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Abstract

Background

Clinical outcome prediction normally employs static, one-size-fits-all models that perform
well for the average patient but are sub-optimal for individual patients with unique character-
istics. In the era of digital healthcare, it is feasible to dynamically personalize decision
support by identifying and analyzing similar past patients, in a way that is analogous to per-
sonalized product recommendation in e-commerce. Our objectives were: 1) to prove that
analyzing only similar patients leads to better outcome prediction performance than analyz-
ing all available patients, and 2) to characterize the trade-off between training data size and
the degree of similarity between the training data and the index patient for whom prediction
is to be made.

Methods and Findings

We deployed a cosine-similarity-based patient similarity metric (PSM) to an intensive care
unit (ICU) database to identify patients that are most similar to each patient and subse-
quently to custom-build 30-day mortality prediction models. Rich clinical and administrative
data from the first day in the ICU from 17,152 adult ICU admissions were analyzed. The re-
sults confirmed that using data from only a small subset of most similar patients for training
improves predictive performance in comparison with using data from all available patients.
The results also showed that when too few similar patients are used for training, predictive
performance degrades due to the effects of small sample sizes. Our PSM-based approach
outperformed well-known ICU severity of iliness scores. Although the improved prediction
performance is achieved at the cost of increased computational burden, Big Data technolo-
gies can help realize personalized data-driven decision support at the point of care.

Conclusions

The present study provides crucial empirical evidence for the promising potential of person-
alized data-driven decision support systems. With the increasing adoption of electronic
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medical record (EMR) systems, our novel medical data analytics contributes to meaningful
use of EMR data.

Introduction

Patient outcome prediction has been identified as one of the key learning applications of big
health care data [1], and plays important roles in clinical medicine as it is tightly related to in-
tervention selection, care planning, and resource allocation. Traditionally, clinical prognostica-
tion has relied on static models generated from analyzing large, heterogeneous, multi-center
patient datasets. For example, severity of illness (SOI) scores used in intensive care, such as the
Acute Physiology and Chronic Health Evaluation (APACHE) [2] or Simplified Acute Physiolo-
gy Score (SAPS) [3] systems, were developed based on large-scale data collected from numer-
ous countries. Although such one-size-fits-all approaches perform well for the average patient,
how well they perform for patients whose characteristics deviate from the average patient

is questionable.

Case-mix has been a major challenge for clinical prognostication; different SOI scores have
been shown to result in substantial prognostic disagreement for the same patient populations
[4]. As a result, customized predictive modeling using local data has seen increased research ac-
tivity; e.g., Celi et al. have shown that customized models can lead to better mortality prediction
performance for specific patient cohorts [5]. In addition, a recent report from MIT Technology
Review described the general enthusiasm around harnessing the personalized information in
big health data collected from electronic medical records (EMRs), genome sequencing, and
ubiquitous environmental and behavioral monitoring [6].

While personalized data-driven prediction in clinical medicine is still a developing field, this
kind of data analytic paradigm has been applied successfully in other domains such as future
career trajectory prediction for Major League Baseball players in sports analytics [7]; personal-
ized product recommendation in e-commerce [8]; and credit scoring used by financial services
to predict the likelihood of making payments on time [9]. In particular, collaborative filtering,
which is a popular technique employed by many modern recommender systems, makes predic-
tions for a particular user by collecting preferences from other users who have shown similar
preferences in the past [10,11]. One of the few attempts to date to measure patient similarity
was conducted by Sun et al. who utilized supervised machine learning and clinician input to
define a distance-based similarity measure [12]. All of these applications extracted useful pre-
dictive information from similar past cases.

