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Abstract

Objective—To assess the effects of sampling interval (SI) of CT perfusion acquisitions on CT 

perfusion values in normal liver and liver metastases from neuroendocrine tumors.

Methods—CT perfusion in 16 patients with neuroendocrine liver metastases were analyzed by 

distributed parameter modeling to yield tissue blood flow, blood volume, mean transit time, 

permeability, and hepatic arterial fraction, for tumor and normal liver. CT perfusion values for the 

reference sampling interval of 0.5s (SI0.5) were compared with those of SI datasets of 1s, 2s, 3s 

and 4s, using mixed-effects model analyses.

Results—Increases in SI beyond 1s were associated with significant and increasing departures of 

CT perfusion parameters from reference values at SI0.5 (p≤0.0009). CT perfusion values deviated 

from reference with increasing uncertainty with increasing SIs. Findings for normal liver were 

concordant.

Conclusion—Increasing SIs beyond 1s yield significantly different CT perfusion parameter 

values compared to reference values at SI0.5.
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INTRODUCTION

CT perfusion offers a non-invasive means of evaluating tissue perfusion (1). There is 

particular interest in oncologic imaging, where there is a need for treatment prognostication, 

prediction and monitoring. There is also interest in developing better understanding of the 

pathophysiological processes at play in tumor development and treatment (2–5).

A variety of perfusion parameters can be derived from CT perfusion depending on the 

particular physiological model that is used to describe the behavior of tissue perfusion. One 

physiological model that is utilized in a commercially available CT perfusion platform is 

based on the distributed parameter model and deconvolution analysis. A range of tissue 

perfusion parameters can be derived from the resulting time-attenuation (density) curves 

acquired from the tissue region(s) of interest ROI(s) and vascular input(s) (6). These CT 

perfusion parameters include blood flow (BF), blood volume (BV), mean transit time (MTT) 

and permeability-surface area product (PS), and in the case of liver perfusion, also hepatic 

arterial fraction (HAF) (7).

One potential limitation of CT perfusion is the radiation burden involved in the acquisition 

of the CT images for analysis. These CT images are acquired at relatively high temporal 

sampling frequencies, typically with a temporal sampling interval of 1 second or less, during 

intravenous (IV) administration of contrast medium. The overall radiation exposure could be 

reduced if the temporal sampling interval (SI) could be increased (i.e. sampling frequency 

reduced or “subsampled”). However, before incorporating such strategies into CT perfusion 

acquisition protocols, it is clearly necessary to gain an understanding of its impact, if any, on 

resultant perfusion parameter values.

There have only been a few studies which have investigated the effects of temporal 

sampling intervals on resulting CT perfusion values (8–17). These studies, which have been 

undertaken with a variety of different physiological and CT perfusion models, in the brain, 

lung and colorectal tumors, have come to varying conclusions. Some studies have suggested 

that increasing sampling intervals to 3s are satisfactory, while others have concluded that 

sampling intervals should not be reduced below 1s (9, 12, 16, 17).

To the best of our knowledge, there have been no studies which have investigated the effect 

of sampling intervals on CT perfusion parameter values in liver tumors and tissue, and in 

particular, one implementing the dual vascular (arterial and portal venous) inputs that are 

relevant to this particular organ (7). In oncology, the liver is frequently involved by primary 

and secondary tumors, and hence is an organ of interest in treatment evaluations.
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The aim of this study was to evaluate the effects of increases in sampling interval of CT data 

acquisition on resultant CT perfusion parameter values, utilizing the distributed parameter 

model, in liver tumors and normal liver.

MATERIALS AND METHODS

Patients

This retrospective study was approved by our institutional review board (IRB), with waiver 

of informed consent and was HIPAA (Health Insurance Portability and Accountability Act) 

compliant. The patients for the current study were drawn from two earlier IRB approved 

prospective clinical trials. The two clinical trials were for patients with metastatic 

neuroendocrine tumors who were treated by bevacizumab (VEGF (vascular endothelial 

growth factor) inhibitor), everolimus (mTOR (mammalian target of rapamycin) inhibitor), or 

pazopanib (VEGFR inhibitor), between April 2007 and September 2009, and in which CT 

perfusion was undertaken before and after initiation of therapy. The trials allowed for prior 

antineoplastic, but not VEGF- or mTOR-inhibitor, therapies. Novartis and Genentech 

provided partial funding support for conduct of the study, and everolimus and bevacizumab, 

respectively. One of the authors (A.G.C.) is employed by General Electric; the other authors, 

however, have full control of inclusion of data and information submitted for publication.

