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ABSTRACT

Objective To propose a new approach to privacy preserving data selection, which helps the data users access human
genomic datasets efficiently without undermining patients’ privacy.

Methods Our idea is to let each data owner publish a set of differentially-private pilot data, on which a data user can
test-run arbitrary association-test algorithms, including those not known to the data owner a priori. We developed a
suite of new techniques, including a pilot-data generation approach that leverages the linkage disequilibrium in the
human genome to preserve both the utility of the data and the privacy of the patients, and a utility evaluation method
that helps the user assess the value of the real data from its pilot version with high confidence.

Results We evaluated our approach on real human genomic data using four popular association tests. Our study shows
that the proposed approach can help data users make the right choices in most cases.

Conclusions Even though the pilot data cannot be directly used for scientific discovery, it provides a useful indication of
which datasets are more likely to be useful to data users, who can therefore approach the appropriate data owners to
gain access to the data.

Key words: Privacy-preserving techniques, Genome-wide association studies, Differential Privacy, Test statistics, Single

nucleotide polymorphisms (SNPs), Haplotype blocks

BACKGROUND AND SIGNIFICANCE

With the phenomenal advance in DNA sequencing technolo-
gies, the patients’ genome is becoming increasingly afford-
able to get and is expected to be integrated into healthcare
systems. This development also presents an unprecedented
opportunity to biomedical researchers, who can potentially
leverage clinic data to discover genetic markers for various
diseases using genome-wide association studies (GWAS).!
A critical step for GWAS is selection of appropriate datasets,
as genetic markers associated with a disease can only be
captured from the dataset where the case and control popula-
tions have certain structures. Some disease-associated ge-
netic mutations only occur in in some populations,
for example the presence of Tay—Sachs disease in Ashkenazi
Jews,? and cystic fibrosis in individuals with European ances-
try.* Also, even for the same disease, different ethnic groups
may contain different genetic mutations (markers), for example
B-thalassemia.” The appropriate population compositions
for discoveries of disease markers are not known a priori,
while association tests only work under some circumstances
depending on their assumptions. As a result, researchers

often have to try out many different case/control datasets in
GWAS.

However, most genomic datasets today, particularly those
from clinical genome sequencing, are not publicly accessible,
due to privacy concerns. Patients’ genomic data contain identi-
fiable markers and can therefore be used to determine the
presence of an individual in a dataset, even in the absence of
explicit personal information (name, social security number,
etc). Prior research shows that such identification can happen
even when genomic data has been aggregated.®” To protect
patients, nearly all the data owners today impose an application
and evaluation procedure. At the end of it, an agreement needs
to be signed before data use is permitted. This process often
takes months to complete,® which significantly limits the re-
searchers’ capability to conduct timely researches on a large
number of datasets. On the other hand, for a vast majority of
the datasets that turn out to be less useful to a study, releasing
them to the researchers increases the chance of information
leaks.

Alternatively, we can simply have the data owners run the
association algorithms submitted by the researchers and only
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release the outcomes of the computation. The problem is that
even such outcomes (p values, for example) leak out identifi-
able information according to a prior study.® Given the fact that
the design of effective association algorithms itself is an active
research topic,'®"" it is unrealistic for the owners to come up
with optimized protection schemes for each existing and newly
invented algorithm; furthermore, many of them are actually
proprietary and their inventors are often reluctant to disclose
them prematurely. Nor can this data access dilemma be
directly addressed by existing security technologies.
Cryptographic solutions such as secure multi-party computa-
tion do not protect information leaks from the outcomes of a
computation. Techniques that directly add noise to published
data to achieve differential privacy'®~'* may result in unaccept-
able error rate.

Our solution to the problem is to let each data owner publish
a set of pilot data to help data users choose the right datasets
for their needs. Such pilot data comes from adding noise to the
original genomic data to ensure that individuals’ information is
protected to the level of differential privacy. It does not offer
any utility guarantee in disease marker discovery. However, a
data user can run arbitrary association tests on it, evaluate
some indicators, and compare the outcomes with other pilot
data to get a very good idea about which datasets are more
likely to be useful to their research. We further developed a
new technique to help a data user understand how confident
the judgments made by their association test on the pilot data
can be. We evaluated our approach on real human genomic
data, using four popular association tests, from which many
variations have been derived and extensively used in GWAS.™
Our study shows that the proposed approach can help data
users make the right choices in most cases, performing much
better than alternative solutions.

