reduction is typically applied in settings in which there are D measured 

variables, but one suspects that these variables covary according to a smaller number of 

explanatory variables K (where K < D). Dimensionality reduction methods discover and 

extract these K explanatory variables from the high-dimensional data according to an 

objective that is specific to each method. These explanatory variables are often termed latent 

variables because they are not directly observed. Typically, any data variance not captured 

by the latent variables is considered to be noise. In this light, dimensionality reduction is like 

many statistical methods: it provides a parsimonious description of statistical features of 

interest and discards some aspects of the data as noise.

In the case of neural population activity, D usually corresponds to the number of recorded 

neurons. Because the recorded neurons belong to a common underlying network, the 

responses of the recorded neurons are likely not independent of each other. Thus, fewer 
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latent variables may be needed to explain the population activity than the number of 

recorded neurons. The latent variables can be thought of as common input or, more 

generally, as the collective role of unobserved neurons in the same network as the recorded 

neurons. Furthermore, many dimensionality reduction methods take the view that the time 

series of action potentials emitted by a single neuron can be represented by an underlying, 

time-varying firing rate, from which the action potentials are generated in a stochastic 

manner31–33. This is a prevalent view in neuroscience, whether it is stated implicitly (for 

example, averaging spike trains across trials to estimate a time-varying firing rate) or 

explicitly (for example, statistical models of spike trains34). Previous studies have suggested 

that the stochastic component tends to be Poisson-like35, and we refer to it as spiking 

variability. The goal of dimensionality reduction is to characterize how the firing rates of 

different neurons covary while discarding the spiking variability as noise. Thus, each of the 

D neurons can be thought of as providing a different, noisy view of an underlying, shared 

neural process, as captured by the K latent variables. The latent variables define a K-

dimensional space that represents shared activity patterns that are prominent in the 

population response.

To illustrate, consider the case of D = 3 neurons. We first define a high-dimensional space in 

which each axis represents the firing rate of a neuron (r1, r2, and r3; Fig. 2). In this 

framework, each vector [r1, r2, r3] of population activity corresponds to a point in this space. 

We can then ask what low-dimensional (K < D) space explains these data well. In Figure 2, 

the points lie on a plane (shaded gray, K = 2) and trace out a trajectory over time. Each time 

point t corresponds to a single point in the high-dimensional firing rate space [r1(t), r2(t), 

r3(t)]. Note that time is not plotted on any of the axes; each axis represents the firing rate of 

one neuron, and time evolves implicitly across the trajectory.

There are two complementary ways to think about the relationship between the latent 

variables and the population activity for linear dimensionality reduction. First, the 

population activity can be reconstructed by taking a weighted combination of the latent 

variables, where the weights are determined by the dimensionality reduction method (Fig. 

2). Each latent variable time course (s1(t) and s2(t)) can be thought of as a temporal basis 

function: a characteristic pattern of covarying activity shared by different neurons. The first 

and second columns of the weight matrix specify the s1 and s2 axes in the three-dimensional 

space, respectively (Fig. 2). Thus, one can think of each weight as specifying how much of 

each temporal basis pattern to use when reconstructing the response of each neuron. Second, 

the latent variables can be considered low-dimensional readouts or descriptions of the high-

dimensional population activity (in [s1, s2] space; Fig. 2). Each latent variable can be 

obtained simply by taking a weighted combination of the activity of different neurons.

In general, the points in [r1, r2, r3] space will not lie exactly in a plane. In this case, 

dimensionality reduction attempts to find latent variables that can reconstruct the population 

activity as well as possible. The reconstructed activity can be interpreted as the de-noised 

firing rate for each neuron.
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Scientific studies using dimensionality reduction

Having established the intuition of dimensionality reduction, we discuss the uses of these 

methods in the neuroscience literature and the insights they have revealed, organized by the 

three scientific motivations for analyzing neural populations.

Single-trial statistical power

A growing body of work has leveraged statistical power across multiple neurons to 

characterize the population activity on individual experimental trials. A prominent example 

is the study of visual attention, which likely varies from moment to moment despite the best 

efforts of the experimenters. To study the neural mechanisms underlying visual attention, 

one group17 recorded from a population of neurons in monkey area V4 during a change-

detection task. They then established a single-trial measure of attention by projecting the 

population activity onto a one-dimensional `attention axis' (Fig. 3a), which is dimensionality 

reduction onto a line (K = 1). The attention axis was defined by the mean response of each 

neuron in each attention condition. Notably, the authors found that the projection onto the 

attention axis predicted behavioral performance on a trial-by-trial basis (Fig. 3a), an effect 

that was not possible to see at the level of individual neurons. The key to this finding was 

the projection, which leveraged statistical power across the entire recorded population to 

estimate an underlying attentional state on a single-trial basis.

