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Abstract

Background—Within cells, there is a narrow concentration threshold that governs whether 

reactive oxygen species (ROS) induce toxicity or act as second messengers.

Scope of review—We discuss current understanding of how ROS arise, facilitate cell signaling, 

cause toxicities and disease related to abnormal cell differentiation and those (primarily) sulfur 

based pathways that provide nucleophilicity to offset these effects.

Primary conclusions—Cellular redox homeostasis mediates a plethora of cellular pathways 

that determine life and death events. For example, ROS intersect with GSH based enzyme 

pathways to influence cell differentiation, a process integral to normal hematopoiesis, but also 

affecting a number of diverse cell differentiation related human diseases. Recent attempts to 

manage such pathologies have focused on intervening in some of these pathways, with the 

consequence that differentiation therapy targeting redox homeostasis has provided a platform for 

drug discovery and development.

General Significance—The balance between electrophilic oxidative stress and protective 

biomolecular nucleophiles predisposes the evolution of modern life forms. Imbalances of the two 

can produce aberrant redox homeostasis with resultant pathologies. Understanding the pathways 

involved provides opportunities to consider interventional strategies.
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Oxygen

Earth’s atmosphere presently contains 78% nitrogen and 21% oxygen. Life has evolved 

within this biosphere such that higher eukaryotes derive much of their energy requirements 

through oxidative metabolism, to date the most efficient means of generating ATP and 

sustaining life. During the Precambrian epoch, oxygen was present at trace levels, but at 

given points in an evolving geology, increased and decreased, reaching a maximum of 35% 

during the Carboniferous period. Obviously, life has adapted (and presumably continues) to 

such significant changes in oxygen availability. Indeed, giant insects of the Carboniferous 

could only exist because of proportionally higher oxygen ratios allowing for greater 

diffusion rates in a spiracle dominated breathing physiology. Given that oxygen is now an 

obligate requirement in mammals, paradoxically, it also carries considerable toxicities. 

Chemical, and for our purposes biological, conversion of oxygen or nitrogen can lead to the 

production of reactive oxygen species (ROS) or reactive nitrogen species (RNS), families of 

chemically active molecules that contain free radicals and key contributors to cellular redox 

state [1]. In general, the fate of a mammalian cell is almost entirely contingent upon 

intracellular and extracellular levels of ROS/RNS. Co-opted during the evolutionary 

process, relatively low levels of ROS/RNS may function as signals to promote such 

activities as cell proliferation and differentiation, whereas high levels more likely lead to 

apoptosis and cell death. As such, redox pathways are essential in maintaining cellular 

homeostasis and as a consequence, within these pathways, a great deal of functional 

redundancy has evolved. An adequate balance between formation and elimination of 

ROS/RNS is maintained in cells via pro- and anti-oxidant enzymatic pathways. A variety of 

endogenous factors regulate generation of ROS/RNS and in turn, these contribute to cell 

physiology by influencing such events as proliferation, differentiation, apoptosis, autophagy 

and senescence. In virtually every case, subtle threshold effects determine the biological 

consequences of redox homeostatic pathways. The difference between too much and too 

little ROS will be subtle and yet determine the fate of many pathways critical to cell survival 

and proliferation. Such events will be of considerable influence on natural selection and it is 

apparent that many of the complex pathways that underlie redox homeostasis are 

evolutionarily well conserved. Therein lies the teleological beauty of sulfur biochemistry, 

for the variable valence and nucleophilic nature of the element provides much needed 

biological flexibility. In this review, we explore this dual nature of ROS/RNS and how 

sulfur and selenium can provide maintenance of a balanced oxidative: reductive 

environment conducive to an oxygen dependent lifestyle. Partly as a consequence of human 

adaptations to oxygen, we introduce concepts as to how ROS might influence human 

pathologies, particularly those linked with differentiation pathways.

Sources of ROS/free radicals

Although molecular oxygen has two unpaired electrons in different orbitals, it is not per se a 

free radical, which by definition contain a single unpaired electron. The term ROS refers to a 

number of chemically reactive molecules derived from O2, while RNS are derivative of 

nitrogen and oxygen, particularly nitric oxide (NO). In general the half-lives of RNS are 

longer than ROS [2, 3]. Three of the most common and biologically important ROS are O2·− 

(superoxide anions), H2O2 (hydrogen peroxide) and OH• (hydroxyl radicals) [4]. Of these, 
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the hydroxyl radical is invariably toxic, superoxide is a byproduct of mitochondrial 

oxidation reactions and hydrogen peroxide has evolved into an important intermediary 

signaling molecule. A summary of how ROS/RNS might be formed, their associated 

pathways and cellular effects are shown in Table 1.

Both exogenous (e.g. pollutants, tobacco, smoke, drugs, xenobiotics or radiation [5]) and 

endogenous sources contribute to intracellular ROS/RNS levels. As illustrated in Figure 1, 

primary sites of intracellular ROS include the mitochondrial electron transport chain (ETC), 

endoplasmic reticulum (ER) and NADPH oxidase (NOX) complex. Significantly, a number 

of human pathologies are associated with dysfunction within mitochondria or ER. Because 

approximately 1% to 2% of electrons flow through the ETC (generally within complexes I 

and III) in mitochondria [19], this organelle is a primary site of superoxide production [20]. 

ROS is produced in complex I during reverse electron transport, where electrons enter 

complex I through coenzyme Q binding [21]. Mitochondrial complex III catalyzes the 

electron transfer from ubiquinol to ferricytochrome c, which is coupled to proton 

translocation for ATP synthesis [22]. Mitochondrial membrane potentials and enhanced 

proton-motive forces increase ROS formation [7, 21]. In addition, oxygen concentrations, 

whether hyperoxic or hypoxic may increase ROS levels [23].