MATERIALS AND METHODS

Differential privacy

Clinical genomic data, even aggregated data, is known to be
sensitive. Many statistical approaches have been confirmed on
public data,®”'>~"" which utilize the small signal leaked by
each single nucleotide polymorphism’s (SNP’s) exact allele fre-
quency about an individual to re-identify their presence. To pro-
tect an individual’s information, we need to limit the impact of
their SNP values on aggregated data, making their presence or
absence less observable from allele frequencies. This can be
achieved by adding noise to published data to ensure that they
are differentially private'® (see online supplementary methods).
In this case, an individual patient’s presence or absence in the
dataset will not make a big difference to these frequencies.
This helps mitigate the threats of Homer’s attack and related
re-identification approaches.®”

Instead of letting a data owner devote substantial computing
resource for running users’ tests and returning safe results,'*
we let them release only the processed (pilot) data, including
perturbed allele frequencies for individual SNP sites and the in-
formation regarding the distribution of noise (added to SNPs),

which data users can evaluate using any tests, including those
unknown to the owner. Note that the release of the noise pa-
rameters does not violate differential privacy.'®

Pilot data generation

Consider a clinical genomic dataset including the alleles for
n SNPs from N, case participants and N, CONtrol
individuals. Denote the major and minor allele counts of
these individuals by  (Fi.f1), -, (Fu, fu) where
Fi +fi = Nease(i=1,2,---,n). A pilot dataset constructed
over the data is represented by a vector (f._ » .. ,), where f| is
a pseudo-minor allele count randomly drawn from a certain
noise distribution imposed on f;, such that any change to a sin-
gle participant’s alleles at these SNP sites does not alter the
distribution of the whole vector (f;, - - -, f, ) by more than a mul-
tiplicative factor of <. Notably, we consider N to be public,
and attempt to protect only the allele counts (f)).

SNP-based approach

A straightforward noise-adding approach is to treat each allele
count pair (F;,f;) as a histogram and directly add Laplacian
noise there based on A and e (see online supplementary
methods).

A problem of this approach is that it essentially breaks
down the privacy budget € into n pieces and allocates them
across all n SNPs. Naturally, when n becomes large, the total
sensitivity A also grows quickly while the budgets allocated for
individual SNPs, which are no more than €/n, get small. As a
result, we need to add a lot of noise to the counts of these
SNPs in order to keep the level of information leaks below the
overall budget; that is, the variance of the probability distribu-
tion from which f; is drawn, which is quadratic to A, becomes
large, making f very likely to be far away from f;. This can
completely destroy the utility of the data.’™

Dimension reduction using haplotypes
Differential privacy is hard to achieve without significantly
undermining data utility on a high-dimensional dataset.'* From
the point of view of SNP, genomic data have significantly high
dimensions (hundreds for one locus) and the problem becomes
intractable. Our solution is to leverage the correlation among
SNPs, a unique feature of the genome,'® to reduce dimensions
(see online supplementary methods).

Here we describe a new noise-adding approach that works
on haploblocks haplotype blocks (haploblocks for short) from a
partitioning algorithm.2° Consider the sequences with n SNPs
in a GWAS dataset that can be partitioned into B haploblocks,

B

with lengths of 1;,---,1z (3_ Iy =n). In the xth haploblock,
k=1

there are ti haplotypes (¢, < 2%. Each haplotype j has < major

or minor alleles at each SNP site in the case group (so

> ¢ = Nas. Assuming that the SNP site i is located within a
=1

haploblock, and there are m; haplotypes (denoted by
by, -+, by) in this block containing the minor allele at the SNP
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site j, we can derive the minor allele counts on each SNP site i
from the haplotype counts: fi = X} ¢y For example, assuming
iz

there are two haplotypes, 1100 and 0101, whose counts are 3
and 5, respectively, the minor allele counts on these four SNP
sites are 3, 8, 0, and 5, respectively.