There are several other key experimental contexts in which dimensionality reduction has 

been applied to population activity to reveal single-trial neural phenomena, including studies 

of decision-making9,24,26, rule learning19, motor planning36 and stimulus localization22. In 

these studies, dimensionality reduction was performed using the population responses alone, 

without referencing the subject's behavior. The behavior was then used to validate the 

extracted latent variables on a single-trial basis. A similar approach can be used to study 

how population activity differs on trials with aberrant behavior (that is, error trials)7,9,10.

Dimensionality reduction is also valuable for studying spontaneous activity, where no notion 

of a repeatable trial exists and must therefore be analyzed on a single-trial basis. By 

definition, spontaneous activity involves fluctuations of the population activity that are not 

directly controlled by the experimenter. To characterize spontaneous activity, dimensionality 

reduction can be applied to extract a low-dimensional network state at each moment in 

time18,37–39. This facilitates the comparison of spontaneous activity to population activity 

during sensation10,18 and action10,37.

Population response structure

Another key use of dimensionality reduction is to test scientific hypotheses that are sensible 

only at the level of the population. Population structure hypotheses have been actively 

pursued in several different systems, including the prefrontal cortex4,8,15,16,40, the motor 

system5,11,41–43 and the olfactory system6,13,14,28,44–48. A common theme across these 

systems is that, although neural responses may appear hopelessly complex at the level of 

individual neurons, simpler organizing principles exist at the level of the population.
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In the prefrontal cortex, one study4 examined the representation of both relevant and 

irrelevant stimulus information in a decision-making task, which comprised 72 different 

experimental conditions involving the motion and color of dots on a screen (Fig. 3b). During 

this task, the authors recorded over 1,000 neurons in the prefrontal cortex, yielding a large 

database of responses that could not be easily summarized or understood, a prototypical 

example of single-neuron complexity. Given the lack of simple interpretation at the level of 

individual neurons, they asked whether the confounding single-neuron responses could be 

understood as views of a simple dynamical process at the population level. A dimensionality 

reduction method was designed to identify shared latent variables, each of which explained 

an external covariate (the subject's choice, dot motion, dot color or task context). Notably, 

the low-dimensional representation was a simple projection of the population activity, and 

not a decoded estimate of these covariates. Applying this method to experimental data, the 

authors found that the population activity was consistent with a low-dimensional dynamical 

process involving a line attractor (Fig. 3b), which could not have been identified by 

examining single neurons in isolation. Furthermore, they found that the population activity 

surprisingly carried both relevant and irrelevant stimulus information, and that `gating' could 

be implicitly achieved by a readout mechanism along task-dependent directions in the 

population space, an inherently population-level concept. Their use of dimensionality 

reduction also provided a bridge between population recordings and network theory49, in 

which both the experimental data and the model indicated a similar dynamical process for 

information gating. The mechanism also predicted that the dynamical process would have a 

different orientation in the population space for different task contexts, which can be tested 

experimentally to validate or invalidate this mechanism. This connection between 

experiment and theory was enabled by the judicious use of dimensionality reduction to 

examine population response structure.

In the motor system, another group11 studied reach preparation and execution by recording 

hundreds of neurons in the primary motor cortex during a task with 108 different 

experimental conditions (Fig. 3c). As in the previous example4, the heterogeneity of the 

single-neuron responses was difficult to interpret. By applying dimensionality reduction, 

they found a coherent mechanism at the level of the population: preparatory activity sets the 

initial state of a dynamical process, which unfolds as the movement is executed. This 

dynamical structure cannot be understood with single-neuron responses alone, and 

population analysis was required to reveal this lawful coordination between two phases of 

the task (Fig. 3c). This structure further predicted a lack of correlation in neuronal tuning 

between the preparatory and execution-related phases of the task at the level of single 

neurons, as had been previously observed29. More recently, dimensionality reduction was 

used to show that population-level mechanisms similar to the readout directions for relevant 

information underlie the implicit gating of movement in the motor system during 

preparatory periods5.