We hypothesized that as electronic capture of medical data becomes increasingly common-
place, clinical outcome prediction can become personalized—and more precise as a result—by
identifying and analyzing past patients who were similar to a present case of interest (index pa-
tient), whose outcome is to be predicted. The central idea behind our hypothesis is that the
amount of predictive utility contributed by a past patient should be directly proportional to the
degree of similarity between the past and index patient. The converse of this argument is that
data from dissimilar patients may actually degrade predictive performance since they are pri-
marily irrelevant to the index patient. We also hypothesized that the improvement in predictive
performance achieved by focusing on similar patients would be limited if the number of similar
patients decreases too much. This would occur if stringent patient similarity criteria were ap-
plied, since the limitations of smaller sample sizes would offset the positive effects of increased
personalization.
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The core foundation of the proposed personalized outcome prediction is a patient similarity
metric (PSM) that quantifies the degree of similarity between the index patient and a past pa-
tient recorded in electronic medical data. Although various PSM definitions are conceivable
(contingent on available clinical variables and patient type), we employed a simple, intuitive
PSM in the present study to test our hypotheses.

Among all medical specialties, intensive care is particularly well suited for the present study
because of the enormous amount and breadth of clinical data that typical intensive care units
(ICUs) collect on a daily basis in order to closely monitor fragile ICU patients [13]. Granular
ICU data enable detailed patient similarity matching. Furthermore, improved clinical outcome
prediction can facilitate optimized resource allocation and real-time decision making in the
ICU, which is an important issue to address given the increasing demand for intensive care in
many countries with ageing populations [14].

The objectives of the present study were: 1) to prove that mortality prediction can be im-
proved by using training data extracted only from a subset of similar patients in comparison
with all available patients, and 2) to characterize the relationship between the number of most
similar patients used for training and the extent of similarity between the index patient and the
past patients in the training data, with respect to mortality prediction performance.

Methods

Patient data extraction

The patient data for this study were extracted from the MIMIC-II database [15]. MIMIC-II is
publicly available and contains data from 29,149 adult ICU admissions (version 2.6) at the
Beth Israel Deaconess Medical Center (BIDMC) in Boston, MA. MIMIC-II is a one-of-a-kind
database with rich clinical data including vital signs every 10-15 minutes, lab test results 1-4
times a day, and hourly urine output measurements. MIMIC-II also contains International
Classification of Diseases 9 (ICD-9) codes, daily SAPS [3] and Sequential Organ Failure Assess-
ment [16] scores, radiology reports, nursing notes, discharge summaries, ICU and hospital
lengths of stay, and out-of-hospital mortality data. MIMIC-II data were collected from the fol-
lowing specialty services: medical ICU (MICU), surgical ICU (SICU), coronary care unit
(CCU), and cardiac surgery recovery unit (CSRU). Because MIMIC-II is a public, de-identified
database, the need to obtain informed consent or research ethics approval has been waived.

For predictor variables, various clinical and administrative variables were extracted from
MIMIC-II from each ICU admission. First, the minimum and maximum values of the follow-
ing vital signs were extracted from each non-overlapping 6-hour period during the first 24
hours in the ICU (i.e., each 6-hour period yielded a separate predictor): heart rate, mean blood
pressure, systolic blood pressure, SpO,, spontaneous respiratory rate, and body temperature.
Second, the minimum and maximum values of the following lab variables were extracted from
the first 24 hours in the ICU: hematocrit, white blood cell count, serum glucose, serum HCOs,
serum potassium, serum sodium, blood urea nitrogen, and serum creatinine. Minimum and
maximum values were extracted for vital signs and lab test results since either could be the
worst value that usually contains useful predictive information (e.g., SAPS uses maximum and
minimum values [3]). Third, the following categorical variables were extracted: admission type
(elective, urgent, emergency), gender, ICU service type (MICU, SICU, CCU, CSRU), primary
ICD-9 code, the receipt of vasopressor therapy during the first 24 hours in the ICU (binary),
and the use of mechanical ventilation or Continuous Positive Airway Pressure during the first
24 hours in the ICU (binary). Lastly, the following predictors were also extracted: age, the mini-
mum (i.e., worst) Glasgow Coma Scale, and the total urinary output from each non-overlap-
ping 6-hour period during the first 24 hours in the ICU.
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As the clinical outcome of interest, mortality at 30 days post-discharge from the hospital,
represented as a binary variable, was extracted. In addition, SAPS and SOFA scores from the
first day in the ICU were also extracted for benchmarking purposes.

