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Abstract

Since the discovery of functional connectivity in fMRI data (i.e., temporal correlations between 

spatially distinct regions of the brain) there has been a considerable amount of work in this field. 

One important focus has been on the analysis of brain connectivity using the concept of networks 

instead of regions. Approximately ten years ago two important research areas grew out of this 

concept. First, a network proposed to be “a default mode of brain function” since dubbed the 

default mode network was proposed by Raichle. Secondly, multi-subject or group independent 

component analysis (ICA) provided a data-driven approach to study properties of brain networks, 

including the default mode network. In this paper we will provide a focused review of how ICA 

has contributed to the study of intrinsic networks. We will discuss some methodological 

considerations for group ICA, and highlight multiple analytic approaches for studying brain 

networks. We will also show examples of some of the differences observed in the default mode 

and resting networks in the diseased brain. In summary, we are in exciting times and still just 

beginning to reap the benefits of the richness of functional brain networks as well as available 

analytic approaches.
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1. Introduction and Background

ICA is a statistical method used to discover hidden factors (sources or features) from a set of 

measurements or observed data such that the sources are maximally independent. Typically, 

it assumes a generative model where observations are assumed to be linear mixtures of 

independent sources, and unlike principal component analysis (PCA) which only 

uncorrelates the data, ICA works with higher-order statistics to achieve independence. ICA 

was developed to solve problems similar to the “cocktail party” scenario in which individual 
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voices must be resolved from microphone recordings of many people speaking at once 1. 

The algorithm, as applied to fMRI, assumes a set of maximally spatially independent brain 

networks, each with associated time courses. The model identifies latent sources whose 

elements (voxels) have the same time course and thus each component can be considered a 

measure of the degree to which each voxel is functional connected (correlated) to the 

component timecourse. Note that network is a somewhat ambiguous term. Indeed, in this 

paper we describe a component as a network (a temporally correlated set of regions) and 

also consider other types of networks including those built up from the temporal correlations 

among components or from the spatial mutual information among component maps. A good 

description of the use of the work network can be found in Ehardt et al2.

ICA was first applied to single-subject fMRI data in 19983. However the application of ICA 

to multiple subjects is not straightforward due to the presence of a different mixing matrix 

for each subject. The first approaches for applying ICA to multi-subject data were presented 

in 20014,5 and were quickly followed by a series of publications describing various 

methodological issues as well as applications to a number of challenging problems such as 

the analysis of naturalistic paradigms6,7, resting-state data8, complex-valued fMRI data9 and 

various clinical data sets10,11. Since then, ICA has become widely-used and a standard 

strategy for evaluating hidden spatiotemporal structure contained in brain imaging data for 

groups of subjects (see Figure 1). In this paper, we provide a summary of the just over one 

decade of development and application of ICA multi-subject ICA methods for fMRI.

In parallel with the development and application of ICA came the description of what were 

later described as intrinsic connectivity networks (ICNs) which grew out of work which 

showed linear correlations to selected seed-voxels resemble interesting functional 

connections12. Shortly thereafter, one of the first and most-widely characterized ICNs, 

described as the default mode network, was identified13. This network was also identified in 

the early ICA results, exhibiting the characteristic pattern of decreasing in response to 

focused task performance6, though it was not described as the default mode network in the 

early ICA papers since that expression had not yet been coined at the time it was described. 

Since then, ICA has contributed greatly to the further understanding of the default mode 

network as one of many ICNs and one that consists of multiple inter-linked networks14-17 

and also provided a more comprehensive functional parcellation of the brain data, which 

does not rely on the selection of a specific seed-region15. Though it is nice that once the 

network locations are approximately identified, multiple methods (including ICA, general 

linear model (GLM), and seed-based connectivity) show largely convergent results2. The 

identification of interacting ICNs in the prediction of future errors is one good example 

showing the importance of identifying and characterizing ICNs18. A brief timeline of some 

of these events is also highlighted in Figure 1. In this figure we focus on only a few key 

events including the introduction of ICA and group ICA, the discovery of the default mode 

network, application of ICA to multiple clinical groups, and more recently to very large 

resting fMRI studies.
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2. ICA (Ways to Estimate Independence/ICA Algorithms)

Data-driven methods have proven effective in many problems such as data analysis and 

fusion as they minimize the modeling assumptions on the underlying structure of the 

problem. They typically assume a simple generative model, start with a multiplicative form 

such as X=AS. Then the task is to achieve the given decomposition through an appropriate 

interpretation of the underlying components, rows/columns of A and/or of S given a certain 

metric. For the identifiability of the given decomposition, usually additional constraints such 

as nonnegativity, uncorrelatedness, and sparsity are imposed. ICA achieves such a 

decomposition by assuming that the rows of S are samples from statistically independent 

random variables (or processes). By maximizing independence, one can then achieve the 

decomposition subject to a permutation and scaling ambiguity.