Finally, the responses of neurons in the olfactory system to different odors have also been 

considered through the lens of population response structure28. Here, diverse time courses 

across neurons and odor stimuli have confounded attempts to understand the basic encoding 

of these odors. This task becomes increasingly difficult as the number of neurons and 

stimulus conditions increases. Dimensionality reduction has been applied to the activity of 
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approximately 100 of the 800 neurons in the locust antennal lobe, and the population activity 

traces out loops that are organized by stimulus condition. In particular, the orientation of the 

loop is related to the odor identity, and the size of the loop is related to the odor 

concentration44. These results have been extended in important ways to elucidate the 

temporal dynamics of this encoding6, encoding of upstream olfactory receptor neurons48, 

temporally structured odor stimuli45, rapid temporal fluctuations of odors47, coding of 

overlapping odors13, coding of mixtures of odors14 and more.

Exploratory data analysis

Dimensionality reduction is also a useful tool for exploratory data analysis on large neural 

data sets. A telling example comes from optical recordings throughout the entire brain of a 

larval zebrafish at cellular resolution during motor adaptation50. The quantity of recorded 

data in this setup and similar3 is staggering: upwards of one terabyte of recorded activity per 

hour from over 80,000 neurons51. To visualize and begin to understand this data, the authors 

applied dimensionality reduction to reveal four distinct types of neural dynamics (Fig. 3d). 

They then connected this insight back to the neural architecture and found that each of these 

dynamical regimes corresponded to single neurons in distinct brain areas, suggesting a new 

role for each of these regions. Thus, dimensionality reduction allowed the formation of a 

new hypothesis about the response properties of single neurons.

Even when recording from a more modest number of neurons, there is a need for methods to 

visualize the population activity in a concise fashion. Dimensionality reduction has been 

used for data visualization and hypothesis generation in various brain areas, including the 

motor cortex36,42,52,53, hippocampus54, frontal cortex55, auditory cortex56, prefrontal 

cortex57, striatal cortex58 and the olfactory system59. Although most of these studies 

proceeded to test hypotheses using the raw neural activity (without dimensionality 

reduction), the use of dimensionality reduction was vital for generating the hypotheses in the 

first place and guiding subsequent analyses60. The interplay between hypothesis generation 

and data analysis, as facilitated by dimensionality reduction, may become increasingly 

essential as the size of neural data sets grows.

Selecting a dimensionality reduction method

As the previous section illustrates, there are many dimensionality reduction methods, each 

differing in the statistical structure it preserves and discards. Although many methods have 

deep similarities61, as with any statistical technique, the choice of method can have 

significant bearing on the scientific interpretations that can be made. For this reason, and 

because the use of dimensionality reduction is still relatively new in systems neuroscience, 

the following two sections are presented to introduce new users to these methods, to help 

existing users with method choice and interpretation, and to describe potential pitfalls of 

each choice. We describe the dimensionality reduction methods that are most commonly 

applied to neural activity (Table 1) and provide guidance for their appropriate use. Although 

the descriptions below focus on electrical recordings of spike trains, these methods can be 

applied equally well to fluorescence measurements from optical imaging7,9,50 and other 

types of neural signals.
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Basic covariance methods

Principal component analysis (PCA) and factor analysis (FA) are two of the most basic and 

well-used dimensionality reduction methods. For illustrative purposes, consider the case of 

D = 2 neurons and K = 1 latent variables (Fig. 4a). We begin by forming high-dimensional 

vectors of raw or processed (for example, trial averaged) spike counts. Each data vector 

corresponds to a dot in Figure 4a. PCA identifies an ordered set of orthogonal directions that 

captures the greatest variance in the data. The direction of greatest variance is denoted by s1. 

The orthogonal s2 axis (not shown) is the direction that captures the least variance. The data 

can then be projected onto the s1 axis, forming a one-dimensional data set that best preserves 

the data covariance (Fig. 4a).

Although capturing the largest amount of variance may be desirable in some scenarios, a 

caveat is that the low-dimensional space identified by PCA captures variance of all types, 

including firing rate variability and spiking variability. Because spiking variability can 

obscure the interpretation of the latent variables, PCA is usually applied to trial-averaged 

(and, in some cases, temporally smoothed) spike counts, where the averaging removes much 

of the spiking variability in advance. If one seeks to analyze raw spike counts, FA can be 

used to better separate changes in firing rate from spiking variability. FA identifies a low-

dimensional space that preserves variance that is shared across neurons (considered to be 

firing rate variability) while discarding variance that is independent to each neuron 

(considered to be spiking variability)10. FA can be seen as PCA with the addition of an 

explicit noise model that allows FA to discard the independent variance for each neuron.