Only the ICU admissions with complete data were included in this study. Each ICU admis-
sion was treated as a separate patient; no check was done to distinguish ICU admissions from
the same patient. Not only that most patients in MIMIC-II have only one ICU admission each
(1.24 ICU admissions per patient on average), but also the rationale was to objectively rely on
clinical similarity and identify similar clinical cases regardless of patient identity. Hence, ICU
admissions are referred to as “patients” throughout this article.

All data were extracted from MIMIC-II using Structured Query Language (SQL) in Oracle
SQL Developer (version 3.2.09).

Patient similarity metric

Each patient was represented as a Euclidean vector in the multi-dimensional feature space de-
fined by the predictor variables described in the previous section. The PSM in the present
study was defined as the cosine of the angle between two patient vectors, the calculation of
which can be facilitated by the dot product between them. This is called cosine similarity, and
is widely used in text mining [17]. Hence, the PSM was mathematically defined as follows:

P -P,

PSM(P,.P,)) = —=—
SO YT

where P, and P, are the predictor vectors corresponding to two different patients, while and ||
|| represent the dot product and Euclidean vector magnitude, respectively. Because this PSM is
the cosine of an angle, it is normalized between -1 (minimum similarity) and 1 (maximum sim-
ilarity). Two vectors in exactly opposite directions (i.e., 180° between them) would result in a
PSM value of -1, whereas two identical vectors (i.e., 0° between them) would yield a PSM value
of 1.

Prior to PSM calculation, each continuous predictor was normalized to fit the range be-
tween -1 and 1 so that all predictors could equally contribute to the PSM. For each categorical
predictor, the product between two vectors in that particular dimension was assigned a value of
1 if the two vectors had the same category and a value of -1 if the two vectors had different cate-
gories, in an all-or-none fashion.

Predictive model training, evaluation, and comparisons

Three types of predictive models were deployed in 10-fold cross-validation: death counting
(simply using the mortality rate among similar patients as the prediction), logistic regression
(LR), and decision tree (DT). For each patient in the test data as the index patient, the following
steps were executed:

1. All pairwise PSM values between the index patient and every patient in the training data
were calculated.

2. The calculated PSM values were sorted in descending order.

3. Data from the N most similar patients were used to train the three predictive models, where
N was varied from 10 to 500 with a step size of 10 for death counting, from 5000 to all pa-
tients in the training data with a step size of 1000 for LR, and from 2000 to all patients in the
training data with a step size of 1000 for DT. In other words, only the data from the N most
similar patients were utilized as training data for the given index patient.
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4. Each custom-trained model predicted the mortality risk of the index patient by yielding a
number between 0 and 1.

By trial and error, 5000 was determined to be the minimum number of similar patients for
LR to ensure sufficient variability in categorical predictors within training data (i.e., LR requires
at least one example of each category in training data to estimate all beta coefficients). Similar-
ly, 2000 was set as the minimum for DT to ensure variability in the mortality outcome; unlike
LR, DT can decide to ignore categorical predictors with negligible predictive utility due to in-
sufficient variability. These minimum numbers of similar patients may change for different
datasets and predictors.

For each of the 10 cross-validation folds, predictive performance was evaluated by calculat-
ing the area under the receiver operating characteristic curve (AUROC) as well as the area
under the precision-recall curve (AUPRC). AUPRC is an informative performance measure
for binary classification and complements AUROC for skewed datasets such as the one investi-
gated in this study (the overall mortality rate was much less than 50%) [18]. This is because
precision, also known as positive predictive value, is naturally low for datasets with relatively
rare positive cases (i.e., low prevalence), while a high AUROC can be achieved by focusing on
the majority negative cases. It has been formally shown that predictive models that optimize
AUROC do not necessarily optimize AUPRC [18]. Similarly to AUROC, AUPRC values range
from zero to one, where one indicates perfect prediction; however, random guessing does not
achieve an AUPRC of 0.5 for skewed datasets. In order to mitigate the effects of the skewed
dataset in this study, the 10-fold cross-validation incorporated stratified sampling to ensure
that the ratio between the positive (expired) and negative (survived) cases in each fold was sim-
ilar to that in the entire dataset. In other words, the dataset was first divided into two strata: the
expired and survived. Then, random assignment to the 10 cross-validation folds was carried
out in each stratum independently.