Our idea here is to add noise to individual haploblocks
and release the SNP allele counts computed from perturbed
haplotype counts as pilot data (see online supplementary meth-
ods). These allele counts are used in an association test
for evaluating the utility of the original dataset. Note that here,
differential privacy is achieved on haplotype counts and there-
fore trivially holds on the allele counts derived from the
haplotypes.

This approach can be further improved by allocating an
unequal budget to each haploblock: a haploblock taking many
haplotypes tends to have a more complex distribution and
therefore needs to receive less noise to preserve its utility; on
the other hand, those with fewer haplotypes can accommodate
more noise and still stay useful. Based on this intuition, we al-
locate larger budgets to more complex blocks and smaller bud-
gets for simpler ones (see online supplementary methods).
Note that this will not undermine the privacy protection for the
sequence, simply because the total privacy budget, across all
SNPs, remains the same.

Utility estimation

A user who intends to run arbitrary association tests (including
newly-invented tests that are unknown to the data owner) on
pilot datasets has little idea to what extent the results of these
tests are reliable over different datasets during a data selection
procedure. In this section, we describe our utility estimation
technique designed to address these issues.

Preliminaries

Pr(f|f;) (ie, the Laplacian distribution from which noises were
drawn) can be released besides pilot data, because this will
not undermine the privacy: an adversary cannot infer any infor-
mation about original data from the public knowledge of the
Laplacian mechanism of noise-adding, as well as the amount
of added noise determined by the privacy budget. Assume a
data user has an association test T: for a given minor allele
count f; in a case group on SNP i, T(f;) = 1if the test reports a
p value below a threshold (P,), indicating that the SNP is signifi-
cantly correlated with the disease; otherwise, T(f;) = 0. What
we want to do is to estimate a confidence level Pr(T(f;)) = 1)
for each SNP i, based on the allele count of that SNP f! dis-
closed from the pilot data and the knowledge of Pr(f{|f;) (which
will be used to identify the distribution of f; given f;), and only
use SNPs with high confidence for data selection, as compared
to the straightforward approach, which is based on the total
number of significant SNPs measured from the pilot data. To
this end, we need to find a way to estimate the confidence for
each SNP, given Pr(f/|f;), which indicates how the noise is
added, and the association test T.

Utility estimation for an arbitrary association test

Using the noise-adding technique and parameters, and the pilot
data published by the data owner, a data user can infer Pr(f;|f;),
the distribution of the raw data, using Bayes’ rule (see online
supplementary methods). For example, when the SNP-based
noise adding approach is used in which additive Laplacian noise
is directly added to allele frequencies, we can derive

Pr (f;|f}) = Pr(f]|f;) oce _\" ‘|

Based on the pilot allele counts f (i=1,2,---,n), a data
user can estimate the utility of the data by first inferring the
distribution of their corresponding real counts f; and then com-
puting the distribution T(f;) for their test statistic T. In this way,
they can obtain a confidence level for each SNP, even though
they cannot directly run the test on real data. The confidence
here is the probability that the test on the real allele count of a
SNP outputs a p value below a threshold P, for f; that is,
Pr(T(f;) = 1), which can be computed numerically from the
probability distribution of f; (Pr(£|f})). Here, Pr(fi|f]) is actually a
discrete distribution: given a case group of N, participants,
the minor allele count can only be one of h
values: {0,1,2,---,0.5Nc}, Where h=Nge/2+ 1
therefore, Pr(f;|f) becomes a distribution over these values:

h
{Py,Py,Py,---, Py}, with 3" P =1. From this distribution,
=0

we can compute the Eonfidence for f; as follows:
Pr(T(f}—l)—ET(l}xPl

This probablllty d|str|but|on can be easily determined if we
have Pr (fi|f;): the complexity for getting this confidence level
is just O(nN..) for a case dataset with n SNPs and N, par-
ticipants. For the SNP-based approach, Pr ( f;|f!) can be directly
inferred from the Laplacian distribution. For the haploblock-
based approach, because Pr (f;|f/) becomes complicated, we
have to sample the distribution to compute the confidence nu-
merically. The allele frequency at SNP site i can be computed
from the haplotype counts in the haploblock d; that contains

the SNP site: fi = Z Cy.p, Where by, -

(totally m; of them) |n this block containing the minor allele at
the SNP site i, and ¢4, represents the pilot counts for the hap-
lotype b; in the block d;, which has been sampled from a
Laplacian distribution.