Time series methods

If the data form a time series, one can leverage the sequential nature of the data to provide 

further de-noising and to characterize the temporal dynamics of the population activity. 

Although there have been many important developments of time series methods tailored for 

multi-neuronal spike trains (see refs. 62–67 for examples), we focus on a subset of these 

methods that identify low-dimensional structure in an unsupervised fashion (that is, where 

some or all of the predictors of neural activity are not directly observed).

There are several dimensionality reduction methods available for time series: hidden 

Markov models (HMM)22–24,26,68–70, kernel smoothing followed by a static dimensionality 

reduction method, Gaussian process factor analysis (GPFA)12, latent linear dynamical 

systems (LDS)71–76 and latent nonlinear dynamical systems (NLDS)77,78. All of these 

methods return low-dimensional, latent neural trajectories that capture the shared variability 

across neurons for each high-dimensional time series. An HMM is applied in settings where 

the population activity is believed to jump between discrete states, whereas all of the other 

methods identify smooth changes in firing rates over time (where the degree of smoothness 

is determined by the data). A common way to characterize trial-averaged responses across a 

population of neurons is to average across trials and temporally smooth each neuron's 

response, and to then apply PCA. This yields a neural trajectory for each experimental 

condition and facilitates the comparison of population activity across conditions4,6,11. In 

contrast, HMM, GPFA, LDS and NLDS are typically applied to single-trial population 

activity. This yields single-trial neural trajectories, which facilitate the comparison of 
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population activity across trials10, and a low-dimensional dynamics model, which 

characterizes how the population activity evolves over time. These methods are particularly 

appropriate for single-trial population activity because they have explicit noise models (akin 

to FA).

As a cautionary note, when interpreting the neural trajectories, it is important to understand 

the steps and assumptions involved in extracting them from the high-dimensional population 

activity. For methods with an explicit dynamics model, its parameters are first fit to a set of 

(training) trials. Then, a low-dimensional trajectory can be extracted by making a statistical 

tradeoff between the dynamics model and the noisy (test) data. Thus, a particular low-

dimensional trajectory may be as much a reflection of the dynamics model as of the data. 

For example, the dynamics model in GPFA is stationary and encourages the trajectories to 

be smooth, whereas that in LDS and NLDS is generally nonstationary and encourages the 

trajectories to follow particular dynamical motifs. For this reason, we recommend a simple 

first approach such as PCA on smoothed, trial-averaged data or GPFA on single-trial data, 

which can then guide the choice of a directed dynamics model, such as LDS or NLDS. In all 

cases, the extracted trajectories should be interpreted with caution in the context of the type 

of structure encouraged by the dynamics model.

If one seeks trajectories that are a projection of the data (that does not require a statistical 

tradeoff with a dynamics model), one can use an orthogonal projection (akin to PCA) to 

extract low-dimensional trajectories after having identified the low-dimensional space using 

a method that involves a dynamics model. The extracted trajectories are then simply a 

projection of the data and have not been constrained by a dynamics model, with the tradeoff 

that one gives up de-noising of the trajectories that would be provided by the dynamics 

model. Such a method was developed to investigate the rotational structure of neural 

population dynamics11.

Methods with dependent variables

In many experimental settings, each data point in the high-dimensional firing rate space has 

an associated label of one or more dependent variables. These dependent variables may 

correspond to experimental parameters (for example, stimulus identity), the subject's 

behavior (for example, decision identity) or a time index. A possible objective of 

dimensionality reduction is to project the data such that differences in these dependent 

variables are preserved, in contrast with all of the methods described above that discover 

structure in the population activity in an unsupervised fashion. If each data point belongs to 

one of G groups (for example, experimental conditions), then linear discriminant analysis 

(LDA) can be used to find a low-dimensional projection in which the G groups are well 

separated9,19,56. LDA identifies an ordered set of G – 1 directions in which the between-

group variance is maximized relative to the within-group variance. Consider an example 

with D = 2 neurons and G = 2 groups (Fig. 4b, top). When the data points are projected onto 

the s1 axis, the two groups are well separated.