The patients, inclusion and exclusion criteria, and liver target lesion selections in the current 

study were identical to our previous study (18). In brief, the patients had participated in two 

treatment protocols for patients with metastatic neuroendocrine tumors and had CT 

perfusion of a target lesion in the liver, which was clinically or radiologically considered 

malignant, based on biopsy of other lesions, widespread metastatic disease and/or increase 

in size of lesions (biopsy of the selected target lesions were considered excessively 

invasive). Other inclusion criteria included a) patient age older than 18 years, b) Eastern 

Cooperative Oncology Group (ECOG) performance status score of 0–2, c) serum creatinine 

concentration of less than 1.5 mg/dL, and absence of contraindications to CT, e.g., severe 

allergy to contrast medium and pregnancy. A single target lesion, required to be a well-

demarcated, contrast-enhancing solid mass larger than 2.5 cm in longest diameter, had been 

identified on review of previous imaging studies in each patient by a radiologist (C.S.N. 

with more than 10 years’ experience in interpreting CT studies). In both clinical studies, CT 

perfusion had been undertaken before and after one and/or two cycles of therapy according 

to the specific trial.

CT Perfusion Scanning Technique

CT perfusion imaging was obtained with a 64-row multidetector CT scanner (VCT, GE 

Healthcare, Waukesha, WI). The CT perfusion scans were obtained in two phases: Phase 1, 

continuous (or “cine”) acquisition during a breath-hold, followed by Phase 2, consisting of 

eight intermittent short breath-hold helical scans, as described previously (18), and outlined 

in Figure 1. The CT perfusion scans were preceded by localization scans without contrast, to 

identify the CT coordinates of the target lesion, which consisted of a 20 cm z-axis 

inspiratory breath-hold helical scan as follows: tube voltage, 120 kV; tube current, 60 mA; 
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slice thickness, 5 mm; slice interval, 5 mm; pitch factor, 0.984:1; speed 39.37; rotation 

speed, 0.8 second; field of view, 32–40 cm; and matrix, 512 × 512.

After the localization image, Phase 1 (“cine”) scans were performed at the mid-point of the 

target lesion, with a 30-second inspiratory breath-hold and a 4 cm “slice” utilizing the cine 

mode (8i cine mode, comprising eight 0.5-cm contiguous slices) with the following settings: 

tube voltage, 120 kV; tube current, 90 mA; rotation speed, 1.0 seconds; field of view, 32–40 

cm; matrix, 512 × 512. Data acquisition started 5 seconds after intravenous injection of 50 

mL of a nonionic contrast agent (ioversol [Optiray], 320 mg of iodine/mL; Mallinckrodt, 

Inc., St. Louis, MO) using an automatic injector (MCT/MCT Plus; Medrad, Pittsburgh, PA) 

and an injection rate of 7 mL/second. This was followed by a normal saline flush with the 

same parameters. Images were reconstructed every half second and to a thickness of 0.5-cm.

Phase 2 (“delayed”) scans were eight intermittent short inspiratory breath-hold helical scans, 

each of 3.6s duration, with the following settings: tube voltage, 120 kV; tube current, 90 

mA; slice thickness, 5 mm; slice interval, 5 mm; pitch factor, 0.984:1; speed 39.37; rotation 

speed, 0.8 second. The first Phase 2 helical scan commenced 20 seconds after the end of the 

Phase 1 acquisition; the subsequent seven helical scans were obtained at increasing intervals 

(at 70s, 90s, 120s, 160s, 220s, 360s and 590s after commencement of Phase 1, as shown in 

Figure 1). The images were reconstructed to 0.5cm thickness (as for the Phase 1 images). 