ICA decomposes a given set of observations by making use of different properties of the 

data. Most of the ICA algorithms introduced to date have made use of one of the two types 

of properties, non-Gaussianity and/or sample correlation. More recently, it has been noted 

that we can have important gains in performance by making use of non-Gaussianity, i.e., 

higher-order-statistics along with correlation. Also, most types of underlying components 

satisfy the property that indeed they are both non-Gaussian (hence use of higher-order 

statistics is appropriate) but they also exhibit sample correlation, which is certainly the case 

for the fMRI data as well.

In this section, we first give a brief review of different approaches to the ICA problem under 

the maximum likelihood umbrella, which provides a unifying framework for approaches 

using different types of data properties, and then in the next section introduce how ICA is 

applied to fMRI analysis.

2.1. ICA: Cost Function Choice

We start the discussion with the basic ICA problem where x, sRN and write

(1)

where is A full rank square mixing matrix, and hence we assume instantaneous mixing and 

as many observations xn as sources/components sn—which also includes the overdetermined 

case since one can easily reduce the problem to (1) using e.g., principal component analysis 

(PCA) for this case. We assume that the index v can be time, or a spatial or volume index, a 

voxel as in the case of fMRI analysis. In the sequel, we letm xn(v) and sn(v) denote the nth 

random process in and x(v), and s(v) when we consider a given set of observations, i.e., X 

∈N×V, we assume that each row,  refers to a realization from a V-dimensional random 

vector.

Given that the sources are mutually independent, one can achieve ICA and form the source 

estimates u(v)=Wx(v) by estimating the demixing matrix W making use of different 

properties of the data. The most popular approach has been the use of non-Gaussianity, i.e., 

using higher-order-statistics (HOS) to achieve the decomposition. Under this umbrella, one 
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can either start with mutual information as the cost function and arrive at the two most 

popular approaches, based on either maximum likelihood (ML) or maximization of 

negentropy to achieve the ICA decomposition, or can explicitly calculate HOS as in joint 

approximation diagonalization of eigenmatrices (JADE)19. In this overview, we concentrate 

on the former approach as it allows the study of large sample properties in an ML 

framework, and can be also used to study properties of another important class of ICA 

algorithms under the same umbrella, those that make use of sample correlation within a 

component/source. We start our discussion with the general case that takes advantage of 

sample correlation together with non-Gaussianity, i.e., HOS, of the sources. The natural cost 

function in this case is the mutual information rate, which can be written as

(2)

where Hr(un)=limk→∞H[un(1), …, un(k)]/k is the entropy rate of the nth source estimate un. 

The entropy rate Hr(X)=limk→∞H[x(1), …, x(k)]/k of the observations is a constant with 

respect to W and thus the statistical dependence among the separated sources is naturally 

minimized by minimizing the total entropy rate of all source estimates. The regularization 

term log|det(W)| penalizes small matrices, and reduces (2) to maximization of negentropy as 

the cost function, i.e., minimization of sum of entropy rates under a variance constraint 

when W is constrained to be orthogonal (WWT =I)so that the term is 0.

For a given observation matrix X ∈N×V, we form the source estimate using U=WX and write 

the likelihood as

(3)

where we used  to denote the nth row of U, a realization of a V -dimensional random 

vector. When we assume independent and identically distributed (i.i.d.) samples, i.e., ignore 

sample correlation, (3) takes the more commonly encountered form in ICA formulations

(4)

since non-Gaussianity is the more frequently used assumption in ICA. Here, 

and  is the nth row of the demixing matrix. It is the form in (4) that leads to the popular 

Infomax1, along with all the ML variations using different density models, e.g., using 

adaptive scores20 or entropy bound minimization (EBM) as in 21—and when the demixing 

matrix is constrained to be orthogonal to FastICA22, and its variants such as efficient 

FastICA (EFICA)23.

An important result in terms of the identifiability of the ICA model is that one can achieve 

source separation unless there are two sources that are both Gaussian and have covariance 

matrices that satisfy Rn = αRm for α ≠ 0, where . This is also the condition 
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that guarantees identification of sources when only second-order statistics are used as in 

WASOBI24. When we ignore sample correlation and use the form in (4), and can only make 

use of non-Gaussianity, i.e., HOS, in this case we can separate sources as long as there is 

only one Gaussian in the mixture25—and obviously for both cases, the separation is possible 

only upto a scaling and permutation ambiguity that is inherent to the problem.

2.2. Algorithm Design

Given a selected cost function, there are a number of important considerations when 

designing the ICA algorithm. Since the ML cost function has been the most frequently used 

one in designing ICA algorithms, we primarily focus on ML in this discussion. The most 

important ones among those are density estimation, optimization, and incorporation of prior 

information through constrained ICA.

When designing algorithms that take higher-order statistics into account, as it is obvious 

from the form of the cost functions given in (3) and (4), besides estimating the demixing 

matrix W, one has to also approximate the source probability density function logpsn(un). 