To compute the confidence Pr(T(f;) = 1), we adopt a
Monte Carlo sampling algorithm. We first collect a sufficient
number (L) of samples of allele counts, denoted by 1,15, ---,1;
(eg, L = 1000), from the distribution of raw data f;, that is,
Pr (f;|f}), and then estimate the confidence by counting the
number of times in which the association test function T re-
ports a p value lower than the confidence threshold P, among

1
all these L samples: Pr (T(f)) = 1) = >~ T(1;)/L
i=1

-+, bm, are the haplotypes

This sampling of allele counts follows the procedure as de-
scribed in the section ‘Dimension reduction using haplotypes’,
which samples and normalizes perturbed haplotype counts
first, and then computes allele counts from the haplotype,
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except that the mean of the Laplacian distribution of the haplo-
type count is now the published haplotype counts (cj) instead
of the original ones (k). This sampling procedure is repeated L
times, generating a pool of allele counts for the estimation of
the confidence.

RESULTS

We evaluated our techniques over real human genomic data-
sets, including the Wellcome Trust dataset'® on which we con-
structed significant SNPs, and real clinical genomic data from
Kawasaki disease (KD) patients, and will report the results
here.

Setting

The data

To understand how effective our new noise-adding technique
and confidence-level based approach in selecting the appropri-
ate datasets are, in comparison with the standard ap-
proach that adds noise to SNPs, we put both approaches to
the test over a mock dataset (see online supplementary meth-
ods) based on a real human genomic dataset that contains
180 SNP sites (within a genomic locus on human chromosome
7) in 1000 individuals. This scale of the test, in terms of
the number of SNPs, is in line with a typical validation study of
predetermined disease-susceptible SNPs.?'?? The dataset
we used is a part of the human genotyping data collected
by the Wellcome Trust Case Control Consortium (WTCCC).?
We also test our methods over a real, unmodified clinical geno-
mic dataset on KD,?*2° which is from 690 Caucasian KD cases
(genotyped at the University of California, San Diego) with 130
SNPs on human chromosome 20. In our study, all control data
was considered to be public, and only the case data was
protected.

Specifically, our experiment repeatedly released pilot data
for 1000 rounds. In each round, three sets of the pilot data
were generated, using the three noise-adding methods (ie,
SNP-based, equal-haploblock, unequal-haploblock), for each of
the three constructed datasets (containing different numbers of
significant SNPs).

Association tests

We utilized four common association tests in our evaluation
study, including the x2 test, G-test, Fisher exact test, and
Cochran—Armitage test for trend. Note that even though there
are many other association algorithms (including proprietary
ones) in the wild, the diversity of the tests considered here
makes them good representatives for understanding the effi-
cacy of our technique.

On the allele counts, we ran association tests to detect the
SNPs that have an unbalanced distribution between cases and
controls, each of which output a binary value indicating the as-
sociation (1) between the SNP and the disease or not (0). When
the p value of the test is below a threshold (eg, 10-5), the SNP
is considered to be strongly associated with the disease. After
noise has been added to the allele counts in the case group,
the p value of an SNP reported by a statistical test can deviate

from its accurate value; however, the binary output of the test
function may stay the same. Therefore, the utility of a test func-
tion can be evaluated by comparing the outputs of the test over
the real dataset and the pilot data, particularly the relations be-
tween the numbers of significant SNPs detected under both
settings.

Confidence-based selection

After a set of pilot data was generated in each of the
1000 rounds of data release, we then chose the best dataset
based on the number of significant SNPs obtained either di-
rectly from association tests on the pilot data or estimating the
utility of the data at different confidence levels based on the
1000 rounds of releases. This was measured by the number of
rounds (among the 1000 rounds of data release) in which the
order of the three constructed datasets was correctly identified
(‘correct-order’) or the most relevant dataset for a test was
successfully picked out (‘best-pick’), through analyzing the pilot
data only.