Secondarily, ROS can be produced from ER during oxidative stress. The ER is a well-

orchestrated protein-folding machine containing various chaperones and sensors that detect 

the presence of mis-folded or unfolded proteins. ROS may be generated as byproducts of the 

protein folding machinery in the ER [24]. Protein disulfide isomerase (PDI) and ER 

oxidoreductin 1 (Ero1) are two enzymes responsible for regulating oxidative protein folding 

in the ER. Disulfide bond formation is driven by a protein relay involving Ero1, a conserved 

FAD-dependent enzyme, which can be oxidized by molecular oxygen and in turn can act as 

a specific oxidant of PDI, which can then directly oxidize disulfide bonds [25]. Assuming 

one molecule of ROS is produced per disulfide formed, Ero1-mediated oxidation could 

account for up to 25% of cellular ROS produced during protein synthesis, a principle drain 

on cellular energy resources [26]. PDI has enzymatic functions that facilitate correct folding 

of proteins in the ER, e.g. isomerase activity that catalyzes the rearrangement of incorrectly 

formed disulfide bonds and oxidase activity that introduces disulfides into proteins [27]. PDI 

receives electrons and is converted to the reduced form, which then transfers electrons to 

Ero1 recycling itself. Based on flavin-dependent redox chemistry, ROS are generated when 

molecular O2 accepts electrons from Ero1 (Figure 1). Consequent to these ER-mediated 

processes, ROS also arise when glutathione (GSH) reduces unstable and improper disulfide 

bonds and is thereby depleted [24]. GSH (L-γ-glutamyl-L -cysteinyl glycine) is the most 

abundant cellular antioxidant preventing thiol groups from oxidation either directly by 

reducing reactive species or indirectly through catalytic systems such as glutathione 

peroxidases (GPx) [28]. ER stress can lead to the unfolded protein response (UPR) eliciting 

calcium leakage from the ER into cytosol, subsequently triggering the production of ROS in 

mitochondria [29]. Protein folding and refolding are ATP-dependent processes and ATP 

depletion induced ER stress can stimulate mitochondrial oxidative phosphorylation to 

increase the generation of ATP, ultimately further forming ROS [24].
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The other main source of cellular ROS is NOX, the only enzymes whose primary function is 

to generate ROS. NADPH oxidases are multi-subunit enzyme complexes highly conserved 

across phyla with signi cant homology among higher-order mammals. The family presently 

constitutes 7 members: NOX1-5, Dual oxidase 1 (DUOX1) and DUOX2 [30]. Their 

function, tissue distribution and sub-cellular localization have been substantially reviewed 

[31, 32]. The catalytic NOX protein contains FAD and NADPH binding sites, two heme 

molecules and six transmembrane spanning alpha helices with cytosolic N- and C-termini. 

The DUOX isoforms also contain the same domains; however, a seventh transmembrane 

domain and peroxidase homology are present. In addition to the catalytic NOX protein, 

NOX1-4 complex require a number of other regulatory proteins that are important for 

enzyme localization, stability and activation, including p22phox, p47phox, p67phox, 

p40phox and Rac GTPase. Once activated, cytosolic NADPH transfers its electrons to FAD 

and then sequentially to the two hemes and ultimately to molecular O2, forming the 

superoxide anion O2·− [33]. The specific cellular and sub-cellular distributions of NADPH 

oxidases underlie their importance in regulating various functions that require ROS 

mediated processing, for example cell motility [34].

A wide range of enzymes, including xanthine oxidase, lipoxygenase, cyclooxygenase, 

NADPH dependent oxygenase, and Nitric oxide synthases (NOS) can also produce 

ROS/RNS (Table 1, Figure 1), with quantitative contributions contingent upon tissue/cell 

location.

Cellular antioxidant systems

Excessive or uncontrolled production of ROS can cause damage to nucleic acids, proteins 

and lipids and this is closely associated with human disease pathogenesis. Here, the salient 

point is that ROS need not be harmful to normal cellular functions as long as redox 

homeostasis is iteratively regulated; indeed, ROS/RNS are important signaling messengers 

for proliferation, differentiation, apoptosis and other critical events during development. 

Growth in multicellular organisms depends on maintaining the proper balance between cell 

division and differentiation. Under physiologic conditions, cellular ROS accumulation is 

controlled by a battery of redundant endogenous antioxidant defense systems, both 

enzymatic and non-enzymatic, which either prevent or scavenge ROS. Non-enzymatic 

antioxidants include Vitamins C and E, carotenoids, avonoids; antioxidant enzymes include 

superoxide dismutase (SOD), catalase, GPx, glutathione S-transferase (GST) and 

peroxiredoxin (Prx). Low molecular weight cofactor or peptides, such as GSH, thioredoxins 

(Trx) and NADPH also play an important role in the antioxidant defense [35]. Finally, 

selenium has a critical role in maintaining antioxidant defenses. In terms of its biological 

functions, selenium is a fascinating element. In mammals there is a relatively narrow 

window of selenium homeostasis. Too much dietary selenium causes serious toxicities and 

death. Too little interferes with the synthesis of the approximately 25 proteins that use 

selenocysteine. Selenium has a role in maintaining normal immune responses and has 

preventative roles in cancer prevention. Other indications are that imbalance impacts male 

fertility, cardiovascular disease mortality and regulation of inflammatory mediators in 

asthma [36].
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As the 21st amino acid, there is a major outlay of energy in maintaining the complex 

selenocysteine-insertion machinery. As such there must be a strong biological rational to 

maintain selenocysteine in enzymes. It has been argued that this chemicobiological function 

is the ability of selenoenzymes to resist inactivation by irreversible oxidation, a property not 

evident in sulfur. Selenocysteine can confer resistance to oxidation through the superior 

ability of the oxidized form of selenocysteine (Sec-SeO2-, seleninic acid) to be recycled 

back to its parent form (Sec-SeH, selenocysteine) in comparison to the same cycling of 

cysteine-sulfinic acid to cysteine (Cys-SO2- to Cys-SH) [37].