The estimated effective dose for this CT perfusion protocol was 28 mSv. When required for 

clinical purposes, the CT perfusion study was followed by routine staging CT scans of chest, 

abdomen, and/or pelvis, using further intravenous administration of 100 mL of contrast 

medium.

CT Perfusion analyses

The CT perfusion analyses and liver tumor and normal liver ROIs utilized in the current 

study were identical to those of our previous study (18). In brief, of the 90 patients enrolled 

in the two clinical trials above, 47 had CT perfusion studies of metastases in the liver which 

were reviewed visually by four observers independently to carefully identify those with 

negligible motion in their acquired Phase 1 CT images (E.F.A., D.H.H. (each with more than 

15 years’ experience in CT perfusion), A.G.C. (with more than 10 years’ experience in 

image registration), and C.S.N.). The absence of motion in the Phase 1 data of the selected 

patients removed the need to anatomically register the Phase 1 images and thus provided 

Phase 1 images (for the total duration of Phase 1), which had not undergone any additional 

post-processing. This removed a potential confounding factor from the subsequent 

adjustments discussed below. 16 such patients were identified, which formed the cohort for 

our study.

Before the CT perfusion analyses were undertaken, the Phase 2 images of each patient 

dataset were anatomically registered with the Phase 1 images using a semi-automated rigid 

registration algorithm as previously described (19–21). This resulted in CT perfusion 

datasets consisting of fifty-nine 8-contiguous 0.5cm-slice cine images temporally sampled at 

0.5s from the Phase 1 acquisition, together with eight anatomically matched 8-contiguous 

0.5cm-slice images from the Phase 2 acquisition. These resultant images formed the 

reference dataset for our subsequent analyses.
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Reference CT perfusion analysis

The above reference datasets, utilizing a temporal sampling interval of 0.5s, were analyzed 

using commercially available CT perfusion software on a workstation (CT Perfusion 4 

version 4.3.1, Advantage Workstation 4.4; GE Healthcare, Waukesha, WI). The perfusion 

software utilizes the distributed parameter model. We utilized the Liver Protocol of the 

vendor software, which utilizes a dual vascular input algorithm. Regions of interest (ROI) 

were placed in the abdominal aorta and in the portal vein on the source images to provide 

these vascular inputs (C.S.N.) (Figure 2a). Three set-points were then determined: a pre-

enhancement set-point (T1=t0), which corresponded to the time when the arterial signal first 

began to rise; a post-enhancement set-point (T2), which corresponded with the final time 

point of the Phase 1 data acquisition; and the last second phase set-point (T3), which 

corresponds to the final Phase 2 image (Figure 1, first row; Figure 2b). Perfusion parametric 

maps were generated of BF, BV, MTT, PS and HAF values.

Liver tumor and normal liver ROIs

For each of the eight axial slice locations of each dataset, a liver lesion ROI was drawn 

freehand around the periphery of the target tumor, using an electronic cursor and mouse, 

with reference to the source cine CT images and perfusion maps, displaying the images at 

soft tissue windows (width = 350 HU, level = 40 HU) (E.F.A and D.H.H., in consensus). 

Large vessels and artifacts were avoided. Wherever possible, a second tumor ROI was 

delineated, provided it fulfilled the same criteria as the primary target lesion and was greater 

than 1.5 cm in diameter. There were a total of 25 tumor ROIs (all 16 patients had at least one 

tumor (the target identified at enrollment); and 9 had a second tumor).

Parallel analyses were undertaken for normal liver parenchyma on associated CT slices. 

Circular or oval ROIs were delineated in normal liver regions (“normality” was based on the 

absence of visible tumor); these ROIs were as large as possible and placed to avoid vessels 

and artifacts. We delineated two normal liver ROIs on each of the 8 slices where possible; if 

possible, separate ROIs were placed in the left and right lobes (C.S.N.). There were 30 

separate normal liver tissue ROIs: 12 patients had one ROI each in the right and left lobes; 3 

patients had two ROIs in the right lobe (which were averaged); and one patient did not have 

delineable normal tissue, resulting in 27 lobe-specific normal liver ROIs.