This is important for achieving a true ML estimation such that one can take advantage of 

desirable large sample optimality properties of ML. The success of the Infomax algorithm, 

which uses a fixed density model for the analysis of fMRI data can be explained by the fact 

that the signoid nonlinearity used in the algorithm as the score function provides a good 

match to the underlying fMRI source distribution, which are typically sparse and hence 

super-Gaussian. However, by adapting the nonlinearity to multiple sources, including 

artifacts, we improve the overall separation performance. Among the parametric models, 

generalized Gaussian distribution has been a popular choice as it can model a range of 

symmetric distributions and can be summarized with a shape parameter besides mean and 

variance, and is has led to ICA algorithms such as EFICA23 and adaptive complex 

maximization of non-Gaussianity26 ICA by entropy bound minimization (ICA-EBM)21 uses 

an efficient entropy estimator based on the bounding of the entropy estimates, and by using 

a few measuring functions, can approximate the pdf of a wide range of densities including 

sub- or super-Gaussian, unimodal or multimodal, symmetric or skewed distributions. A 

more powerful class takes both sample correlation and non-Gaussianity into account. 

Among those, AR-MoG is an expectation-maximization (EM) algorithm and assumes that 

the sources are generated by AR models driving by i.i.d. noise come from mixture of 

Gaussian (MoG) distributions27. Robust, accurate, direct ICA algorithm (RADICAL)28 is a 

nonparametric ICA algorithm using estimates of entropy based on spacings. Full blind 

source separation (FBSS) that combines EBM with a flexible correlation model provides a 

good tradeoff between the parametric and non-parametric approaches and provides reliable 

performance for ICA of fMRI as we introduce in Section 3.

3. ICA of fMRI Data

The first application of ICA to fMRI demonstrated its ability to separate components for 

individual subjects that are task-related, transiently task-related, quasiperiodic, slowly 

varying, and those related to head movement or other phenomena29 and was followed by a 

more detailed comparison showing superiority over PCA and correlation-based methods30 

and an examination of the ICA model assumptions31. ICA, like the widely used general 
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linear model (GLM) can be written in a similar matrix form with the difference being the 

mixing matrix is estimated in ICA whereas the design matrix is specified in the GLM 

(Figure 2). ICA has also been applied successfully to both EEG and MEG32,33 and has been 

extensively used for multimodal data fusion34,35. fMRI most frequently uses spatial ICA 

(sICA), which assumes that each image over time is composed of a linear combination of T 

spatial IC images with associated time courses. EEG and MEG most frequently use temporal 

ICA (tICA), which assumes that a time course is a composed of a linear combination of T 

time courses with associated spatial maps36. Choosing sICA or tICA is often a practical 

issue related to the dimension of the data, where the larger of the time and space dimensions 

is typically the deciding factor. However combining the two sequentially has become an 

interesting option as well37.

Preprocessing

The number of observations in an ICA decomposition are determined by the number of time 

points, which usually are in the 100s. Hence, typically a dimension reduction step is applied 

along with whitening of the data, a common ICA preprocessing step that helps with the 

convergence of the algorithms. Among different approaches for model order selection, the 

information-theoretic criteria (ITC) have proven particularly attractive as they do not require 

the specification of an empirical threshold for order selection, and hence fit naturally into the 

framework of data-driven analysis methods such as ICA. Among the most commonly used 

ITC are Akaike's information criterion (AIC), Kullback-Leibler information criterion 

(KIC)38 and the minimum description length (MDL) criterion (or the Bayesian information 

criterion (BIC)) 39,40. For the application of these criteria to order selection in ICA of fMRI, 

the formulation given by Wax and Kailath41 provides an attractive framework. They pose 

the problem in the context of detecting the number of signals in noise where both the signals 

and the noise are modeled by multi-dimensional complex stationary Gaussian random 

processes. The only limitation of the approach when directly applied to the problem in fMRI 

data is that the formulation is based on the assumption of independent and identically 

distributed (i.i.d.) samples, which is not a property satisfied by fMRI samples as there is the 

inherent spatial smoothness due to the point spread function of the scanner. Furthermore, 

smoothing is a common preprocessing step used to suppress the high frequency noise in the 

fMRI data and to minimize the impact of spatial variability among subjects.

To address this issue, in 42, a subsampling scheme is introduced to obtain a set of effectively 

i.i.d. samples from the given observations, i.e., the dependent original data.

4. Multi-Subject (Group) ICA

Group ICA consists of several stages including data-reduction, forward-estimation, back-

reconstruction, and statistical analysis of output features (see Figure 3). We now briefly 

describe these various approaches.

4.1. Data Reduction

Data-reduction is typically performed using PCA, but other approaches are also possible, 

such as clustering43. The most common approach used is a two-stage PCA, one at the single 
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subject level and a second one at the group level. There have been various strategies 

proposed including performing a single-subject PCA, then concatenating the data and 

performing a group-level PCA. The single-subject PCA can be performed in a common 

space or can be individual to each subject. These various approaches yield largely similar 

results, though memory requirements vary considerably44.

4.2. Multi-subject ICA of fMRI data

Following data reduction, the next stage includes a forward estimation process (Figure 3). A 

summary of several multi-subject ICA forward estimation strategies is given in Figure 4. 