For benchmarking, the predictive performances (i.e., AUROC and AUPRC) of SAPS and
SOFA were also quantified on the same cross-validation data partitions. Both SAPS and SOFA
scores were customized by using each as the only predictor in an LR model (i.e., customized via
logit-transformation [19]). This means that mortality was regressed on either the raw SAPS or
SOFA scores, in a univariable LR model, to find the beta coefficient fitted to the training data.
All training data, rather than just N similar patients, were used in this customization.

For each predictive model, the peak performance, in terms of either AUROC or AUPRC,
was compared with the performance associated with the maximum number of patients, as well
as with the SAPS and SOFA performances. These comparisons were conducted via two-sided
two-sample t-tests with a significance level of alpha = 0.05.

All computations and analyses were conducted in R (version 3.1.1).

Results
Patient data

A total of 17,152 ICU admissions in the MIMIC-II database had complete data and were in-
cluded in the study. Table 1 summarizes the patient data in terms of several key clinical and ad-
ministrative variables. The overall 30-day mortality rate was 15.1%.

Predictive performances of SAPS and SOFA

To benchmark the personalized predictive models, the predictive performances of SAPS and
SOFA were quantified in 10-fold cross-validation. SAPS achieved a mean AUROC of 0.658
(95% confidence interval (CI): [0.648, 0.668]) and a mean AUPRC of 0.271 (95% CI: [0.253,
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Table 1. Patient data characteristics.

Number of unique ICU admissions 17,152

Admission Type (%)

Elective 18.0
Urgent 3.7
Emergency 78.3

Top 5 Primary ICD-9 Codes (%)

414.01—of native coronary artery 10.8
410.71—subendocardial infarction 4.7
038.9—unspecified septicemia 3.6
424.1—aortic valve disorders 2.9
518.81—acute respiratory failure 2.6
Gender (male %) 56.7
Age (years) 64.5[17.0]
Vasopressor Therapy (%) 36.4
Mechanical Ventilation or CPAP (%) 58.1
SAPS 14.5 [5.1]
SOFA 6.3 [3.9]
30-day mortality (%) 15.1

Age, SAPS, and SOFA are shown in mean [standard deviation]. SAPS: Simplified Acute Physiology Score;
SOFA: Sequential Organ Failure Assessment.

doi:10.1371/journal.pone.0127428.1001

0.290]). SOFA achieved a mean AUROC of 0.633 (95% CI: [0.624, 0.642]) and a mean AUPRC
0f 0.273 (95% CI: [0.253, 0.292]).

Death counting among similar patients

Fig 1 illustrates the AUROC and AUPRC of death counting as a function of the number of sim-
ilar patients used as training data. Table 2 tabulates the results shown in Fig 1. The shown
trend confirms our hypothesis that predictive performance improves as dissimilar patients are
excluded from training (moving left on the X-axes in Fig 1, from 500 to roughly 100). Perfor-
mance degrades again when too few patients are used for training (the left side of the peaks in
Fig 1, moving left on the X-axes from 100 to 10), which again confirms our hypothesis.

The maximum mean AUROC of 0.797 was achieved with 100 most similar patients, while
the maximum mean AUPRC of 0.393 occurred at 60 most similar patients. The peak AUROC
was significantly better than the AUROC associated with the maximum number of similar pa-
tients considered, i.e., 500 (p = 0.001), but there was no significant difference in AUPRC be-
tween the peak and 500 most similar patients (p = 0.074). The peak performances were
significantly better than the SAPS (AUROC: p< 107!, AUPRC: p< 107°) and SOFA (AUROC:
p<10~%; AUPRC: p<10~°) performances.

With respect to the peaks in Fig 1, predictive performance worsened rapidly as the number
of similar patients decreased (moving left on the X-axes, from 100 to 10), whereas it degraded
more gradually as the number of similar patients increased (moving right on the X-axes, from
100 to 500).