Average tumor BF, BV, MTT, PS and HAF values were obtained from the CT levels in 

which tumor and normal liver ROIs were drawn, and the mean values across all CT levels 

were computed. All ROIs were saved within the software to enable identical placement in all 

the subsequent analyses.

Temporal subsampling and CT perfusion analysis

The above reference datasets for each patient, which were based on a temporal sampling of 

0.5 seconds from the Phase 1 component of the acquisition (SI0.5), were re-analyzed with 

temporal sampling intervals of 1, 2, 3 and 4 seconds applied to the Phase 1 data. CT 

perfusion analyses were undertaken of the combined subsampled Phase 1 images and the 

reference Phase 2 images.
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The 1s sampling interval (SI1) dataset was achieved by selecting alternate images from the 

original SI0.5 8-slice Phase 1 cine dataset, and loading these with the corresponding eight 

anatomically registered 8-slice Phase 2 images into the software. The 2s sampling interval 

(SI2) dataset was achieved in a similar fashion by selecting every fourth image from the 

SI0.5 Phase 1 data. The 3s sampling interval (SI3) dataset was achieved by selecting every 

sixth image from the original SI0.5 dataset, and similarly for the SI4 dataset, every eighth 

image (Figure 1, second row).

It should be noted that the above subsampling manipulations were carried out only on the 

cine Phase 1 data, and not the eight delayed Phase 2 data; thus, final subsampled datasets 

consisted of subsampled Phase 1 data combined with unaltered (and anatomically registered) 

Phase 2 data.

Temporal shifting and CT perfusion analysis

The above analyses were initially undertaken with T1 fixed at the time-point that had been 

determined for the reference dataset (T1 is the time-point when the arterial concentration-

time curve is noted to rise, T1=t0, abbreviated to T1=0 in the following).

Subsequently, each subsampled data was analyzed following application of a “temporal 

shift”. The need to include temporal shifting in consideration of an analysis of subsampling 

is that there may be uncertainty as to the T1 time-point of the more sparsely populated 

subsampled data; indeed, the “true” T1=0 time-point in the reference 0.5s data may not have 

been actually acquired or represented in the subsampled data. In order to simulate the reality 

of such subsampled datasets, we applied both positive and negative temporal shifts relative 

to the subsampled T1 time-point. Although in principle one could explore the full range of 

possible shifts for any subsampled data, we conservatively considered that although analysts 

may stray on the side of the upslope of the time attenuation curve of the aorta, in practice 

only small incursions in this direction are likely. Thus, for the SI1 dataset, temporal shifts in 

T1 relative to t0 of −0.5s and +0.5s were investigated. This was achieved by analyzing the 1s 

sampling interval dataset a further two times in addition to the T1=0 described above, each 

time using a different pre-enhancement set-point time (T1), which was shifted from the 

original reference pre-enhancement set-point time at t0 by −0.5s and +0.5s. For the SI2 

dataset, two further temporal shifts, of −1.0s and −1.5s, were imposed, which resulted in a 

total of 5 temporal shifts (−1.5s, −1.0s, −0.5s, 0s, +0.5s). For the SI3 dataset, 7 temporal 

shifts were investigated (−2.5s, −2.0s, −1.5s, −1.0s, −0.5s, 0s, +0.5s); and for the SI4 dataset, 

9 temporal shifts were investigated (−3.5s, −3.0s, −2.5s, −2.0s, −1.5s, −1.0s, −0.5s, 0s, 

+0.5s) (Figure 1, third and bottom rows).

Subsampling/shifting inevitably affects the number of available data-points from the 

reference data prior to T1, from which baseline vascular and tissue attenuation values for the 

algorithm are determined; and this is exacerbated by baseline data which may be 

intrinsically noisy. We therefore ensured that there were the same number of pre-T1 data-

points in the subsampled/shifted datasets as in the 0.5s reference; this was achieved for each 

patient by randomly choosing images from the acquired images prior to T1 and inserting the 

necessary number of these images prior to T1 to standardize the total number of baseline 

images for each patient’s subsampled/shifted datasets.
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All the resultant subsampled/shifted datasets were analyzed in the CT perfusion software 

using the same arterial, portal venous and tissue ROIs as for the reference analyses. Mean 

BF, BV, MTT, PS and HAF values were obtained for each tissue ROI at each CT level 

(Figure 2b).