Superoxide dismutase and catalases

As a first line of defense against superoxide free radicals, SOD catalyzes the dismutation of 

O2·− to H2O2. There are three metal containing isoforms of SOD found in different cellular 

compartments [38]: SOD1 (copper-zinc SOD) is in the cytoplasm, nucleus and plasma 

membrane; SOD2 (manganese SOD) is mainly in mitochondria [5]; and SOD3 (copper-zinc 

SOD) is unique in scavenging superoxide in the extracellular compartment, dismutating 

superoxides generated during the inflammatory cascade [39]. Bone marrow-derived human 

mesenchymal stem cells (MSC) specifically secrete SOD3 directly promoting cell survival 

by reducing toxic ROS [40]. MSC differentiation through the adipogenic, chondrogenic, and 

osteogenic lineages influences the expression of SOD3 [39]. SOD operates in conjunction 

with catalase to maintain hydrogen peroxide levels resulting from SOD catalysis. Catalase is 

abundant in the mammalian tissues, particularly in red blood cells, and overexpression of 

human catalase targeted to the mitochondria has been shown to be both cardioprotective and 

neuroprotective and to extend lifespan in transgenic mice [41–43]. In mammals, SOD and 

catalase always co-exist and their concerted catalytic activities may tighten the control on 

ROS signaling providing tumor cells with growth advantages [44]. This might include 

optimal protection against ROS-mediated apoptosis and catalytic dismutation of superoxide 

anions to hydrogen peroxide providing a central autocrine proliferation stimulus [45]. In 

addition to catalase, there are other two thiol-based systems to catalyze H2O2 reduction, 

GPx (with GSH) and Prx (with Trx). For either system, NADPH acts as the hydrogen anion 

donor helps to recycle oxidized GSH and Trx through glutathione reductase (GR) and 

thioredoxin reductase (TrxR) respectively [46].

Glutathione peroxidases and GSH

Historically, GPx (the first 4 discovered GPx1-4) were defined by their capacity to catalyze 

the reduction of H2O2 through selenocysteine (SeCys) at the catalytic site [47]. Similar to 

the NOX families, their antioxidant functions are contingent upon their subcellular 

localization. GPx1 is present in the cytosol and mitochondria in most mammalian cells and 

is more effective than catalase at removing intracellular peroxides under many physiological 

conditions [48]. Besides the SeCys-containing GPx, non-selenium GPx are widely 

represented in mammals as well as most vertebrates and some lower phyla [49]. GPx5, 7 and 

8 are cysteine-containing GPx, while GPx6 has a selenocysteine active site in humans but a 

cysteine in rodents and other species. For the reasons discussed above, cysteine-containing 

GPxs are much less efficient at detoxifying peroxides than seleno-dependent GPx [47]. The 

weak affinity of non-selenium GPx for GSH has led many authors to reconsider their 

reducing cofactor. For example, in P. falciparum Trx is the principle reducing cofactor. 
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Since more than 700 cysteine containing GPx homologues have been described, the term 

glutathione peroxidase actually only describes a small proportion of GPx, leading to a re-

classification of non-selenium GPx as thioredoxin peroxidases [50].

Peroxiredoxins and thioredoxins

Prx are ubiquitous peroxidases that use a conserved Cys residue to reduce peroxide 

substrates. Peroxides oxidize the peroxidatic Cys–SH to Cys–SOH, which then reacts with 

another cysteine residue to form a disulfide that is subsequently reduced by an appropriate 

electron donor [51]. The first Prx, described in 1968, was called “torin” [19], subsequently 

changed to thiol-specific antioxidant and then to thioredoxin peroxidase [52]. Mammalian 1-

Cys peroxidase uses GSH rather than Trx as a reductive electron source [53]. More recently, 

additional substrates such as lipid hydroperoxides and peroxynitrites have been identified for 

this family of proteins [54]. Peroxiredoxin was selected as a name to more appropriately 

represent the family of peroxidases in which cysteine is the primary site of oxidation during 

the reduction of peroxides [51].

Trx is a multifunctional selenoprotein containing two redox-active cysteines and a conserved 

CXXC active site motif (Cys-Gly-Pro-Cys) [55], and through its redox-active cysteine 

residues the dithiol Trx contributes to maintain a reduced environment. The dithiol moieties 

of Trx are reduced by receiving electrons from NADPH through TrxR. Trx serve to reduce 

oxidized proteins through intermediate disulfide bond formation, transferring electrons from 

its reactive cysteines through thiol-disulfide exchange reactions. Three mammalian Trx have 

been described: Trx1 (cytosolic), Trx2 (mitochondrial), and Trx3, a Trx variant localizes in 

spermatozoa [55, 56].

Glutaredoxins (Grx) also contain the conserved CXXC active site motif and function to 

reduce protein disulfides. Grx are oxidized by protein disulfide substrates, and reduced non-

enzymatically by glutathione. Both Grx and Trx have distinct and overlapping functions 

[56]. Compared to Trx, Grx not only catalyze the reversible reduction of disulfides by the 

dithiol mechanism (requiring both active site thiol groups in Grx or Trx), but can also 

uniquely catalyze this reaction through the monothiol mechanism, originally proposed in 

1978 [57], requiring only the N-terminal cysteinyl residue of the active site. Three Grx 

(Grx1-3) reduce protein disulfides by GSH/GPx system using the cofactor NADPH [58].

Glutathione S-transferases and S-glutathionylation

Glutathione S-transferases catalyze the formation of thioether conjugates of a number of 

small molecule agents with GSH. In mammals there are six different cytosolic GST 

isoforms: alpha, mu, pi, theta, omega and zeta. In general, < 10% of the primary sequence is 

conserved, but all GST isozymes have similar topologies and two domains responsible for 

protein folding. The glutathione S-transferase pi (GSTP) isozyme is expressed at high levels 

in many cancers and increased expression has been linked to acquired resistance to cancer 

drugs [59]. GSTP has four allelic variants, GSTP*A-D and there is evidence that individual 

expression patterns influence response to oxidative stress [60], implying that there may be 

pharmacogenetic differences in human populations.
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More recently investigations have suggested that GSTP has a diversity of functions in cancer 

cells, some of which are unrelated to its capacity to detoxify chemicals or drugs. For 

example, GSTP1 plays a role in controlling stress response, apoptosis and proliferation 

through direct binding to c-Jun NH2-terminal kinase (JNK), a stress activated protein kinase 

implicated in pro-apoptotic signaling. In non-stressed cells, low JNK activity is maintained 

due to sequestration of the kinase in a GSTP1-JNK complex [61]. Under ROS, GSTP1 

dissociates from the complex and elicits subsequent induction of apoptosis [62]. In this 

sense, over-expression of GSTP1 may well-serve the purpose by strengthening sequestration 

of JNK, and facilitates tumor progression when the ROS or therapeutic drug is not a 

substrate for GSH conjugation, explaining from another angle how increased levels of 

GSTP1 in tumor cells might contribute to drug resistance.