We also measure the confidence levels for the selected
dataset: that is, the probability that the one we choose is in-
deed the most useful one. Specifically, running the utility evalu-
ation method on the three constructed datasets A, B, and C,
we find that there are N,, Np, and N¢ significant SNPs
(Na = Np > No) in these datasets, respectively, with their
confidence higher than a threshold (eg, 0.95). Based on such
confidence, which can be interpreted as the probability that an
SNP is indeed significant, we can roughly estimate the confi-
dence of selecting dataset A over B by computing the probabil-
ity of the dataset having more significant SNPs than B, which
can be approximated by a cumulative binomial distribution:
Pr(n > Np) = % [(n)p"(l — )™, where p is a con-

k=Npg+1 k
fidence threshold (eg, 0.95 in the above case).

Performances

Privacy risks

We first evaluated the privacy risks of releasing pilot data.
Under the privacy budget e = 1.0, we show that the attack
based on the optimal log likelihood ratio test,” the most power-
ful known re-identification attack (see online supplementary
methods), fails to identify any participant in the case group
from the pilot data of the mock dataset. Similar results were
obtained for the KD dataset (data not shown).

From figure 1, we can see that the distributions of the
statistical values are similar between the case and test
individuals: 11 and 7 case individuals received higher statisti-
cal values than 99% of test individuals (indicating a 1%
false positive rate) from the two pilot datasets generated
by using equal-haploblock and unequal-haploblock methods,
respectively, ~ both  comparatve to the  number
(1000 x 1% = 10) of test individuals receiving the statistical
values above the value. This implies that the optimal log likeli-
hood ratio test cannot re-identify the case individuals from the
published pilot datasets when an appropriate privacy budget
(e = 1.0) is used.
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Figure 1: The privacy risks of the pilot data built from the first dataset are low in the noised-added data by using the equal
(A) and unequal (B) haplotype-based approaches. Each dot represents the test value (T;) of a specific individual in the case
(left) or test (right) group. The solid line indicates the 0.99 confidence level for reridentification of case individuals that are
estimated based on the test statistic values of test individuals.
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Utility comparison

Table 1 compares the utilities of the pilot data constructed by
the three noise-adding techniques (e = 1.0) from the mock
dataset, when the %2 test was in use. Over the three original
datasets, the test identified 27, 13, and 9 significant SNPs (p
value < 1079), respectively. The utilities after noise-adding
were measured by the number of rounds with the ‘correct or-
der’ and those achieving the ‘best pick’ among a total of 1000
experiments. We can see from the table that the utility of the
pilot data under the SNP-based noise adding is poor; both re-
sults are close to random guesses: 1000/6 = 167 for correct
orders and 1000/3 == 333 for best picks. In contrast, the hap-
loblock-based methods drastically improved the utility of the pi-
lot data: the equal-haploblock approach identified the best

Table 1: Selection of pilot datasets generated

by using three noise-adding approaches

Noise adding | SNP- | Equal- Unequal-
approaches based | haploblock | haploblock
Correct-order 187 390 536
Best-pick 347 666 822

dataset in about two-thirds of experiments, and preserved
the correct order in about 40% of experiments. The unequal-
haploblock approach further improved the utility, keeping the
correct order in over half of the experiments and making the
right picks in over 80% of the cases. Notably, all these noise-
adding approaches introduce many false positive SNPs and
therefore cannot be directly used for scientific discovery.
However, a data user can still utilize these results to find good
case datasets using their own association test, before request-
ing full access to the raw data by signing a user agreement
with relevant data owners.