Logistic regression based on similar patients

Fig 2 shows the predictive performance of personalized LR as a function of the number of simi-
lar patients used for training. Table 3 tabulates the results shown in Fig 2. Starting from using
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AUROC

AUPRC

Number of Similar Patients Number of Similar Patients

Fig 1. Mortality prediction performance of death counting among similar patients. The solid and dashed lines are the mean and 95% confidence
intervals, respectively, from 10-fold cross-validation. A trade-off between training data homogeneity and size is apparent; as the number of similar patients in
the training data increases, predictive performance improves initially at a rapid rate thanks to increasing training data size but starts to degrade gradually due
to decreasing homogeneity within the training data. AUROC: area under the receiver operating characteristic curve; AUPRC: area under the precision-

recall curve.

doi:10.1371/journal.pone.0127428.9001

all training data (the maximum number of similar patients on the X-Axes in Fig 2), it is clearly
shown that predictive performance improved as a smaller but more similar subset of patients
was used for training (i.e., moving left on the X-axes).

The peak mean AUROC and AUPRC of 0.830 and 0.474, respectively, were achieved
when 6000 most similar patients were used for training. These performance results were signif-
icantly better than those resulting from using all available training data in terms of AUROC
(p =0.014) but not AUPRC (p = 0.094). In comparison with SAPS and SOFA, the best person-
alized LR model also resulted in significantly greater AUROC (SAPS: p<10~'% SOFA: p<10~)
and AUPRC (SAPS: p<107'% SOFA: p<107).

In terms of both AUROC and AUPRC, predictive performance seemingly plateaued near
5000 similar patients (i.e., the increase in performance with decreasing number of similar pa-
tients slowed down). Performance degraded more rapidly as the number of similar patients in-
creased (moving right on the X-axes in Fig 2), especially when the most dissimilar patients
were added (the right ends of the plots in Fig 2, moving right from 15000 on the X-axes).

Decision tree based on similar patients

Fig 3 depicts the relationship between the predictive performance of personalized DT and the
number of similar patients used for training, while Table 4 tabulates the results shown in Fig 3.
Fig 3 again supports our hypothesis that a smaller subset of similar patients comprises a better
training dataset (i.e., both AUROC and AUPRC showed an increasing trend moving left on the
X-axes).

The maximum AUROC of 0.753 and AUPRC of 0.347 were achieved with 2000 and 4000
most similar patients, respectively. These peak performances significantly outperformed the
model that used all available training data (AUROC: p<10~* AUPRC: p = 0.003). Also, the
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Table 2. Mortality prediction performance of death counting as a function of the number of similar pa-

tients used in training.

Number of Similar Patients

AUROC (Mean [95% ClI])

AUPRC (Mean [95% CI])