If there are multiple dependent variables for each data point (for example, stimulus identity 

and decision identity), one might seek to `demix' the effects of the different dependent 

variables, such that each projection axis (that is, latent variable) captures the variance of a 
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single dependent variable. This is often helpful for orienting the user in the low-dimensional 

space by assigning meaning to the projection axes in terms of externally measurable 

variables. There are three closely related methods that have been used in the neuroscience 

literature, which we collectively call demixed dimensionality reduction: a variant of linear 

regression4, a difference of covariances approach16 and a probabilistic extension57. Consider 

an example with D = 2 neurons and two attributes (dot size and dot color) for each data 

point (Fig. 4c). Applying demixed dimensionality reduction to these data yields a direction 

s1, which optimally explains the variance in dot color, and an orthogonal direction s2 (not 

shown), which explains the variance in dot size. The organization in dot color can be seen 

when the data points are projected onto s1. A similar organization in dot size could be seen 

by projecting the data onto the orthogonal s2 axis. Note that the two attributes vary along 

orthogonal axes (Fig. 4c), although this need not be the case in real data. Methodologically, 

the variant of linear regression should be used when the dependent variables take on a 

continuum of values (rather than a few discrete values), whereas the difference of 

covariances approach should be used when there is no obvious ordering of the values of the 

dependent variables (for example, different stimulus categories).

Nonlinear dimensionality reduction methods

Most of the methods presented thus far define a linear relationship between the latent and 

observed variables (Figs. 2 and 4). In general, the data may lie on a low-dimensional, 

nonlinear manifold in the high-dimensional space. Depending on the form of the 

nonlinearity, a linear method may require more latent variables than the number of true 

dimensions in the data. Two of the most prominent methods to identify nonlinear manifolds 

are Isomap79 and locally linear embedding (LLE)13,14,44,45,58,80. As with linear methods, the 

low-dimensional embeddings produced by nonlinear methods should be interpreted with 

care. Several nonlinear methods use local neighborhoods to estimate the structure of the 

manifold. Because population responses typically do not evenly explore the high-

dimensional space (a problem that grows exponentially with the number of neurons), local 

neighborhoods might include only temporally adjacent points along the same trajectory. As 

a result, differences between trajectories can be magnified in the low-dimensional 

embedding and should be interpreted accordingly. To obtain more even sampling of the 

high-dimensional space, it will be necessary to substantially increase the richness and 

diversity of standard task paradigms (for example, the presented stimuli or elicited 

behavior). Furthermore, nonlinear dimensionality reduction methods are often fragile in the 

presence of noise81, which limits their use in single-trial population analyses. These caveats 

suggest linear dimensionality reduction as a sensible starting point for most analyses. Before 

proceeding to nonlinear methods, one should ensure that there is a dense enough sampling of 

the high-dimensional space such that that local neighborhoods involve data points from 

different trajectories (or experimental conditions), and that, in the case of single-trial 

analyses, the nonlinear method is robust to the Poisson-like spiking variability of neurons.

Practical use

Depending on the scientific question being asked, one should first select an appropriate 

dimensionality reduction method using the guidelines described above. One can then 
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perform the necessary data preprocessing (for example, take spike counts, average across 

trials and/or smooth across time) and apply the selected method to the population activity. 

This latter step includes finding the latent dimensionality, estimating the model parameters 

(if applicable), and projecting the high-dimensional data into the low-dimensional space 

(akin to Fig. 2). This yields a low-dimensional representation of the population activity. This 

section provides practical guidelines for preprocessing the data, estimating and interpreting 

the latent dimensionality, running the selected dimensionality reduction method, and 

visualizing the low-dimensional projections. We point out caveats and potential pitfalls 

specific to the analysis of population activity, as well as more general pitfalls pertaining to 

the analysis of high-dimensional data.

Data preprocessing

The data should be preprocessed to ensure sensible inputs for dimensionality reduction. A 

few typical pitfalls exist. First, one should ensure that the neurons do not covary as a result 

of trivial (that is, non-biological) reasons, which can seriously confound any dimensionality 

reduction method. Examples include electrical cross-coupling between electrodes, which 

induces positive correlation between neurons12, and artificially splitting the response of a 

single neuron into two (whether as a result of neuron proximity in optical recordings or of 

spike sorting with electrode recordings), which induces negative correlation between the 

neurons. Second, neurons with low mean firing rates (for example, less than one spike per 

second) should typically be excluded, as nearly zero variance for any neuron can lead to 

numerical instability with some methods. Third, for PCA, one may consider normalizing 

(that is, z scoring) the activity of each neuron, as PCA can be dominated by neurons with the 

highest modulation depths. This is less of a concern for most of the other dimensionality 

reduction methods, where the latent variables are invariant to the scale of each neuron's 

activity61. Following these considerations, the data can be preprocessed by taking binned 

spike counts, averaging across trials and/or kernel smoothing across time33.