Briefly, there are at least five ways to perform the forward estimation process. Pre-averaging 

the subject data and performing ICA on the group mean dataset is the least computational 

method but makes the stringent assumption that all subjects have common time courses 

(TCs) and spatial maps (SMs)45. A number of approaches first perform single-subject ICA 

on each subject and then attempt to combine the output into a group post hoc by spatial 

correlation4,5, self-organized clustering46, or retrospective matching47 of the 

components 4,46. This has the advantage of allowing for unique spatial and temporal 

features, but has the disadvantage that since the data are noisy, the components might not be 

necessarily unmixed in the same way for each subject.

The other four approaches involve an ICA step that is computed on the group data directly. 

Temporal concatenation and spatial concatenation have both been examined5,48. The 

advantage of these approaches is that they perform one ICA, which can then be divided into 

subject specific parts, hence the comparison of subject differences within a component is 

straightforward. The temporal concatenation approach allows for unique TCs for each 

subject but assumes common group SMs, whereas the spatial concatenation approach allows 

for unique SMs but assumes common TCs. Temporal concatenation has been widely used 

for multi-subject ICA of fMRI data because it appears to work better for fMRI data45, most 

likely because the temporal variations in the fMRI signal are much larger than the spatial 

variations.

The temporal concatenation approach has had a number of methods developed for its 

implementation. The first group ICA strategy uses subject-level PCA in the time 

dimensions, temporal concatenation of these reduced data, a group-level PCA, followed by 

ICA to give an aggregate SM and loading matrix. Finally, subject-specific TCs and SMs are 

estimated by back projection using inverse PCA projections5. Group ICA with temporal 

concatenation was initially implemented in the GIFT Matlab software (http://

icatb.sourceforge.net/) and subsequently in the MELODIC software (http://

www.fmrib.ox.ac.uk/fsl/). The GIFT software additionally implements a back-

reconstruction step that produces subject specific images5. This enables a comparison of 

both the time courses and the images for one group or multiple groups (see simulations 

in 5,49 which shows ICA with temporal concatenation plus back-reconstruction can capture 

variations in subject specific images). A different back-reconstruction approach was also 

subsequently added to MELODIC (for details on the differences see brief summary later in 

this manuscript and also Erhard et al.44). Such approaches trade off the use of a common 

model for the spatial maps against the difficulties of combining single subject ICA. An in-
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between approach would be to utilize temporal concatenation separately for each group50, 

although in this case, matching the components post hoc becomes again necessary and there 

is also the possibility of inflating group differences in such a case since different projections 

are used for each group.

Finally, the tensorial approach in Figure 4 (implemented in MELODIC) involves estimating 

a common time course and a common image for each component but allows for a subject 

specific parameter to be estimated. Three-dimensional tensor decomposition for group and 

multi-group fMRI data is still being explored, estimating a single spatial, temporal, and 

subject-specific mode (amplitude parameter) for each component to attempt to capture the 

multidimensional structure of the data in the estimation stage51. Since this approach assumes 

common TCs among subjects, it is inappropriate for when they are different, such as in a 

resting state study or when events are randomized between subjects and/or self paced.

Because of its widespread use and implementation in both the GIFT and MELODIC 

packages, in the remainder of this paper, we focus on the temporal concatenation approach 

followed by back-reconstruction. Let Yi be the T -by- V magnitude data matrix for subject i 

containing the preprocessed and spatially normalized data with rows of zero mean, where T 

time points over V voxels are collected on M subjects. Let  be the 

temporally concatenated subject data. Following square noise-free spatial ICA estimation52, 

we can write

(5)

where the generative linear latent variables Â and Ŝ are the T2 -by- T2 mixing matrix related 

to subject TCs and the T2 -by- V aggregate SM, respectively. In this form of spatial ICA, 

there is no aggregate or group-level TC.

4.3. Subject back-reconstruction methods

Back-reconstruction methods are important as they provide estimates of the signal subject 

maps and timecourses. The two main categories include PCA based5 and regression 

based7,53. A third category involves using the group maps as initial constraints using 

constrained ICA54 or other approaches. Under certain conditions, PCA-based and 

regression-based approaches provide identical solutions. We now briefly review these two 

approaches (a full description can be found in Erhardt et al.44).

PCA-based back-reconstruction (e.g., GICA3)—Let  be the T1 -by- V 

PCA- reduced data for subject i, where  is the T1 -by- T standardized reducing 

matrix and T1 is the number of principal components retained for each subject. For each 

subject, i=1, …, M, let the subject data Yi be the product of the subject-specific TC and SM, 

Ri and Si, plus error, Ei,

(6)
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In GICA3, assume that subject-specific TCs are the subject-specific PCA back-projected 

mixing matrix,

(7)

Let the T2 -by- V PCA-reduced aggregate data be

(8)

where G− is the T2 -by- MT1 standardized reducing matrix.

Then for subject i, PCA compression of the data gives , leading to the 

compressed data for each subject relating to the common mixing matrix with a subject-

specific SM,

(9)

where  is the common mixing matrix and Si is the subject-specific SM. 