10 0.759 [0.750, 0.767] 0.374 [0.356, 0.392]
20 0.783[0.776, 0.789] 0.386 [0.371, 0.401]
30 0.791 [0.785, 0.796] 0.389 [0.375, 0.403]
40 0.794 [0.788, 0.799] 0.391 [0.378, 0.405]
50 0.796 [0.790, 0.802] 0.393[0.378, 0.407]
60 0.797 [0.791, 0.802] 0.393 [0.378, 0.407]
70 0.796 [0.791, 0.802] 0.389 [0.374, 0.404]
80 0.797 [0.791, 0.802] 0.391 [0.374, 0.408]
90 0.797 [0.791, 0.802] 0.390 [0.374, 0.406]
100 0.797 [0.791, 0.803] 0.390 [0.374, 0.407]
110 0.796 [0.791, 0.802] 0.392 [0.375, 0.408]
120 0.796 [0.790, 0.802] 0.391 [0.375, 0.407]
130 0.796 [0.790, 0.802] 0.391 [0.375, 0.407]
140 0.795 [0.789, 0.801] 0.389 [0.373, 0.405]
150 0.795 [0.789, 0.800] 0.388 [0.373, 0.404]
160 0.794 [0.788, 0.800] 0.388 [0.371, 0.405]
170 0.793[0.787, 0.799] 0.386 [0.369, 0.403]
180 0.792 [0.786, 0.799] 0.385 [0.369, 0.401]
190 0.792 [0.786, 0.798] 0.384 [0.367, 0.400]
200 0.792 [0.785, 0.798] 0.382 [0.366, 0.398]
210 0.791 [0.785, 0.798] 0.381 [0.365, 0.398]
220 0.791 [0.784, 0.797] 0.381 [0.364, 0.398]
230 0.791 [0.784, 0.797] 0.382 [0.366, 0.399]
240 0.790 [0.784, 0.797] 0.381 [0.365, 0.397]
250 0.790 [0.783, 0.796] 0.380 [0.364, 0.396]
260 0.789 [0.783, 0.796] 0.379 [0.364, 0.395]
270 0.789 [0.783, 0.795] 0.379 [0.364, 0.394]
280 0.788 [0.782, 0.795] 0.379 [0.365, 0.394]
290 0.788 [0.782, 0.794] 0.379 [0.365, 0.393]
300 0.787 [0.781, 0.793] 0.378 [0.364, 0.393]
310 0.787 [0.781, 0.793] 0.377 [0.362, 0.392]
320 0.787 [0.780, 0.793] 0.377 [0.363, 0.391]
330 0.786 [0.780, 0.793] 0.379 [0.364, 0.394]
340 0.786 [0.779, 0.792] 0.379 [0.364, 0.393]
350 0.785[0.779, 0.792] 0.379 [0.364, 0.394]
360 0.785[0.779, 0.791] 0.380 [0.364, 0.395]
370 0.785[0.778, 0.791] 0.379 [0.363, 0.394]
380 0.785[0.778, 0.791] 0.378 [0.363, 0.394]
390 0.784 [0.778, 0.790] 0.379 [0.365, 0.394]
400 0.783[0.777, 0.790] 0.378 [0.364, 0.392]
410 0.783[0.776, 0.789] 0.377 [0.363, 0.392]
420 0.782 [0.776, 0.789] 0.376 [0.362, 0.391]
430 0.782 [0.775, 0.788] 0.376 [0.361, 0.391]
440 0.782 [0.775, 0.788] 0.375 [0.361, 0.390]
450 0.781[0.775, 0.788] 0.375[0.361, 0.390]
460 0.781[0.774, 0.787] 0.374 [0.360, 0.389]
(Continued)
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Table 2. (Continued)

Number of Similar Patients AUROC (Mean [95% CI]) AUPRC (Mean [95% ClI])
470 0.780[0.774, 0.787] 0.373 [0.359, 0.387]
480 0.780[0.774, 0.786] 0.373 [0.359, 0.387]
490 0.780 [0.773, 0.786] 0.372[0.358, 0.386]
500 0.779[0.773, 0.785] 0.372 [0.358, 0.386]

The results shown in Fig 1 are tabulated here. AUROC: area under the receiver operating characteristic
curve; AUPRC: area under the precision-recall curve; Cl: confidence interval.

doi:10.1371/journal.pone.0127428.t002

peak performances were significantly better than the SAPS (AUROC: p<10~%; AUPRC:
p<107°) and SOFA (AUROC: p<10™''; AUPRC: p<10™*) performances.

Although AUROC continued to improve as the number of similar patients approached the
minimum of 2000, the peak AUPRC occurred at 4000 similar patients and small sample size ef-
fects were evident for AUPRC when fewer than 4000 similar patients were included in training.
Furthermore, similarly to the LR results in Fig 2, there was a noticeable rapid decay in perfor-
mance when the most dissimilar patients were added (the right ends of the plots in Fig 3, mov-
ing right from 15000 on the X-axes).

Discussion

While personalized medicine is often discussed as an application of genome science, increas-
ingly vast and accessible EMR repositories enable personalization based on other types of bio-
medical Big Data as well. In this study, we investigated the utility of archival clinical data in
personalizing risk stratification in the ICU. The results confirmed our two major hypotheses,
that 1) using a subset of similar patients rather than a larger, heterogeneous population as
training data improves mortality prediction performance at the patient level, and 2) as fewer
but more similar patients are used to train predictive models, performance improves initially
due to increased homogeneity in training data but subsequently decreases due to small sample
size effects. In our experiment, LR achieved the best performance while DT resulted in the
worst. Of note, simple death counting among only 60-100 similar patients resulted in good
predictive performance.