Estimating and interpreting dimensionality

Many dimensionality reduction methods require a choice of dimensionality (K) for the low-

dimensional projection. Dimensionality can be thought of as the number of directions 

explored by the population activity in the high-dimensional firing rate space (Fig. 2). 

Scientifically, dimensionality is a complexity measure of the population activity and may be 

suggestive of underlying circuit mechanisms. For example, low dimensionality might 

suggest that only a small number of common drivers are responsible for the population 

activity. On the other hand, a higher dimensionality may provide an advantage for 

downstream neurons reading out information from the recorded population15,82.

The most basic approach to estimating dimensionality is to choose a cutoff value for the 

variance explained by the low-dimensional projection and to choose K such that the cutoff is 

exceeded. Given that the cutoff value is often arbitrary, cross-validation may be preferred to 

ask how many dimensions generalize to explaining held-out data. For probabilistic methods 

(such as FA, GPFA, LDS and NLDS), one can identify the dimensionality that maximizes 

the cross-validated data likelihood. Alternatively, for all linear methods and some nonlinear 

methods, a cross-validated leave-neuron-out prediction error can be computed in the place of 
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data likelihood12. Another approach is to evaluate the number of binary classifications that 

can be implemented by a linear classifier15. In general, the estimated dimensionality can be 

influenced by the choice of estimation method, by the number of neurons included, by the 

richness of the experimental setting and by the number of data points in a given data set. 

These considerations suggest it is safer to make relative, rather than absolute, statements 

about dimensionality.

Computational runtime

Although a detailed analysis of the computational runtime for each method is beyond the 

scope of this review, we will discuss a few rules of thumb. For the linear methods, there are 

two steps: estimating the model parameters and then projecting the data into the low-

dimensional space. For estimating the model parameters, methods (such as PCA and LDA) 

that require only a single matrix decomposition tend to be faster than methods (such as FA, 

GPFA, LDS and NLDS) that use an iterative algorithm (such as expectation-maximization) 

or subspace identification methods75,76,83. Methods that involve a dynamics model (such as 

GPFA, LDS and NLDS) tend to require more computation than those that do not (such as 

FA). Relative to estimating the model parameters, the second step of projecting the data into 

the low-dimensional space tends to be fast for all linear methods. To estimate the latent 

dimensionality, cross-validation tends to be highly computationally demanding because it 

requires that the model parameters be fit m × n times, where m is the number of cross-

validation folds and n is the number of candidate latent dimensionalities. As the number of 

recorded neurons continues to grow, computational efficiency will become an increasingly 

important consideration in the use of dimensionality reduction for neuroscience.

Visualization

Ideally, one would like to visualize the extracted latent variables directly in the K-

dimensional space. If K ≤ 3, standard plotting can be used. For larger K, one possibility is to 

visualize a small number of two-dimensional projections, which may miss salient features or 

provide a misleading impression of the latent variables, though tools for rapid visualization 

exist to help address this limitation60 (software available at http://bit.ly/1l7MTdB).

Potential pitfalls when analyzing high-dimensional data

When analyzing multivariate data, it is important to bear in mind that intuition from two- or 

three-dimensional space may not hold in higher dimensional spaces. For example, one may 

ask whether two different low-dimensional spaces have a similar orientation in the high-

dimensional space, as assessed by comparing angles between vectors in the high-

dimensional space. With increasing dimensionality, two randomly chosen vectors will 

become increasingly orthogonal. Thus, the assessment of orthogonality should be performed 

relative to the chance distribution of angles rather than an intuitive expectation from lower 

dimensional spaces. As a second example, the ability of LDA to separate two classes of 

training data improves as the data dimensionality increases (for a fixed number of data 

points). With high enough dimensionality, any fixed number of data points can be separated 

arbitrarily well. These two examples emphasize that caution is needed when analyzing high-

dimensional data; many other examples have appeared in the literature84.
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Broader connections

We have focused on data contexts in which dimensionality reduction is an appropriate 

analytical approach. However, dimensionality reduction is by no means the only method 

available for analyzing neural population activity. For decades, studies have considered how 

the activity of pairs of neurons covaries21,85,86. Moving to larger populations, studies have 

characterized population activity using regression-based generalized linear models (GLMs), 

spike word distributions and decoding approaches. Here we describe these related methods, 

their connection to dimensionality reduction and the contexts in which they can be a more 

appropriate choice.