Statistical Analysis

Summary statistics for the CT perfusion parameters (BF, BV, MTT, PS and HAF) were 

obtained by subsampling intervals (1s, 2s, 3s, and 4s). All CT perfusion parameters were 

transformed to the logarithmic scale prior to analysis to adjust for skewness in the raw data. 

Statistical analysis was carried out using R 3.0.1 (R Foundation, Vienna, Austria).

Mixed-effects modeling was used to estimate deviations for each subsampling interval from 

reference for each CT perfusion parameter using software package “lme4”. Observations 

acquired under the full range of possible pre-enhancement shifts were included in the 

inference after preliminary analyses revealed that for some CT parameters (notably MTT 

and PS) the extent of variability associated with temporal shifting was nontrivial. Nested 

random intercepts were used to account for correlation induced by repeated sampling from 

multiple temporal shifts within each region and multiple regions within each patient, 

inducing compound symmetric covariance structure. Each of the 25 tumor and 27 normal 

regions contributed 3, 5, 7, and 9 deviations from reference at SIs 1s, 2s, 3s, and 4s, 

respectively, resulting in a minimum of 50 (in tumor at 1s) and up to 216 degrees of freedom 

(in normal at 4s).

For each CT perfusion parameter, the estimated differences and limits of the corresponding 

interval estimates (99% confidence intervals for mean) were back-transformed to the raw 

scale to obtain ratios for each of the 4 sampling intervals. P-values were derived from two-

sided tests of the null hypothesis (mean ratio=1) using Wald chi-square. Outliers were 

evident for BV in normal liver (at 3s and 4s), suggesting deviation from normality. Thus, 

Wald tests were repeated using the robust estimation method (22). Implementation used 

software package “robustlmm”. Adjustment for multiple comparisons used Bonferroni’s 

correction, resulting in a significance threshold of p<0.0125. Piecewise polynomial 

interpolation was used to evaluate the effect of subsampling over the interval of 0.5s to 4s.

Relative variance contributions attributable to temporal shifting were estimated for each CT 

perfusion parameter using mixed-effects analysis of variance (ANOVA) with fixed effects to 

characterize the four subsampling intervals, heteroscedastic error variance by subsampling 

interval, and nested random effects with structure identical to that used in aforementioned 

mixed-model.

RESULTS

The study consisted of 16 patients and 25 metastatic lesions to the liver from neuroendocrine 

tumors. The median age of the patients was 57.5 years (range, 42.0 to 69.7 years), with 6 

male (median, 54.1 years (range, 42.0 to 69.7 years)), and 10 female (median, 59.3 years 

(range, 43.6 to 66.3 years)). There were 25 separate tumor ROIs and 27 lobe-specific (right 

or left lobe) normal liver ROIs. The median longitudinal diameter of the tumors was 5.1 cm 
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(range, 1.7 – 16.0 cm), and the median size of the tumor ROIs was 1525 mm2 (range, 50 – 

16000 mm2). The mean size of the normal liver ROIs was 460 mm2 (range, 100 – 1300 

mm2).

Effect of subsampling

Summary statistics of the raw data by sampling interval, for tumor and normal liver, are 

presented in Table 1. Scatter-plots of the raw data by sampling intervals compared to 

reference, for tumor and normal liver, are presented in Figure 3 and 4, respectively.

The quantitative effects of sampling interval on CT perfusion values compared to reference, 

for tumor and normal liver, are presented in Table 2 and in Figure 5. The first row of Table 2 

indicates, for example, that subsampling at 1s resulted in tumor BF significantly higher than 

reference, with a mean ratio of 1.06, i.e. higher or over-estimated by 6% (p=0.0009). The 

data for tumor indicate that subsampling resulted in significantly different CT perfusion 

values compared to reference values for essentially all our sampling intervals of 1s through 

4s, and for essentially all CT perfusion parameters (p≤0.0009); the only exceptions were for 

BV and HAF at 1s.