Aggregating over subjects gives the group-reduced data related to the aggregate SM,

(10)

where the aggregate SM is the sum of the subject-specific SMs, . In noise-free 

ICA we estimate the mixing matrix and aggregate SM in (10),

(11)

From (11) the natural estimate of the subject-specific SM substitutes our estimate of A into 

either defining relationship (6) or by solving  for Si,

(12)

Note that we have exactly that the aggregate SM is the sum of the subject-specific SMs,

(13)

Further, from (7) the natural estimator of subject-specific TC Ri substitutes the estimate of A 
to give
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(14)

Regression-based back-reconstruction (STR/dual regression)—Spatio-temporal 

regression (STR), or dual regression, is an indirect back-reconstruction approach using least 

squares to estimate the subject-specific TCs and SMs 55,56. Given ICA results, as in (11) or 

PICA 57, STR first estimates subject-specific TCs, Ṙi , then SMs, Ṡi, via multiple regression.

The first assumption is that all subjects share a common SM, SM, Si ≡ S, i = 1, …, M. Then, 

from the ICA in (5), substitute Ŝ for S and take the transpose of the equation for

(15)

Least squares estimation for TC  gives , or the transpose 56,

(16)

To estimate each subject-specific SM, Si , the original assumption of common SMs is 

relaxed. Conditional on the estimated subject-specific TC, Ṙi, let

(17)

with E[E2i] = 0 Least squares estimation for Si gives

(18)

The product of each subject-specific TC and SM gives

(19)

where P C(Ṙi) = P C(YiŜ−) is a perpendicular projection operator (PPO) onto C(YiŜ−). These 

estimates of Ṙi and Ṡi require contradictory assumptions regarding the SMs, where the SMs 

are assumed to be the common aggregate map to estimate subject-specific TCs, then distinct 

subject-specific SMs are estimated. The variability among subject can be considerable and 

the method works quite well in practice5,44,49.

Rare but common components—The evidence from Schmithorst and Holland45 

suggests that subject-wise (temporal) concatenation (versus across-subject averaging and 

row-wise concatenation) performs best in terms of estimating subject-specific rare but 

common component SMs and TCs. Their Fig 3 suggests (and the text immediately below 
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Fig 3) that with as few as 5 subjects out of 100 (large group size) that the estimated SMs and 

TCs are quite good, improving slightly with more than 5 subjects. Fig 2 shows same result 

with a minimum of about 3 out of 20 (small group size) subjects needing the component. 

Extrapolating to 1000+ subjects, it is not clear whether this is an absolute number of subjects 

needed with the component (maybe 5-10 subjects) or a proportion of the total number of 

subjects (5-10%), but in their discussion they claim at least 10 subjects should have the rare 

but common components to be able to estimate the subject-specific SMs and TCs well for 

that component.

4.4. Quantifying Intrinsic Networks through ICA Features

The advantage of group ICA is that it provides a summarized set of single-subject features 

that can then be tested (see Figure 3). This include voxelwise tests of the spatial maps, task-

relatedness of a given component, spectra power of the component timecourses, and 

dependencies among components either temporally (through cross-correlation of the 

component timecourses58) or spatially (through mutual information among spatial 

component maps59).

Intrinsic functional brain networks (INs) are sets of brain regions showing temporal 

coherence with one another; they provide a key way of evaluating the human (macro) 

functional connectome15,60,61. The INs are quite robust and similar (though not identical) 

with or without a task being performed. Indeed, one can consider the use of a task as a 

controlled way to study how these networks are modulated both spatially and temporally by 

a directed task62. Numerous INs have been identified consistently by many groups, such as 

the default mode network, the attentional fronto-parietal networks, the executive control 

network (or salience network) and bilateral temporal lobe and motor cortex. The INs are 

likely critical components of healthy and aberrant brain functions; many studies show 

important cognitive processes appear to be localized to these networks such as prediction of 

errors18 and show dysfunction in INs in various mental illnesses11,63-65. It is also important 

to note that INs comprise most of the variance of the fMRI data62.

Evaluating characteristics of intrinsic networks in health and disease has gained considerable 

momentum in recent years. However, most previous studies have evaluated only a small 

subset of the intrinsic networks (e.g. default mode). While this approach has revealed 

significant differences in, e.g. schizophrenia and bipolar disorder63, it does not enable us to 

evaluate the underlying functional brain changes in a comprehensive manner. One approach 

to address this is to use a multivariate testing framework for testing multiple intrinsic 

networks and multiple aspects of each network while also controlling the false positive rate 

associated with the multiple testing15. This approach has been applied to data collected from 

schizophrenia, bipolar disorder, and healthy controls66. Three key measures include the 

spatial maps for each IN, the pair-wise correlation among these networks (called functional 

network connectivity or FNC), and the power spectra for each IN (see Figure 5).