First, as the name implies, a GLM is a generalization of the conventional linear-Gaussian 

relationship between explanatory variables and population activity87. A GLM can model a 

spike train directly using a Poisson count distribution or a point-process distribution. It can 

be used in settings in which the explanatory variables are observed64,66 or unobserved (that 

is, latent)71,72,74–77. The former is a generalization of linear regression, whereas the latter is 

a generalization of linear dimensionality reduction. Thus, the choice of whether to use a 

GLM (rather than a more conventional linear-Gaussian model) is separate from the choice of 

whether to perform dimensionality reduction. It is also possible to use a GLM in settings in 

which there are both observed and unobserved explanatory variables72,88,89. GLM are 

widely used in the regression setting to explain the firing of a neuron in terms of the recent 

history of the entire recorded population and the stimulus. This approach is appropriate in 

settings in which one believes that most (or all) of the relevant explanatory variables are 

observed and can provide insight into stimulus dependence and functional connectivity. In 

contrast, dimensionality reduction (with or without GLM) should be used if the relevant 

explanatory variables are unobserved (for example, as a result of common input or 

unobserved neurons in the network)74 to address questions about collective population 

dynamics and variability.

Second, a non-parametric approach for characterizing population activity is to measure the 

probability of observing every possible spike count vector (termed spike word)90,91. This 

yields a discrete probability distribution, which can then be compared across experimental 

conditions using information theoretic measures92. This method captures higher order 

correlations across neurons and preserves the precise timing of spikes relative to many 

dimensionality reduction methods that are based on second-order statistics and the 

assumption of an underlying firing rate32. Whether it is necessary to take into account higher 

order correlations90,91 and precise spike times93 depends on the particular brain region or 

scientific question being studied. Because the number of possible spike words grows 

exponentially with the number of neurons, spike word analyses are often limited to a few 

tens of neurons and require large amounts of data.

Third, dimensionality reduction methods are closely related to population decoding 

methods. Similar to dimensionality reduction, decoding reduces the high-dimensional 

population activity to a smaller number of variables. Some prominent examples include 

decoding sensory stimuli66,94, physical location62, arm movements65,95,96, working 

memory97, object information98 and more. The key distinction is that decoding seeks to 
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predict external variables, whereas dimensionality reduction produces low-dimensional 

representations (latent variables) of the neural activity itself. The fact that decoding 

performance tends to increase with the number of neurons indicates that a population of 

neurons can provide more information about either an external or internal variable, 

compared with a single neuron99.

DISCUSSION

One of the major pursuits of science is to explain complex phenomena in simple terms. 

Systems neuroscience is no exception, and decades of research have attempted to find 

simplicity at the level of individual neurons. Standard analysis procedures include 

constructing simple parametric tuning curves and response fields, analyzing only a select 

subset of the recorded neurons, and creating population averages by averaging across 

neurons and trials. Recently, studies have begun to embrace single-neuron heterogeneity and 

seek simplicity at the level of the population4,11,15,16, as enabled by dimensionality 

reduction. This approach has already provided new insight about how network dynamics 

give rise to sensory, cognitive and motor function. With the ever-growing interest in 

studying cognitive and other internal brain processes, along with the continued development 

and adoption of large-scale recording technologies, dimensionality reduction and related 

methods may become increasingly essential.
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Figure 1. 
Motivation for population analyses and dimensionality reduction. (a) Enabled by the growth 

in scale and resolution of neural recording technologies, a typical experiment yields a 

collection of many trials (sets of panels from left to right), many experimental conditions 

(different colored panels shown in depth) and many neurons (rows of each panel, shown as 

spike rasters). Scrutinizing these data qualitatively and quantitatively presents many 

challenges, both for basic understanding and for testing hypotheses. (b) Neural responses are 

often averaged across trials (within a given condition) and smoothed into a peristimulus time 

histogram. Even these trial-averaged views can be difficult to interpret, as the number of 

conditions and recorded neurons grows. Notably, this challenge can be present even in data 

with simple structure: each of these simulated neurons have Poisson spiking with an 

underlying firing rate that is a windowed linear mixture of three Gaussian pulses. Each 

neuron has different mixture coefficients, baseline and amplitude. Dimensionality reduction 

is one class of statistical methods that can extract simple structure from these seemingly 

complex data.
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Figure 2. 
Conceptual illustration of linear dimensionality reduction for three neurons (D = 3) and two 

latent variables (K = 2). Center, the population activity (black points) lies in a plane (shaded 

gray). Each point represents the population activity at a particular time and can be 

equivalently referred to using its high-dimensional coordinates [r1, r2, r3] or low-

dimensional coordinates [s1, s2]. The points trace out a trajectory over time (black curve). 