ROS/RNS cause reduced cysteine residues (-SH) that have a low pKa to become oxidized 

into protein sulfenic acids (P-SOH), nitrosylated (P-SNO) and eventually S-glutathionylated 

(P-SSG). S-glutathionylation is a regulated post-translational modification where GSH is 

conjugated to cysteine in redox-sensitive proteins. The modification leads to structural and 

functional changes in proteins, primarily because the host protein is increased in molecular 

mass and picks up a net negative charge from the addition of the tripeptide. Regulation 

through S-glutathionylation has been ascribed to a large number of proteins that fall into a 

number of functional clusters and a variety of recent reviews have addressed the importance 

of these [63, 64]. While the proximal donor for the S-glutathionylation reaction is not 

always defined, it is tacitly assumed that high levels of GSH would be consistent with 

increased levels of S-glutathionylation. The forward reaction can occur spontaneously or 

through GST catalysis, but the kinetics and magnitude of protein S-glutathionylation are 

greatly enhanced by the presence of GSTP. Cells expressing mutants of GSTP that lack 

enzyme activity have diminished levels of S-glutathionylation in response to ROS [65]. In 

terms of a specific target, GSTP has also been shown to play a necessary role in the S-

glutathionylation of 1-cys Prx. Oxidation of the catalytic cysteine of 1-cys Prx has been 

associated with its loss of peroxidase activity; however heterodimerization of 1-cys Prx with 

GSTP mediates the S-glutathionylation of the previously oxidized cysteine thus restoring its 

peroxidase activity [66]. Such a reaction is critical to maintain a defense against ROS and 

also influences susceptibility to various pathologies. Of relevance, S-glutathionylation of 

viral peptides is important in presentation of the antigens to the immune system and to 

altering T cell recognition [67]. Moreover, S-glutathionylation of the Slingshot-1L-binding 

protein regulates its degradation and contributes to the migration of monocytes [68]. These 

two recent observations add to the growing body of evidence that this post-translational 

modification is a critical intermediate in immune system and bone marrow physiology.

Human Pathologies influenced by ROS and differentiation pathways

There is a growing body of literature supporting crucial roles for ROS in the pathogenesis of 

many diseases, including those related to cell differentiation (e.g. cancer due to loss of 

differentiation, bone loss-associated disorders due to osteoclast differentiation or type 2 

diabetes due to beta-cell dedifferentiation) (Table 2). Accumulation of ROS together with 

depletion of reducing molecules shifts the cellular redox environment to a more oxidized 

state. ROS-mediated redox regulation may be direct or indirect, the latter occurring through 
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redox modifications of proteins mainly at cysteine residues, e.g. from reduced-SH to 

disulfide, sulfenic acid or S-glutathionylation form. Table 2 lists some of the diseases linked 

with abnormal cell differentiation. Regulation of cell differentiation by ROS through redox-

sensitive signaling pathways and transcription factors is covered. Details of some of the 

diseases are discussed in the accompanying text.

Obesity

Obesity is a complex disorder involving an excessive accumulation of adipose tissue which 

can occur through an increase in adipocyte size (hypertrophy) and/or number (hyperplasia). 

It results in dysregulation of glucose and lipid metabolism, as a consequence of increased 

production of proinflammatory adipocytokines, destroys energy balance and increases risk 

factors for type 2 diabetes, hypertension and hyperlipidemia, leading causes of morbidity 

and mortality [105, 106]. Understanding adipogenesis (adipocyte differentiation) is an 

important forerunner to gain insight into the metabolic pathologies associated with obesity. 

In addition to adipocytes, adipose tissue is composed of MSC, T regulatory cells, endothelial 

precursor cells, macrophages and preadipocytes in various stages of development [107]. 

MSC have the capacity to commit to preadipocytes and these can further differentiate into 

mature adipocyte, conferring a constant functional plasticity, which contributes to the 

tissue’s ability to expand throughout the entire lifespan [108, 109]. Adipocyte differentiation 

is a tightly controlled process that includes the coordination of a complex network of 

transcription factors (e.g. proliferator-activated receptor gamma (PPARγ), and CCAAT/

enhancer binding proteins (C/EBP)), cofactors (e.g. PPAR-binding protein (TRAP220), 

cyclic AMP response element-binding proteins (CREB) and histone deacetylases (HDAC)), 

and signaling intermediates (e.g. insulin/insulin-like growth factor-1 (IGF-1), Wnt proteins, 

and transforming growth factor beta (TGFβ) from numerous pathways) [109, 110].

Several studies have suggested that obesity can be both cause and effect linked with 

systemic oxidative stress and ROS production, at the same time promoting fat tissue 

development both in adipocyte culture and in vivo [111]. Intracellular ROS derived from 

NOX, mitochondria and ER stress promotes adipocyte differentiation [98]. Moreover, it has 

been shown that adipogenesis is sensitive to the extracellular redox environment, enhanced 

under oxidizing conditions and inhibited under reducing conditions [112]. NOX4 is a major 

source of ROS in preadipocytes [113] and is up-regulated systemically in obesity [114]. 