BF values for tumor were over-estimated increasingly compared to reference by 6%, 31%, 

47% and 63%, with increasing sampling intervals from 1s, 2s, 3s and 4s, respectively 

(p≤0.0009). BV values were also over-estimated, by 10%, 20% and 29%, with increasing 

sampling intervals from 2s, 3s and 4s, respectively (p<0.0001). In comparison, MTT and PS 

values were under-estimated increasingly compared to reference by 7%, 18%, 23% and 29% 

(p<0.0001), and 3%, 6%, 10% and 14% (p≤0.0002), with increasing sampling intervals from 

1s, 2s, 3s and 4s, respectively. HAF values were under-estimated, by 7%, 11%, and 13%, 

with increasing sampling intervals from 2s, 3s and 4s, respectively (p≤0.0003). The widths 

of the confidence intervals for these parameter values increased with increasing sampling 

intervals, reflecting increasing uncertainty in the estimations of the parameter values.

The results for normal liver showed similar trends as for tumor, except that significant 

differences were not detected with BV. Also, HAFs were over-estimated with subsampling 

for normal liver, as compared to under-estimated for tumor; nevertheless, as for other 

parameters, the trend of increasing departures from reference with increasing sampling 

intervals were still evident (Table 2, Figure 5).

Relative contributions of shifting and sampling intervals

Variation due to temporal shifting was smaller than variation attributable to subsampling 

interval, but varied in magnitude by CT parameter. In tumor, temporal shifting accounted for 

18% of the total variance of MTT and 6–11% of total variance for BF, BV, PS, and HAF. 

Similarly, in normal liver, 6–12% of the total variance was attributable to temporal shifting.

DISCUSSION

Our results demonstrate that subsampling, or increases in sampling interval, greater than 1s 

yield CT perfusion parameter values that deviate significantly from reference values 

acquired with 0.5s sampling. And furthermore, departures from reference values increased 
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with increasing sampling intervals. For example, BF values for tumor were over-estimated 

increasingly from 6% to 63%, and PS values were under-estimated increasingly from 3% to 

14%, with increases in sampling intervals from 1s to 4s, respectively. At 4s sampling 

intervals, BV was over-estimated by 29%, and HAF and MTT under-estimated by 13% and 

29%, respectively. The overall results for tumor and normal liver parenchyma were similar, 

suggesting that the findings are robust.

There have been relatively few previous studies that have investigated the effects of 

subsampling using the distributed parameter physiological model and these have come to 

differing views. In a study of patients with cerebrovascular disease, one study suggested that 

subsampling resulted in significant differences for BF, BV and MTT, and recommended that 

sampling intervals should not depart from their reference of 0.5s (9). In comparison, two 

studies of tumors in abdomino-pelvic locations, have suggested that 2s sampling intervals 

might be satisfactory. One study with colorectal tumors reported no significant trends in BV 

and PS with subsampling up to 4s, but found significant over-estimation of BF and under-

estimation of MTT at 3s; notably, these conclusions were in relation to a reference of 1s 

(10). Interestingly, the other similar study of body tumors, investigating rectal and 

retroperitoneal tumors, reported that BF values were under-estimated, and MTT values were 

over-estimated with subsampling (14), which is at some variance from the current study and 

that of Goh et al. (10). Two recent studies of patients with lung tumors have also come to 

opposing views (15, 16).

Comparison with the above studies is extremely difficult, not just because of differences in 

organ system/tissue, acquisition techniques, and CT perfusion software versions, but 

importantly, in their methods of statistical analyses. For example, t-tests, Wilcoxon and 

analysis of variance were used in three of the studies (9, 10, 14, 15), all of which fail to 

account for repeated measures and thus to properly differentiate between sources of 

variability attributable to the effect of subsampling and heterogeneity between patients. 