For individual clinical encounters, a prediction about the likelihood of a poor outcome is
traditionally arrived at using two approaches in combination. First, the clinician may draw
upon evidence from the medical literature, whether in the form of observational studies of pa-
tients with similar clinical features or SOI scores, to formulate an initial estimate of risk. Sec-
ond, this estimate may then be adjusted upward or downward based on the judgment of the
practitioner, taking into consideration prior cases seen in his or her practice that had similar
features.

We propose a method to formalize the intuitive, common sense practice of basing decisions
about an index case on past cases with similar features. This approach aims to capture some of
the pattern recognition heuristics that inform diagnosis and prognostication in clinical medi-
cine, while conferring a number of advantages over traditional evidence-based risk stratifica-
tion. Most notably, PSM-based prediction outperformed not only widely used SOI scores but
also customized models that used all available data for training. What’s more, PSM-based pre-
diction is rooted in objective mathematical calculation drawing on reliable, immutable data. As
such it can overcome biases that may encumber heuristic methods, such as recall bias, “last
case” bias, and errors of fixation. Varying times spent in clinical practice as well as varying
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and 95% confidence intervals, respectively, from 10-fold cross-validation. The maximum number of similar patients corresponds to all available training data.
Predictive performance clearly improves as data from fewer but more similar patients are used for training. Identical predictor values in training data
prohibited decreasing the number of similar patients further. AUROC: area under the receiver operating characteristic curve; AUPRC: area under the
precision-recall curve.

doi:10.1371/journal.pone.0127428.9002

recall abilities also mean that the reliability of prior clinical exposure will vary substantially be-
tween practitioners. Unlike intuitive case-matching done on an individual basis, PSM-based
mortality prediction is fully transparent, explicit, and objective, and can be used by practition-
ers in any career stream, and at any stage of practice.

Our results have implications beyond mortality prediction in intensive care. PSM-based meth-
ods could be easily adapted to predict other outcomes (e.g., length of hospital stay, re-admission

Table 3. Mortality prediction performance of logistic regression as a function of the number of similar
patients used in training.
Number of Similar Patients

AUROC (Mean [95% ClI]) AUPRC (Mean [95% Cl])

5000 0.830 [0.824, 0.836] 0.473 [0.460, 0.487]
6000 0.830 [0.825, 0.836] 0.474 [0.460, 0.488]
7000 0.829 [0.823, 0.834] 0.471 [0.457, 0.485]
8000 0.828 [0.821, 0.834] 0.472 [0.457, 0.486]
9000 0.827 [0.821, 0.833] 0.470 [0.456, 0.484]
10000 0.826 [0.819, 0.832] 0.467 [0.453, 0.481]
11000 0.824[0.817, 0.831] 0.466 [0.452, 0.479]
12000 0.822 [0.815, 0.830] 0.462 [0.448, 0.477]
13000 0.820 [0.812, 0.828] 0.459 [0.444, 0.474]
14000 0.816 [0.808, 0.825] 0.455 [0.441, 0.470]
15000 0.814 [0.805, 0.822] 0.452 [0.437, 0.468]
15649 0.810[0.801, 0.819] 0.447 [0.432, 0.461]

The results shown in Fig 2 are tabulated here. AUROC: area under the receiver operating characteristic
curve; AUPRC: area under the precision-recall curve; Cl: confidence interval.

doi:10.1371/journal.pone.0127428.t003
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Predictive performance clearly improves as data from fewer but more similar patients are used for training. Identical outcome values in training data
prohibited decreasing the number of similar patients further. AUROC: area under the receiver operating characteristic curve; AUPRC: area under the
precision-recall curve.
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to hospital) in a variety of medical fields. Extensions of PSM-based predictions could also be used
to estimate the likelihood that a patient will respond (favorably or unfavorably) to a given thera-
peutic intervention. The ability to predict such “intermediate outcomes”, which may occur infre-
quently, is another domain in which PSM-based methods may be of use.