In addition to FNC, which captures temporal dependencies among networks, one can also 

capture spatial dependencies. Since ICA decomposition naturally takes temporal 

dependency into account through its underlying model, one can first establish an ICA 

decomposition—then, group the ICA components using spatial dependence among them, 
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that is, mutual information (MI), to take full-order statistical information into account. In 59, 

component grouping is achieved automatically by incorporating MI-based hierarchical 

clustering and hypothesis testing, without requiring prior knowledge for the probability 

distribution of each tuple, number or sizes of tuples59 (see Figure 6). Using graph-theoretical 

analysis67 in the spatial dependence structures for ICA components between two groups, 

physiologically meaningful differences are identified in their networks. As a following 

analysis step, one can also compute graph theoretic metrics resulting from these spatial and 

temporal dependencies in which we use components as spatial or temporal nodes, hence 

providing a more natural, data-driven approach to defining hubs68-70.

In addition, graph-theoretical analysis can also be applied to either the spatial dependencies 

or the temporal dependencies. Figure 7 shows an example in which there were a number of 

physiologically meaningful differences in networks constructed from the spatial 

dependencies in healthy controls and schizophrenia patients67.

5. Variations on ICA

There are numerous extensions of ICA which have been applied to fMRI data and continue 

to be developed. We summarize a few of them in this section including the incorporation of 

prior information in the spatial or temporal domain and flexible ICA algorithms.

5.1. Constrained ICA of fMRI data

There have been multiple ICA algorithms proposed which attempt to incorporate prior 

knowledge into the algorithm in order to improve performance in certain cases. Constraints 

can be incorporated both in terms of time courses (columns of the mixing matrix) or spatial 

maps (estimated components/sources). For example, since in the case of a task we can 

provide information about the hemodynamic model and constrain the ICA mixing matrix71. 

Alternatively, if one is interested in a particular network and can use images from a previous 

analysis or regional locations in an atlas space to derive spatial template a spatially 

constrained algorithm would be a useful option54.

Constraining the time courses—Using a semi-blind ICA (sbICA)71 we analyzed data 

from individuals who had performed an auditory oddball task and constrained the time 

courses (mixing matrix) using the paradigm timing information. This is done by first 

computing a GLM model (using the default hemodynamic response function in the SPM 

software) and then using this model to constrain the component time courses. For the blind 

ICA analysis, the component-of-interest was selected by performing a multiple regression of 

the target/novel regressor upon the ICA time courses post hoc. The component which was 

most highly correlated with this regressor was selected. The blind ICA approach tends to 

capture temporal lobe regions into a separate component, but is not strongly correlated with 

the task. The sbICA approach also includes motor and parietal regions and the correlation 

with the target/novel regressor (e.g. the task-relatedness) is significantly higher (0.51 vs. 

0.33), as expected.

Constraining the spatial maps—One can also incorporate spatial information into the 

ICA algorithm. One example of this is a semi-blind spatial ICA algorithm that uses spatial 
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information within the framework of constrained ICA with fixed-point learning54. We 

performed spatial ICA on data collected during a visuomotor experiment72 using three 

spatial priors. The prior information about the brain function areas related to the three 

signals of interest, i.e., the right and the left visuo-motor task-related signals and the default 

mode signal, was obtained from published experimental results on subjects performing 

similar visuo-motor tasks. The prior information is used to create masks using 

WFU_PickAtlas73, a tool that allows the user to create masks by selecting different areas of 

the brain, both appropriate Brodmann Areas (BAs) and functional areas. Performance for the 

spatially constrained algorithm was higher than blind ICA using either Infomax or 

FastICA54.

5.2. Adaptive ICA Approaches

As discussed in Section 2.2, a major portion of the ICA algorithms exploit either non-

Gaussianity (and hence higher-order statistics) or sample correlation, while a few recent 

algorithms have shown that it is possible to take advantage of both types of information as in 

most cases, the underlying sources are likely to be both non-Gaussian and have sample 

correlation. As noted in Section 2.1, fMRI data definitely falls into this class where the 

underlying sources are expected to be both non-Gaussian and exhibit sample correlation. 

Unfortunately, a limited view of ICA decompositions might miss this important point and 

even the importance of density modeling---which can be adapted to prior information such 

as sparsity of the sources,---and can make claims implying that ICA only favors sparsity74.

In this section, we present a comparison of the performance of three ICA algorithms and 

show the importance of taking sample correlation information along with higher-order 

statistics into account. The three ICA algorithms are Infomax, the most widely used 

algorithm for fMRI analysis1, entropy bound minimization (EBM)21 that adapts to a wide 

range of source distributions, and full blind source separation (FBSS) 75 which has the 

ability to incorporate a flexible density model along with sample correlation information. 

We apply these three ICA algorithms to fMRI data from multiple subjects performing an 

auditory oddball task (AOD). In this example, fMRI data from 20 subjects (all healthy 

controls) performing an AOD task is used for the comparison.

Since all three algorithms are of iterative type, ICASSO76 implemented in GIFT is used to 

check the consistency of the three ICA algorithms to improve robustness of the estimation 

results. ICASSO runs the ICA algorithm several times and produces different estimated 

components for each run and then collects the components by clustering them based on the 

absolute value of the correlation between squared source estimates76. Reliable estimates 

correspond to tight clusters. Eight components of interest were manually selected for the 

comparison and a map was formed and thresholded at t = 8.94 (p < 0.001 corrected for 

multiple comparisons using the family wise error (FWE) approach implemented in the 

SPM5 software). Only voxels beyond this threshold were included in subsequent analysis 

and the maps of DMN, left parietal, right parietal and temporal lobe are shown in Figure 10. 