Down-regulation of NOX4 inhibits ROS production and adipogenic differentiation in both 

10T1/2 MSC and 3T3-L1 preadipocytes [115, 116], through transcriptional activation of 

CREB [116], up-regulation of mitogen-activated protein kinase phosphatase-1 (MKP-1) 

[98], or oxidative inhibition of protein-tyrosine phosphatase PTP1B [117]. NOX4 over-

expression yields the opposite effect [115]. In obese mice, treatment with NOX inhibitors 

reduces ROS production in adipose tissue, attenuates the dysregulation of adipocytokines 

and improves symptoms associated with diabetes, hyperlipidemia and hepatic steatosis 

[100]. These results imply that NOX4 may promote the adipogenic process; however, its 

role in vivo has yet to be fully defined. For example, Li et al. showed that NOX4 deficiency 

accelerated the development of obesity and insulin resistance in mice on a high-fat diet 

[118].
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The role of mitochondria or ER stress-generated ROS in adipocyte differentiation is not 

fully understood. Adipocyte differentiation is characterized by an increase in mitochondrial 

metabolism [119], but whether this is essential for differentiation or a byproduct of the 

differentiation process remains to be seen. In the early phases of adipocyte differentiation in 

human MSC, there was an increase in mitochondrial metabolism and ROS generation and 

that mitochondrial ROS (mtROS) production was required to initiate adipocyte 

differentiation [120]. Moreover, mtROS scavengers significantly reduced adipocyte 

differentiation [121]. Several studies have demonstrated that obesity may induce ER stress 

and activate the unfolded protein response and this in turn can lead to suppression of insulin 

signaling and inflammation in adipocytes [122–124]. However, relatively little is known 

about the precise role of ER stress induced oxidative stress in adipogenesis.

Regardless of the specific sources of intracellular ROS production, the close relationship 

between ROS and adipogenesis has been confirmed by a number of recent studies. In 

general, a more oxidized intracellular environment favors differentiation of progenitor or 

stem cells into mature adipocytes. Lee et al. demonstrated that H2O2 accelerated hormone-

induced adipogenic differentiation in 3T3-L1 preadipocytes by accelerating mitotic clonal 

expansion. This effect was explained through the positive regulation of key transcription 

factors C/EBPβ and PPARγ, which are able to promote the expression of genes involved in 

adipocyte differentiation [101]. Meanwhile antioxidants such as genistein, resveratrol, and 

N-acetylcysteine (NAC) suppressed ROS levels and inhibited C/EBPβ and PPARγ 

expression, adipocyte differentiation and fat accumulation in 3T3-L1 preadipocytes [101, 

102]. Intriguingly, there is evidence that the redox status of specific cysteine residues may 

affect the activities of C/EBPβ and PPARγ. Oxidation-induced dimerization of doubly 

phosphorylated C/EBPβ/liver activating protein increases DNA binding activity of C/EBPβ, 

whereas mutation of the C-terminal Cys(296), a residue adjacent to the leucine zipper and 

Cys(143), just upstream of the DNA binding domain, eliminated phosphorylation-, 

oxidation-, and dimerization-dependent DNA binding activities [96]. Nitro-fatty acids, 

which are endogenous products of nitric oxide and nitrite-mediated redox reactions, may 

increase PPARγ activity by covalent modification of redox sensitive Cys-285 [97]. The link 

with oxidative stress is further strengthened by recent data that demonstrate that Nrf2 and 

Nrf2-targeted antioxidant genes (e.g. NQO1, GPx and GCLM) also play critical roles in the 

biology of adipose tissue [99]. Collectively, these results suggest that working to understand 

the redox state in adipose tissue could lead to a variety of possible treatments for obesity and 

obesity-associated metabolic syndromes.

Neuroblastoma

Neuroblastoma is the most common extracranial solid malignancy in childhood and the most 

common cancer in infants [125, 126]. It is an embryonal tumor originating from neural 

crest-derived precursors of the sympathetic nervous system and shows remarkable biological 

and clinical heterogeneity with immature cells forming more aggressive tumors. 

Approximately 50% of patients have poorly differentiated metastatic tumors (stroma poor 

neuroblastoma) at diagnosis correlated with poor prognoses; whereas the remaining cases 

show localized presentation with more differentiated tumors (ganglioneuroblastoma or 

ganglioneuroma) associated with more favorable prognosis [75]. Although improved overall 
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5-year survival of patients with neuroblastoma has been noted over the past decade, survival 

rates among children with high-risk neuroblastoma remains below 50% despite aggressive 

chemotherapy [127]. Therefore, new therapeutic strategies are still needed to improve not 

only the cure rate but also the patient quality of life. Unlike most other cancers, 

neuroblastoma is characterized by a unique capacity for spontaneous regression, a 

phenomenon reflecting the activation of apoptotic and/or differentiation programs, and is 

therefore regarded as a cancer susceptible to cell differentiation blockades [128]. Several 

signaling pathways have been shown to play a role in inducing neuroblastoma 

differentiation, including nerve growth factor/tyrosine kinase receptor-A (TrkA), glial cell 

line-derived neurotrophic factor/RET receptor, protein kinase C/Ras/ERK, Fyn kinase, and 

tissue transglutaminase (TG2). Conversely, N-Myc can repress neuroblastoma 

differentiation partly through recruiting HDAC1 and thereby blocking TrkA and TG2 

expression [128, 129].

The concept that redox status may play an important role in neurogenesis has gained traction 

in recent years [91]. During embryonic, perinatal or adult neurogenensis, changes in the 

levels of oxygen and ROS appear as crucial signaling factors for the generation of new 

neurons. Neural stem cells (NSC) continually generate new neurons in highly specialized 

microenvironments (niches) which tightly regulate NSC quiescence, self-renewal and 

differentiation [130]. Oxygen concentration is one of the more crucial environmental 

conditions that regulate cell proliferation and differentiation both in vitro and in vivo. In the 

central nervous system, physiological concentrations of oxygen range from 0.55 to 8%. In 

NSC niches, the oxygen concentration is estimated to be 2.5 to 3% [131]. Dynamic control 

of O2 availability may be a component of the in vivo NSC niches. Conditions of lower O2 

tensions stimulate proliferation and self-renewal, whereas increasing O2 tension promotes 

differentiation or apoptosis of NSC and progenitors [132]. There is evidence that hypoxia-

inducible factors (HIF) play a role in both NSC proliferation and differentiation [130, 132]. 

Proliferative, self-renewing NSC maintain a high ROS status which appears to be required 

to maintain their self-renewal and neurogenesis perhaps through maintaining adequate levels 

of PI3K signaling [133]. ROS generation could be closely related to alterations in O2 levels 

and a growing body of evidence highlights ROS as key factors in neuronal differentiation. 