Table 4. Mortality prediction performance of decision trees as a function of the number of similar pa-
tients used in training.
Number of Similar Patients

AUROC (Mean [95% CI]) AUPRC (Mean [95% Cl])

2000 0.753 [0.742, 0.764] 0.340 [0.327, 0.353]
3000 0.749 [0.742, 0.756] 0.346 [0.338, 0.354]
4000 0.744.[0.738, 0.751] 0.347 [0.335, 0.358]
5000 0.739 [0.730, 0.748] 0.346 [0.336, 0.357]
6000 0.735 [0.727, 0.744] 0.342 [0.330, 0.354]
7000 0.734 [0.724, 0.744] 0.342[0.331, 0.354]
8000 0.728 [0.718, 0.739] 0.336 [0.322, 0.351]
9000 0.726 [0.716, 0.736] 0.335 [0.322, 0.348]
10000 0.718 [0.706, 0.729] 0.329 [0.315, 0.343]
11000 0.718 [0.706, 0.731] 0.329 [0.315, 0.342]
12000 0.721[0.710, 0.733] 0.328[0.311, 0.344]
13000 0.712 [0.698, 0.725] 0.319[0.302, 0.336]
14000 0.713[0.702, 0.723] 0.316[0.303, 0.329]
15000 0.712[0.701, 0.723] 0.316 [0.306, 0.326]
15649 0.691 [0.680, 0.702] 0.305 [0.292, 0.319]

The results shown in Fig 3 are tabulated here. AUROC: area under the receiver operating characteristic
curve; AUPRC: area under the precision-recall curve; Cl: confidence interval.

doi:10.1371/journal.pone.0127428.t004
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Deploying personalized decision support of this kind at the point of care requires an elec-
tronic repository of past clinical cases, computing resources that can efficiently calculate PSMs
and train personalized predictive models, and a graphical user interface that can facilitate user
input and display of decision support information. While these represent considerable resource
challenges in a number of practice settings, the rising prevalence of electronic medical record
(EMR) systems and modern information technology (IT) are bringing real-time personalized
decision support increasingly within reach. While large, heterogeneous, multi-center patient
data could be used as an alternative for decision support and prognostication, data from a local
EMR are likely of greater value since institution-based patient similarities—including demo-
graphics, epidemiology, and practice patterns—are more accurately portrayed in local data.
This point adds value to costly EMR adoption and opens opportunities for meaningful second-
ary use of EMR data.

Our study has a few limitations that bear further discussion. First, patients with missing
data were excluded, which may have introduced selection bias. However, whether the included
patient cohort was a fair representation of the entire MIMIC-II population was largely irrele-
vant to testing our hypotheses. In the era of EMR systems that conveniently archive large-scale
data, patient data are abundant and exclusion of cases with missing data is an appropriate and
viable option. Second, the PSM used in this study was restricted by the availability of variables
in the MIMIC-II database. Although there will always be unobserved clinical and demographic
features, inclusion of additional, complementary variables may further improve the PSM.
Third, the improved performance of personalized prediction comes at the cost of increased
computational burden. Instead of building and deploying a static, one-size-fits-all model, the
proposed personalized decision support framework must dynamically compute pairwise PSM
values, identify the most similar patients, build a custom model, and apply the model to the
index patient. The computational burden depends on the complexity of the PSM calculation,
and the size of the EMR database. Although further research is required to realize a fully auto-
mated, personalized clinical decision support system, modern IT has proven in other fields
(e.g., e-commerce, personalized online advertising) that similar systems are feasible. In particu-
lar, the de-facto Big Data analytic platform, Apache Hadoop, can readily be deployed since
pairwise PSM computation is very much parallelizable.

The present study employed a relatively intuitive, computationally inexpensive PSM. Many
other PSMs could be generated by changing either the variables that comprise the PSM or the
overall structure of PSM calculation. It is also possible that different medical specialties may want
to use different PSM types. Future research in this area will focus on developing more complex
and expressive PSMs, as well as enhancing the computational efficiency of matching algorithms,
validating PSM-based prediction in other datasets, and testing these predictions prospectively.
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