Four components are shown including: 1. DMN; 2. Left parietal (LP); 3. Right parietal (RP); 

and 4. Temporal lobe.
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Six masks were generated using WFU Pickatlas73. For each algorithm, t maps generated 

were compared to these masks for investigating the overlaps with the masks. For evaluation, 

first, the number of voxels that survive in one-sample t test and are overlapped with the 

corresponding masks is calculated for algorithms. Second, the value of sensitivity is 

calculated as the ratio of the number of voxels overlapped with the corresponding mask to 

the number of voxels that survive in one-sample t test. The results are given in Table 1.

The results show that all three algorithms provide competitive performance, however, even 

though Infomax estimates more voxels than the other two algorithms after thresholding, the 

positive voxels (after multiple comparison correction for all three algorithms) are 

significantly higher in all components except the temporal lobe. EBM and FBSS estimate 

very similar numbers of voxels that survive in one-sample t test. However, for the DMN 

component, FBSS estimates slightly more voxels than EBM. After thresholding at the same 

level, EBM and FBSS have similar numbers of estimated voxels overlapped with the 

corresponding mask and their sensitivity values are close. On the other hand, Infomax leads 

to smaller number of voxels above the threshold and smaller sensitivity values than the other 

two algorithms for DMN. For the component of frontal lobe, Infomax has a slightly larger 

sensitivity value than EBM and FBSS. As observed from the table, FBSS provides 

consistent estimation of DMN and the estimated DMN spatial map has more voxels 

overlapping with the mask and shows higher sensitivity. Estimated time course for the DMN 

component also has the largest negative correlation with the task paradigm as expected. For 

left parietal and right parietal, the estimated time courses give opposite signs with stimuli 

and this phenomenon is not observed in the results of Infomax, which is an important 

characteristic of these networks. In addition, a study of the timecourses (not shown) shows 

that for the left parietal and right parietal network, the estimated time courses of FBSS and 

EBM, the two algorithms with adaptive density yield opposite signs as expected77, which is 

not the case for Infomax.

6. Application to Study Brain Disease: Neurodiagnostic Discovery

ICA has been applied quite extensively to study brain disease, most commonly mental 

illness. Early work focused on schizophrenia10,64, substance use7, and Alzheimer's 

disease11, and mild cognitive impairment50,78. More recently it has been used to study 

bipolar disorder63,66, epilepsy79, psychopathy80, antipsychotic drug effects80, and intrinsic 

networks in animal studies81,82. The evaluation of how disease impacts graph theoretic 

properties computed from ICA decompositions is also promising69,70. Indeed, ICA has 

shown itself to be a key tool in the study of aberrant functional connectivity in many other 

diseases as well, and its ultimate impact will only be clear at a later point. Recent work has 

suggested that the use of functional connectivity may be useful as an accurate diagnostic 

tool83. One promising area is the use of imaging to suggest risk or predict outcome 

measures. However much more work is needed in order to evaluate the clinical utility of 

such a tool (e.g. more studies of unmedicated patients84 as well as studies of the specificity 

of the prediction).
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7. Recent Work: Dynamics

More recently, there has been interest in studying the dynamics of the intrinsic networks of 

the brain85,86. Variations in ongoing activity have been shown to predict changes in task 

performance and alertness, highlighting their importance for understanding the connection 

between brain activity and behavior18,87. Dynamics are potentially even more prominent in 

the resting-state, during which mental activity is unconstrained. As with recent studies 

exploring resting-state dynamics85,86,88, ICA can be used to capture and exploit the dynamic 

changes and variability over time in brain activity. Addressing dynamics also has the 

potential to be a better tool for differentiating clinical groups.

One straightforward approach for evaluating dynamics in fMRI data is by evaluating the 

FNC correlations in either task or rest fMRI over time via a sliding windowed approach86,89 

(called dynamic FNC). Dynamic FNC, based on spatial ICA, provides additional results that 

are different than, but complementary to, those of static FNC. For example, we have shown 

dynamic changes in default mode network connectivity with other regions is significantly 

different in schizophrenia patients in terms of task-modulation. Figure 11 shows two results 

showing group differences between patients with schizophrenia and healthy controls (top) 

time frequency analysis reveals persistent low frequency power differences and (bottom) 

pairwise correlations are showing group differences in the latter portion of the experiment 

(shaded portion of curve). It is important to note that these two pairs of components did not 

show a group difference for a static FNC analysis, hence motivating the importance of 

evaluating the dynamics.

Dynamic FNC

A dynamic approach to evaluating the FNC was implemented as pilot data by estimating 

100 ICA components, low-pass filtering the FNC timecourses, multiplying the timecourse 

by a Gaussian with a FWHM of 30 seconds and computing the covariance matrix89. This 

was performed for each point of a 5 minute resting fMRI data set in 400 individuals. 