Indeed, it was shown that endogenously produced ROS activate PI3K/Akt, p38 and ERK 

signaling during neuronal differentiation [93, 133]. Intracellular ROS derived from NOX 

promoted neuronal differentiation. Conversely, inhibition of endogenous ROS production by 

NOX inhibition or mutation negatively regulated NSC differentiation [133]. Within this 

model, it was proposed that mitochondrial ROS production at complex III is especially 

important during hypoxia [130].

The role of oxygen and ROS in neuronal differentiation is also crucial for neuroblastoma 

development [130]. Solid tumors often contain regions with significant oxygen deficiency or 

hypoxia and tumor hypoxia generally predicts for poor clinical outcomes. Hypoxic tumor 

cells appear to be highly tumorigenic and poorly differentiated, with expression of multiple 

stem cell markers [134, 135]. Hypoxic conditions of 1% O2 in neuroblastoma cells can lead 

to dedifferentiation both in human neuroblastoma cell culture and in vivo. Hypoxia 

decreased the expression of neuronal marker genes but induced genes expressed in immature 
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neural crest sympathetic progenitors, partly through activation of Notch signaling in a 

HIF1α/2α dependent way, resulting in malignant progression (higher capacity of invasion 

and metastasis) of tumors [74, 136]. Conversely, knockdown of HIF2α induced partial 

sympathetic neuronal differentiation, indicating that HIF2α contributes to maintain an 

undifferentiated state in neuroblastomas [137]. Additionally, hypoxia decreases the tumor 

sensitivity to chemotherapy [138]. These observations reveal a strong correlation between 

hypoxia pathways and cancer stem cell characteristics and emphasize the need to maintain a 

tight balance between hypoxia and ROS. Hypoxia stimulates ROS generation, at the same 

time ROS participate in the activation of homeostatic responses to hypoxia [130]. 

Collectively, these results suggest that targeting hypoxia and ROS production of 

neuroblastoma cells can have positive therapeutic impact.

Bone Marrow Niches and Myelodysplastic Syndromes/Acute myeloid 
leukemia—Loss of differentiation is an important component in the pathogenesis of many 

cancers. One of the most salient examples is acute myeloid leukemia (AML), an aggressive, 

age dependent hematopoietic malignancy characterized by an accumulation of granulocyte 

or monocyte precursors in the bone marrow and blood [72, 139]. Myelodysplastic 

syndromes (MDS) can be considered representative premalignant hematopoietic disorders 

that can transform to AML [140]. Even after standard chemotherapy and stem cell 

transplantation, patients with AML inevitably experience relapse, most of which occur in 

patients with poor prognosis indices. Current therapeutic strategies appear to have reached 

the limit of their effectiveness; thus, novel strategies are needed to target leukemic cells 

exclusively [72]. Targeted therapy in AML was initially proposed in the late twentieth 

century by trying to force malignant cells to differentiate. Many cancer subtypes displayed 

alterations in the normal program of differentiation and growth; thus, the use of specific 

agents that might trigger differentiation of leukemic cells along normal hematopoietic 

lineages seemed a logical approach [141, 142]. All-trans retinoic acid (ATRA, also known 

as Tretinoin) was the first clinically useful cyto-differentiating agent employed in the 

treatment of acute promyelocytic leukemia (APL, a unique subtype of AML) [143]. Besides 

retinoids, several other agents (e.g. adenanthin [144, 145], antiocidin [146] and shikonin 

[147]) were found to inhibit proliferation and induce terminal differentiation of leukemic 

cells. Moreover, there is increasing evidence that redox therapies exploiting the role of ROS 

in signaling pathways and targeting redox homeostasis and regulation have become an 

attractive field [72]. For example, the mechanisms of several differentiation-inducing agents 

actually involve modulation of the intracellular redox homeostasis (e.g. targeting Prx I and 

Prx II thus increasing ROS production by adenanthin [144], and regulating Nrf2/ARE 

pathway by shikonin [147]), thus facilitating differentiation.

ROS have been implicated as chemical mediators in normal hematopoiesis. NOX and 

mitochondria are the major ROS-generating enzymes in bone marrow-derived hematopoetic 

stem cells (HSC) [148–151]. Those pathways behind HSC intracellular ROS regulation are 

currently the subject of ongoing investigations. The majority of the evidence suggests that 

the PTEN/PI3K/Akt pathway via the forkhead box-O (FoxO) family of transcription factors 

plays a crucial role in maintaining long-term regenerative HSC pools. FoxO protects 

quiescent HSC from oxidative stress either through the up-regulation of ROS detoxifying 
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genes or deregulation of the H2O2-p38MAPK pathway [152, 153]. Studies in the 1950s 

identified the importance of cysteines and thiols in bone marrow cell proliferation [154]. 

The bone marrow produces all the differentiated hematopoietic cells for peripheral blood. 

Long-term, self-renewing HSC have low levels of intracellular ROS. However, high ROS, 

which can occur during chemotherapy, may result in senescence. Specifically, elevated ROS 

appears to drive HSC out of quiescence and reduces self-renewal capacity, resulting in rapid 

bone marrow failure. Within the bone marrow environment, HSC may reside either at the 

bone-bone marrow interface (osteoblastic niche), where the microenvironment encourages 

quiescence or close to the blood vessels (vascular niche), where the microenvironment 

favors proliferation and/or differentiation [155–157] (Figure 2). Each population is defined 

by the expression of adhesive molecules, cytokines and chemokine signaling. Chemokine 

interactions can govern cellular niche behavior. For example, CXCL12 regulates HSC 

migration to the vascular niche while depletion of CXCR4 depletes HSC in the vascular 

niche [158]. Calcium gradients also influence HSC migration [159]. As a tissue, bone 

marrow is relatively hypoxic (1% to 2% O2) [160] and oxygen levels are higher closer to the 

vascular niche, presenting an oxygen gradient. The hypoxic osteoblastic environment 

encourages quiescence in HSC and movement to the more oxygenated vascular niche 

promotes HSC differentiation, mobilizing myeloid and lymphoid hematopoietic cells to the 

peripheral blood [161]. The possibility that a redox gradient may influence HSC migration 

and differentiation does not seem unreasonable. Older mice show accumulation of HSCs 

more distantly in the endosteum as well as increased levels of DNA damage in their HSCs 

[162], perhaps reflecting the accumulation of oxidative stress associated with the aging 

process. The distinct features of niche microenvironment and HSC sub-populations may 

present opportunities for the development of targeted therapeutics.