Left, the population activity r1, r2 and r3 can be reconstructed by taking a weighted 

combination of the latent variables, where the weights are specified by the matrix shown. 

Right, the latent variables s1 and s2 can be obtained by taking a weighted combination of the 

population activity, where the weights are specified by the matrix shown.
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Figure 3. 
Examples of scientific studies using dimensionality reduction. (a) Single-trial statistical 

power, visual attention. Left, a didactic example of projecting the responses of two neurons 

onto the attention axis (green; units, spike counts). For a V4 population (right), the 

normalized position (that is, projection) along this attention axis was predictive of behavior 

on single trials: the farther the projection was to the upper right of the attention axis, the 

more likely the animal was of correctly detecting right changes and the less likely the animal 

was of correctly detecting left changes. Adapted with permission from ref. 17. (b) 

Population response structure, decision-making. The population activity recorded in 

prefrontal cortex was projected onto three axes (units, spikes per s): the axis of evidence 

integration (choice axis), the relevant stimulus axis (motion axis) and the irrelevant stimulus 

axis (color axis). Each trace corresponds to responses averaged across trials of the same dot 

motion (gray traces) or dot color (blue traces). Despite the apparent complexity of single-

neuron responses, the population activity shows orderly structure across different conditions 

of dot motion and color and suggests a network mechanism for gating and integration of 

information in prefrontal cortex. Adapted with permission from ref. 4. (c) Population 

response structure, motor system. The population activity recorded in motor cortex was 

projected onto a plane (units, spikes per s) where simple (rotational) dynamics are best 

captured; different traces are different experimental conditions (arm reaches shown with the 

same color in the inset). Dots denote the preparatory (pre-movement) neural activity, 

suggesting a mechanistic explanation for single neuron complexity: preparatory responses 

set the initial state of a population-level dynamical system that runs through movement. 

Adapted with permission from ref. 11. (d) Exploratory data analysis, brain-wide. The 

population activity recorded throughout the brain of larval zebrafish was projected onto its 

principal components for visualization purposes (the same data is shown at left plotted in 

three and two dimensions, units of ΔF/F). Four phases of response were identified (labeled 

α, β, γ and δ), which were then connected back to distinct neural structures. Right, axial 
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views during each phase, where green dots indicate active neurons with magenta confidence 

intervals (caudal-rostral is left-right). Adapted with permission from ref. 50.
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Figure 4. 
Conceptual illustration of PCA, LDA and demixed dimensionality reduction for two neurons 

(D = 2). (a) PCA finds the direction (s1 axis) that captures the greatest variance in the data 

(black dots, top), shown by the projection onto the s1 axis (bottom). (b) LDA finds the 

direction (s1 axis) that best separates the two groups of points (black and while dots, top). 

The separation can be seen in the projection onto the s1 axis (bottom). (c) Demixed 

dimensionality reduction (using the method described in ref. 16 finds the direction that 

explains the variance in dot color (s1 axis, top) and an orthogonal direction (s2 axis, not 

shown) that explains the variance in dot size. The organization in dot color can be seen in 

the projection onto the s1 axis (bottom). Note that these illustrations were created using the 

same data points (dots), and it is the use of different methods (which exploit different data 

features, such as group membership in (b) or color and size in (c)) that produce different 

directions s1 across the top panels and different projections across the bottom panels.
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Table 1

Overview of dimensionality reduction methods commonly applied to neural population responses

Method Analysis objective Temporal smoothing Explicit noise model Representative uses in neuroscience (refs.)

PCA Covariance No No 6,29,50

FA Covariance No Yes 10,43,100

LDS/GPFA Dynamics Yes Yes 12,71,72

NLDS Dynamics Yes Yes 77,78

LDA Classification No No 9,19,56

Demixed Regression No Yes/No 4,16

Isomap/LLE Manifold discovery No No 14,44,58
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