Resulting covariances were then clustered to identify stable states90-92. A null distribution 

was created by permuting the phase of the timecourses. One interesting feature one can 

compute is the standard deviation of these state networks over time. Figure 12 shows a 

matrix of the standard deviation of dynamic states and importantly shows a striking 

difference between schizophrenia patients (showing less variability) and healthy controls. 

Data was collected from 100 subjects (50 in each group), site differences were regressed out, 

stringent motion criteria were applied (though we have found ICA to be much more robust 

to motion that seed based methods)93. Only data passing the fBIRN QA procedures was 

used94. Results are consistent with a generalized cognitive deficit in schizophrenia and 

clearly motivate the important of these measures for studying clinical groups.

8. Summary and Future Directions

In summary, group ICA is a powerful tool for analyzing fMRI data which has been 

developed over the past 10+ years. There are still numerous directions in which the 

algorithms continue to be developed including incorporation of additional information, 

characterization of features via graph-theoretic approaches, new approaches for performing 
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multi-subject ICA such as using independent vector analysis95, and assessment of the 

dynamics of the temporal and spatial relationships. The application of ICA to multimodal 

data fusion35 and genetics96,97 is another very important area which has been applied to 

study brain disease which should be considered though it is beyond the scope of this 

particular review article.
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Figure 1. Number of fMRI papers using ICA by year with a few highlighted landmarks relating 
group ICA, default mode, and brain disease
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Figure 2. 
Comparison of ICA for fMRI and the general linear model: ICA is a linear space/time 

decomposition similar to the GLM. The difference is the GLM fixed the design matrix and 

estimates univariate parameter fits whereas ICA estimates the equivalent mixing matrix by 

maximizing spatial independence among the rows of the component matrix.
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Figure 3. 
Stages of group ICA: The analysis starts with spatially normalized fMRI data and proceeds 

through a data reduction step using PCA, followed by ICA of the reduced data, then back-

reconstruction is used to compute single-subject maps and timecourses for each component 

which are then analyzed statistically depending on the question of interest.
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Figure 4. 
Forward estimation approaches: ICA of groups of subjects can be approached in different 

ways. The most flexible (and most challenging) is to use single-subject ICA and attempt to 

group common components post-hoc. Group ICA with temporal concatenation is the most 

widely used approach (and arguable has assumptions which are the most compatible with 

the data such as spatial stationarity). Tensor ICA stacks the data into a cube. And one can 

also spatially concatenate the data.
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Figure 5. 
Three output measures from group ICA: ICA enable investigation of multiple output 

measures including 1) spatial maps (left panel) for each component which can be grouped 

based on the regions involved, 2) functional network connectivity (correlation among ICA 

timecourses) provides a measure of how temporally correlated the different components are, 

note the block structure is consistent with the grouping on the left, and 3) spectra of the ICA 

timecourses (which can help identify artifacts which tend to have much more high frequency 

power).
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Figure 6. 
Spatial dependencies naturally group functionally related networks59: It is intuitive that 

there are still temporal dependencies in the data, but this figure shows a grouping of 6 

components containing spatial dependencies measured via mutual information. These spatial 

dependencies can be quite informative and tend to group artifacts and sensibly group 

functional regions together as well.
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Figure 7. 
Hubs of spatial dependence among 35 components for schizophrenia and controls: Using a 

mutual information-based measure, we can compute graph theoretic measures including the 

shown graph structure of spatial dependencies, which is complementary to the standard 

approach of using the temporal information to compute the graph structure and appears to be 

informative about patient versus control differences.
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Figure 8. 
Comparison of ICA and sbICA in one participant: Results for task-related component for 

blind ICA (left) and sbICA (right). ICA tends to capture primarily temporal lobe regions and 

is not highly task-related. The correlation with the novel/target regressor (e.g. the task-

relatedness) is significantly increased (0.51 vs. 0.33) for the sbICA analysis and includes 

expected motor regions (expected since the target stimulus required a button press).
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Figure 9. 
Results from a spatially constrained ICA analysis: (top) spatial templates used in the ICA-R 

algorithm for the visuomotor (VM) task for right and left stimulation in addition to a default 

mode template. Results from an unconstrained Infomax algorithm are shown in the middle 

row. The ICA-R algorithm using all three templates is shown. Left and Right visuomotor 

results are similar but slightly improved for ICA-R whereas the default mode result (right 

column) is markedly improved for the ICA-R.
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Figure 10. 
Infomax, EBM, and FBSS results. are shown from left to right: T maps of three algorithms 

are generated for the AOD task. Each component of interest is entered into a one-sample test 

and is thresholded at P < 0.001 (FWE corrected). Six slices from each component are 

shown. The more flexible FBSS and EBM appear to have more included positive regions 

and less anticorrelated white matter signal.
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Figure 11. 
Dynamic FNC results: (top) low frequency differences in lateral frontal components and 

(bottom) differences (mainly later in experiment) between temporal lobe and anterior DMN.
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Figure 12. 
Variability of dynamic FNC states (components on x/y axes) varies dramatically in 

schizophrenia patients (left) and healthy controls (right): This suggests there is important 

information about the patients in the dynamic changes which is not detectable in the static 

FNC results.
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