Excessive ROS production or oxidative DNA damage is frequently observed in 

hematopoietic malignancy [69–71]. Human HSC express multiple isoforms of NADPH 

oxidases, NOX1, NOX2 and NOX4. These have the capacity to produce constitutive ROS, 

which can serve as redox messengers that control HSC proliferation and differentiation 

[150]. Recent studies reported that NOX1, 2 and 4 isoforms are expressed in MDS/AML 

cell lines and MDS samples. Interestingly, NOX4 interacts with ERK and Akt1 within the 

nuclear speckle domain and contributes to nuclear ROS production, implying 

pathophysiological effects in MDS through modulation of nuclear signaling and DNA 

damage [34]. NOX-derived ROS are strongly elevated (> 10-fold) in more than 60% of 

AML patients and strongly promote both AML proliferation and survival. High ROS AML 

cells show depleted antioxidant defenses but evade the oxidative stress response through 

suppression of p38MAPK signaling [163]. In fact, the combination of a NOX inhibitor, 

histamine dihydrochloride, with the T-cell-derived cytokine IL-2 has been approved as 

remission maintenance immunotherapy in AML [164]. Constitutive activation of the serine/

threonine protein kinase Akt followed by FoxO inhibition and increased ROS levels are 

critical factors in the survival of AML blast cells [165, 166]. ROS production induced by 

growth factors or cytokines (e.g. G-CSF or IL-3) can protect leukemic cells from apoptosis 

[72]. Taken together, leukemic cells may develop a degree of “ROS addiction” to promote 

their survival and targeting ROS to suppress the high levels of ROS may be of clinical 

benefit in treatment of AML. Another approach to target ROS might involve amplification 
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of existing ROS stress or inhibition of intracellular antioxidants (possibly augmented in 

response to increased oxidative stress). Such treatments could cause catastrophic chemical 

damage only in malignant cells where oxidative stress preexists [73]. Indeed, several 

compounds with pro-oxidant capacity appear to be effective against AML. For example, 

arsenic trioxide is currently approved for treatment of relapsed APL and the mechanism of 

ROS generation by arsenic trioxide can involve TrxR inhibition [167], augmentation of 

mitochondrial ROS [168] or NOX activation [169].

Anticancer drug development using the platforms of GSH, GSTP and pathways that 

maintain thiol homeostasis have produced a number of leads [170]. TLK 199 (Telintra®), as 

a GSH peptidomimetic inhibitor of GSTP, stimulates myeloproliferation in both rodents 

[171] and man [172, 173] and has shown positive results (decreased requirements for red 

blood cell, platelet and growth factor support) in ongoing Phase 2 clinical trials for MDS 

patients [172, 173]. Even in the absence of Telintra, GSTP-null animals have increased HSC 

differentiation and proliferation [174, 175] and the molecular mechanism(s) may involve 

deregulation of JNK and JAK/STAT pathways [174] and thiol homeostasis (e.g. protein S-

glutathionylation responses, free protein thiols, GSH and GSSG levels) [175]. Meanwhile, 

we demonstrated for the first time that Matrix-Assisted Laser Desorption/Ionization-Mass 

Spectrometry (MALDI-MS) bone imaging can be used for the simultaneous in situ 

visualization of both GSH and GSSG in sectioned bones with an intact bone marrow 

compartment (Figure 3) [175]. MALDI-MS imaging is a powerful label-free technique 

mapping the distribution of a large range of biomolecules in tissue, including proteins, 

lipids, and drug metabolites, it has been used to generate 2-D or 3-D molecular maps 

directly from the tissue surface, allowing the display of the relative quantification and 

distribution of individual molecular moieties in tissues [176–179]. Basically, MALDI can 

record the spatial distribution of high mass molecules using the chemically specific 

molecular ions with typical spatial resolutions 25 μm or more. More detailed information 

has been extensively reviewed by McDonnell et al [180]. Refinements of this approach may 

be helpful in mapping those molecule gradients that contribute to the maintenance of 

myeloproliferative pathways. Collectively, these results suggest that redox-based therapies 

provide a clinical opportunity in the treatment of AML patients.

Redox active Drugs used for differentiation/redox therapy

Despite many encouraging results obtained both in vivo and in vitro, the only existing 

successful clinical application of differentiation therapy is ATRA for acute promyelocytic 

leukemia. ATRA is the most important active metabolite of vitamin A controlling 

segmentation in the developing organism and the homeostasis of various tissues in the adult. 

ATRA as well as natural and synthetic derivatives, collectively known as retinoic acid, plays 

an important role in mediating the growth and differentiation of both normal and 

transformed cells [181]. It has been reported that retinoid neural differentiation is via 

increasing intracellular ROS production and decreasing thiol levels in the cell. ROS 

scavengers and flavoprotein inhibitors reduced the retinoid induced differentiation and 

expression of N-Cadherin and the β-III tubulin subunit [182]. A growing body of evidence 

suggests that ROS generation and signaling are involved in cellular differentiation in many 

diseases. Differentiation therapy targeting redox homeostasis may provide opportunities for 
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improved pharmacological intervention. Table 3 lists some of the clinical and preclinical 

redox active agents used for differentiation-based therapies through targeting redox/

signaling pathways. While this list is not designed to be complete, it does serve to exemplify 

some of the issues where redox biology has provided a platform for drug discovery and 

development.

Adenanthin

Adenanthin, a diterpenoid isolated from the leaves of Isodon adenanthus, has been reported 

to possess anti-leukemic activity through targeting peroxiredoxin I/II [144, 145]. Adenanthin 

directly targets the conserved resolving cysteines of Prx1/II, and inhibits their peroxidase 

activities. Consequently, cellular H2O2 is increased and causes the activation of ERK1 and 

ERK2, inducing the expression of C/EBPβ, which has been widely shown to drive AML cell 

differentiation [183]. Adenanthin may serve as a lead compound for the development of 

PrxI/II-targeted therapeutic agents, which may provide a promising redox=based 

differentiation therapy for APL cells.