Another study based their conclusions on an assessment of Pearson’s correlation coefficients 

(14), which simply tests the proximity of data to a straight line, with no consideration of the 

slope of that line or of potential correlations of measurements from the same patient. Other 

studies using physiological models other than the distributed parameter model have also 

reached differing conclusions regarding subsampling (8, 11–13, 17, 23).

The current and a previous study (16) have incorporated consideration of shifts in T1 in their 

evaluations of subsampling, unlike other studies which have limited their analyses to a fixed 

T1=0. This is an important consideration since an actual acquisition employing subsampling 

may not include or capture the T1=0 time-point in its dataset. Our variance component 

analysis showed that shifting contributed up to 18% of the total variation. Thus, neglecting 

shifting will likely under-estimate the impact of subsampling on CT perfusion values. 

Shifting in T1 alone inevitably affects MTT, since the vascular input “start” times are 

necessarily displaced. Reductions in sampling interval, in addition to shifts in T1, affect the 

profile of the vascular input curves, typically reducing the peak heights and areas under the 

curve; these apparent reductions in vascular input functions probably contribute to the 

apparent over-estimations in tissue BF and BV with subsampling.
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In this work on liver tissues, it has been possible to derive HAF since our CT perfusion 

analysis included incorporation of the dual vascular input which more correctly represents 

the perfusion of hepatic tissues than single (arterial) supply, as utilized in some other liver-

related CT perfusion studies (24). Estimates of HAF for normal liver were approximately 

20%, which is as expected; for tumor they were substantially higher (approximately 50%), 

as might be expected for a highly vascular tumor, such as carcinoid. BF, BV, MTT and PS 

showed similar trends with subsampling for tumor and normal liver; in contrast, HAF 

showed differing trends when comparing tumor and normal liver, which may be a reflection 

of the complex interaction of arterial and portal flow with subsampling.

Our acquisition protocol extended over 590 seconds, which we have previously shown 

allows for reliable estimations of CT perfusion values (18). The current analysis suggests 

that subsampling has more profound effects on some parameters than others: for example, 

BF values departed from reference by 6%, 31%, 47% and 63% with increasing sampling 

intervals from 1s to 4s, respectively; while departures in PS values were smaller at 3%, 6%, 

10% and 14%, respectively. This might be expected from a modeling perspective, since PS 

relies more heavily on the more delayed parts of the data acquisition (Phase 2), which in our 

analysis was not altered. In contrast, BF is heavily influenced by the initial portions of the 

data acquisition, which was inevitably much more affected by our systematic adjustments 

with sampling intervals and shifting within Phase 1 of our dataset. Of note, our observed 

effects of subsampling, which were found to be significant for essentially all CT perfusion 

parameters, were the result of sampling manipulations only within the first 30 seconds of 

acquired data.

Subsampling offers the possibility of reducing radiation exposure. For example, with the 

protocol employed, subsampling at 1s, 2s, 3s, or 4s would reduce radiation exposures by 

approximately 30%, 44%, 49% and 52%, respectively. It also gives the opportunity for more 

extended tissue coverage by allowing the incorporation of CT table z-axis “shuttling” or 

“toggling” into CT perfusion acquisitions. Our finding that subsampling significantly affects 

CT perfusion parameter values suggests that some calibration for such studies will be 

required. It will also be recognized that subsampling introduced more non-systematic 

variation into the estimation of CT perfusion parameter values, and that uncertainty 

increased with increasing sampling intervals; this increases variability and reduces scan-

rescan reproducibility, which in turn impacts on the powering of clinical trials.

We recognize and acknowledge several limitations in our study. We had a relatively small 

number of patients; however, it should be noted that correct modelling of the effects of 

subsampling utilized information acquired from all 25 tumor and 27 normal liver regions 

and up to 9 temporal shifts, which contributed up to 216 degrees of freedom for the chi-

squared tests. Our study was limited only to liver tissue and one specific tumor type. It did, 

however, incorporate dual vascular inputs, and our results for normal liver parenchyma 

paralleled our findings for tumor, suggesting that the findings are robust. Our cohort of 16 

CT perfusion studies was not restricted to simply pre- or post-treatment evaluations, which 

could be considered a limitation; however, a heterogenous treatment population could be 

considered advantageous, since the object of this study was essentially a technical 

evaluation, in which therapeutic interventions would not be anticipated to be relevant. We 
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recognize that what we have considered “normal liver parenchyma” may not have been 

entirely normal, since our patients had an underlying malignancy, evidence of at least 

macroscopic focal liver disease and possible prior exposure to systemic therapies. Further 

exploration with other tumors and tissues need to be considered. Comparisons across other 

CT perfusion platforms and implementing different physiological modeling were beyond the 

scope of this work and would require further investigation.