Outcomes of dataset selection

Table 2 shows the outcomes of data selection. For comparison
purposes, the results of data selection through direct analysis
of the pilot data are listed alongside those of the confidence-
based method (with different confidence levels), across the pi-
lot data generated by the three noise-adding approaches
(shown in three separate sections). In the table, the first row in
each section (whose ‘confidence’ is marked with ‘=) shows
the number of release rounds in which the correct order is pre-
served or the best dataset is picked out (shown in parentheses)
under different association tests when the datasets are se-
lected by directly running those tests on the pilot data; the

Table 2: Dataset selection based on utility evaluation

Noise adding Confidence Number of successes: correct order (best-pick)
z2 Fisher’s G-test Trends test
- 187 (347) 196 (387) 170 (383) 168 (348)
0.5 63 (219) 96 (283) 18 (115) 0 (40)
0.8 135 (320) 174 (361) 144 (330) 153 (333)
0.9 153 (310) 175 (376) 143 (343) 145 (336)
SNP-based 0.95 222 (430) 215 (461) 210 (441) 185 (399)
- 390 (666) 560 (797) 436 (683) 401 (685)
0.5 398 (669) 564 (809) 429 (713) 385 (653)
0.8 599 (819) 792 (942) 645 (832) 614 (845)
0.9 751 (899) 813 (988) 798 (920) 770 (924)
e-h* 0.95 846 (976) 738 (1000) 858 (974) 836 (968)
- 536 (822) 639 (896) 532 (833) 538 (817)
0.5 578 (883) 786 (951) 612 (897) 625 (909)
0.8 716 (969) 913 (971) 745 (966) 695 (949)
0.9 852 (981) 983 (991) 888 (986) 837 (995)
un-h' 0.95 967 (995) 993 (994) 980 (1000) 958 (1000)

*Equal-haploblock.
TUnequal-haploblock.
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Table 3: Number of experiments with high confidence of selecting the best dataset

Confidence level Noise adding Number of successes with high confidence
7 Fisher’s G-test Trends test
e-h* 724 714 778 733
>0.9 un-h' 918 978 959 909
e-h 694 576 743 710
>0.95 un-h 892 971 924 875
e-h 611 550 663 635
>0.99 un-h 836 931 883 833

*Equal-haploblock.
TUnequal-haploblock.

Table 4: Data selection on a real clinical genomic dataset

Noise adding Confidence Number of successes: correct order (best-pick)
x? Fisher’s G-test Trends test
- 145 (323) 133 (289) 125 (297) 133 (296)
0.5 0(0) 0(0) 0(0) 0(0)
0.8 0(0) 89 (272) 0(0) 130 (303)
0.9 106 (270) 151 (307) 90 (261) 154 (338)
SNP-based 0.95 184 (371) 153 (334) 162 (348) 126 (300)
- 238 (463) 211 (454) 223 (446) 228 (504)
0.5 20 (194) 275 (574) 15 (139) 279 (641)
0.8 188 (616) 284 (607) 225 (644) 413 (682)
0.9 293 (611) 394 (662) 322 (640) 262 (595)
e-h* 0.95 404 (734) 401 (686) 433 (696) 30 (435)
- 301 (646) 292 (602) 291 (616) 239 (528)
0.5 308 (768) 381 (775) 304 (748) 254 (682)
0.8 249 (865) 299 (772) 287 (887) 399 (788)
0.9 332 (815) 509 (774) 372 (808) 164 (622)
un-h’ 0.95 506 (854) 377 (755) 575 (863) 18 (440)

*Equal-haploblock.
TUnequal-haploblock.

subsequent rows present the results of the utility estimation
based on different confidence levels (0.5, 0.8, 0.9, and 0.95,
respectively). In general, using confidence-based utility estima-
tion over the pilot data generated by the unequal-haploblock
noising adding gives the best results in all association tests.
Particularly, when the confidence threshold of 0.95 is used, in
almost all cases (>950 out of 1000 experiments) the order of

the three datasets can be correctly determined, compared with
the close-to-random-selection results when Laplacian noise is
directly added to individual SNPs and datasets are just chosen
by running association tests on such data. This indicates that
our technique (unequal-haploblock + confidence-based utility
estimation) can be practically applied to the pilot release of hu-
man genomic data.
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We note that the utility evaluation procedure requires a data
user to run the association test many (eg, 1000) times to sam-
ple the distribution of real allele frequencies Pr ( fi|f!). This turns
out to be quite efficient for all the association tests used in our
study: for the XZ test, G-test, and the test for trends, it takes
about 20 s to complete the sampling on a single Xeon CPU at
2.93 GHz, whereas for Fisher's exact test, it takes about
10 min because Fisher’s test itself is about 30 times slower
than the other tests.