Our analysis was inevitably constrained by our specific CT perfusion acquisition protocol, 

which did not contain fully and highly sampled temporal data throughout the acquisition. 

Such an ideal dataset would have required excessive and unacceptably high radiation 

burdens to acquire.

In conclusion, our study of subsampling in the context of the distributed parameter model 

suggests that sampling intervals beyond 1s result in significant differences in CT perfusion 

parameter values in liver tissues when compared to 0.5s reference. Although subsampling is 

an attractive proposition, resultant CT perfusion values are more variable and can be 

significantly different from reference values by up to 63% or more. Its implementation may 

be partially mitigated if correlation tables could be developed and were available.
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FIGURE 1. 
Schematic of subsampling and shifting (not to scale)

Top row: Reference dataset (SI0.5). 0.5s sampling interval in Phase 1, combined with 8 anatomically registered 
Phase 2 images. T1, pre-enhancement set-point; T2, Post-enhancement set-point; T3, last second phase 
set-point.

Second row: Subsampled dataset, T1=t0. Orange block, baseline data-points added to ensure comparability of 
baseline values across all sampling intervals.

Third row: Subsampled dataset. Sampling interval same as second row, but T1=shifted forward.

Bottom row: Subsampled dataset. Sampling interval same as second row, but T1=shifted backward
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FIGURE 2. 61 year old woman with liver metastases from neuroendocrine tumor
(a) Image from CT perfusion dataset

(b) Parametric maps for BF, BV, MTT, PS and HAF (by rows, respectively), with 

illustrative examples of reference (SI0.5) and sampling intervals of 1s, 2s, 3s and 4s (left to 

right columns, respectively). Tumor and normal liver ROIs = purple and green outlines, 

respectively.

BF, in mL/min/100g; BV, in mL/100g; MTT, in seconds; PS, in mL/min/100g; HAF, ratio 

without units. The color scales are identical for each row of parametric maps. Note, for 

example in the first row, the increasing BFs of tumor and background normal liver with 

increasing sampling intervals
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FIGURE 3. 
Raw data plots for tumor BF, BV, MTT, PS and HAF (by rows, respectively), by sampling 

intervals of 1s, 2s, 3s and 4s (left to right columns, respectively). N reflects the number of 

subsampled differences observed among the 25 tumor regions acquired under the various 

temporal shifts. y-axis = subsampled parameter value, x-axis = reference parameter value. 

Solid line = slope of unity.

BF, in mL/min/100g; BV, in mL/100g; MTT, in seconds; PS, in mL/min/100g; HAF, ratio 

without units.
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FIGURE 4. 
Raw data plots for normal liver BF, BV, MTT, PS and HAF (by rows, respectively), by 

sampling intervals of 1s, 2s, 3s and 4s (left to right columns, respectively). N reflects the 

number of subsampled differences observed among the 27 regions in normal liver acquired 

under the various temporal shifts.

y-axis = subsampled parameter value, x-axis = reference parameter value. Solid line = slope 

of unity. BF, in mL/min/100g; BV, in mL/100g; MTT, in seconds; PS, in mL/min/100g; 

HAF, ratio without units.
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FIGURE 5. 
Estimated ratios for subsampled/reference values for the CT perfusion parameters, for tumor 

and normal liver.

The estimated means and 99% confidence intervals (CI) are provided as functions of 

subsampling. y-axes = ratios of subsampled values to values at SI0.5

Note: pink regions that do not encompass the horizontal black line of unity are significantly 

different.
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