Table 3 shows the number of experiments in which we can
select the best dataset based on the pilot data with high confi-
dence (eg, higher than 0.9, 0.95, or 0.99). When the unequal-
haploblock noise adding approach is used, in more than 80%
of times we can select the best dataset with a very high confi-
dence (>0.99), and in most other cases (over 90% of times),
we can find the best dataset with moderate confidence (>0.9).

Table 4 shows the results on the second dataset on KD.
Similar to the experiments on the WTCCC data, the haplotype-
based approaches outperform the SNP-based approach on pre-
serving the pilot data utility. When a confidence threshold of
0.5 or higher is used, in most cases the best dataset (ie, data-
set A) is clearly the right choice. In contrast, when the SNP-
based noise-adding approach is used, in more than half of the
experiments (even worse than random guesses sometimes),
the pilot data misleads the user to choose an inferior dataset.
We note that the success rate of dataset selection is slightly
lower on the clinical genomic dataset (ie, ~80—85% as shown
in table 4) than that on the WTCCC data (ie, ~95%, as shown
in table 2). This is because the locus studied here (on chromo-
some 20) shows weaker linkage disequilibrium among SNPs
than the locus (on human chromosome 7) used for the study
on the WTCCC data, which leads to higher dimensions for the
clinical dataset and thus the count perturbation has a larger im-
pact under the same privacy budget. In addition, fewer signifi-
cant SNPs (4, 1, and 0) exist in these datasets; and a high
confidence threshold (eg, 0.95) did not work well compared to
a moderate threshold (0.8) on picking up the best dataset.

DISCUSSION

In this paper, we presented a practical approach to the data so-
licitation problem. Our technique helps biomedical researchers
choose the most useful datasets for scientific discovery using
their own GWAS algorithms, without direct access to the con-
tent of the confidential dataset. It leverages a unique feature of
the human genome, linkage equilibrium, to reduce the dimen-
sions of the data. As a result, a much higher utility level than
the straightforward SNP-based approach can be maintained,
without undermining the differential-privacy protection of the
data. Furthermore, we provide data users a utility estimate
method so that they can compare the utilities of multiple pilot
datasets under their own association test algorithms.
Combining these two methods offers an effective way for data
users to test their algorithms on the pilot data released by dif-
ferent human genomic projects without going through a com-
plicated user agreement process to get all datasets. Based on
our evaluation results, the user can solicit the useful datasets

(eg, from different diseases, or from different cohorts of pa-
tients with the same disease, or even the genomic data on dif-
ferent loci) for different research purposes.

0On the other hand, our attempt only sketches the surface of
this privacy-preserving data selection problem. Even for GWAS,
we only touched univariate associate tests in which SNPs are
examined separately and therefore breaking SNP sequences
into haploblocks does not impair their utility. When it comes to
more sophisticated multivariate GWAS, the whole haploblocks
need to be inspected and tested together. An example is the
LASSO method that employs the pairwise correlation in the as-
sociation test to increase its sensitivity.® Although it is con-
ceivable that the proposed techniques can be extended to this
setting, more studies need to be performed to understand the
effectiveness in utility estimation. Also, the results reported
here are based on a relatively small locus involving 200 SNP
sites. Association tests on this scale have been performed in
practice as in validation studies of previously identified dis-
ease-susceptible SNPs,2"?2 but in most cases of GWAS, re-
searchers need to look at loci involving thousands (or even
more) of SNP sites. In this case, even higher dimensions must
be tackled to control the level of noise that has to be added to
the pilot data, which will be studied in future research.

CONCLUSION

In summary, we designed a novel method to solve the contra-
diction between the large amount of available human genomic
data with valuable and sensitive information and re-identifica-
tion risk of participants, which gives data owners and re-
searchers a secure and timely way to share human genomic
data.
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