Amifostine

Amifostine (WR-2721; Ethyol) is a cytoprotective adjuvant used in cancer radiotherapy and 

with electrophilic chemotherapeutic agents. While it has bene cial effects on alleviating 

neurotoxicity, nephrotoxicity and hematologic toxicities of the various cytotoxic drugs, it 

was initially approved by the FDA for prevention of xerostomia in head and neck cancer 

patients undergoing radiotherapy [215]. Amifostine is converted to its active metabolite 

(WR-1065) after dephosphorylation by alkaline phosphatase, an enzyme presents at higher 

relative concentrations in normal cells, therefore higher levels of the active WR-1065 

metabolite accumulate in non-neoplastic tissue [216, 217]. Amifostine protects primitive 

hematopoietic progenitors against chemotherapy cytotoxicity [184], suppresses apoptosis in 

AML/MDS patients [187] and has been used in the management of MDS [188]. In normal 

bone marrow progenitors, amifostine stimulates the growth of granulocyte, erythroid, 

macrophage, megakaryocyte colony-forming units and erythroid bursts and inhibits 

apoptosis in cytokine-deficient conditions [185]. Activation of NF-κB/Rel factors can 

counteract apoptosis in the hematopoietic compartment, raising the possibility that, in 

addition to amifostine, other NF-κB/Rel–stimulating strategies could improve hematopoietic 

progenitor cell survival [186].

Arsenic trioxide (As2O3)

Despite the well-known toxicity of arsenic, arsenic trioxide has long been of biomedical 

interest. Under the trade name Trisenox (and approved by FDA in 2000), it is an important 

class of thiol-reactive pro-oxidant redox chemotheraputic agents that can target APL [218]. 

The antiproliferative and apoptogenic effects are linked with the pro-oxidant effects through 

covalent cross-linking of vicinal thiols [219]. The irreversible inhibition of mammalian 

TrxR by arsenic trioxide causes growth inhibition in breast cancer cells, and GSH depletion 

further enhances the drug-induced cell death [167]. Moreover, micro RNA let-7d and 

miR-766 might be involved in the regulation of arsenic trioxide activity in APL cells. 

Expression of caspase-3 and Bax, which are targets of let-7d and miR-766, respectively, 

were increased in treated APL cells [191]. Although generally considered as a relatively safe 
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therapeutic strategy, numerous clinical reports have indicated that chronic exposure to a 

therapeutic dose of arsenic trioxide can evoke severe cardiac side effects [189, 190]. Efforts 

to reduce the cardiac side effects have involved using natural antioxidants, with combination 

treatments of either genistein or resveratrol and arsenic trioxide in the treatment of APL 

[192].

Butylated hydroxyanisole

Butylated hydroxyanisole (BHA) is an antioxidant primarily used as a food additive. It is an 

inducer of the CBR1 gene, which is regulated by Nrf2 [220]. Through their antioxidant 

properties, both vitamin E and BHA enhance the effect of irradiation on mouse 

neuroblastoma [194]. Uncoupling protein 1 plays a role in generating heat by uncoupling 

oxidative phosphorylation in the mitochondrial inner membrane of mammalian brown 

adipose tissue. Overexpression of sestrins, a family of stress-inducible proteins that regulate 

metabolic homeostasis, increase fat accumulation through suppressing ROS [195]. Similar 

results were obtained by using either BHA or NAC [196].

N-acetyl cysteine

NAC is perhaps the simplest redox active agent, which can be deacetylated in tissue/cells to 

form cysteine, the limiting amino acid in GSH biosynthesis [221], replenishing GSH stores. 

NAC is both a drug and dietary supplement used primarily as a mucolytic agent and in the 

management of acetaminophen overdose. As an antioxidant, NAC suppressed C/EBPβ and 

PPARγ expression, which can inhibit adipocyte differentiation and fat accumulation [101, 

102]. Expression of obesity-related proteins, such as monoamine oxidase A, heat shock 

protein 70, aminoacylase-1 and transketolase, is suppressed by NAC [222]. Positive clinical 

responses obtained during NAC therapy in neurodegenerative diseases have provided 

supportive evidence for the role of ROS in pathological processes. NAC promoted neuron 

differentiation of ES cells in a dose- and time-dependent manner. Notably, NAC suppressed 

cell death caused by retinoic acid during neuron differentiation. In addition, neurite 

extension of SCG neurons was greatly stimulated in the presence of NAC, these results 

indicated that NAC enhanced both neuron differentiation and neuritogenesis [206].

NOV-002

NOV-002, a complex of GSSG and cisplatin at ratio of 1000:1, is a glutathione disulfide 

mimetic that alters intracellular GSH/GSSG ratios by increasing serum and tissue levels of 

stable GSSG, creating a mild, transient oxidative intracellular signal that can induce S-

glutathionylation [207, 208]. Preclinical and clinical studies indicated that NOV-002 

modulates signaling pathways involved in tumor cell proliferation and metastasis and 

enhances anti-tumor immune responsiveness in tumor models [207, 209, 223, 224]. 

NOV-002 altered intracellular levels of GSH and GSSG by >35% as well as caused a time- 

and concentration-dependent increase in the phosphorylation of three kinases that play direct 

roles in cell proliferation (JNK, p38, and ERK) and in AKT in pre-myeloid HL-60 cells, all 

involved in the regulation of hematopoiesis/myeloproliferation [207]. In addition, increased 

peripheral blood counts of leukocytes, monocytes, lymphocytes, T-suppressor cells, IL-2 

receptor-expressing T cells and natural killer cells were seen in the patient group receiving 

NOV-002 in combination with chemotherapy, indicating that NOV-002 has 
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myeloproliferative properties [208]. In animals, NOV-002 attenuated the decrease of red 

blood cells, platelets, total white blood cells, absolute lymphocyte and neutrophil counts, 

hematocrit values and hemoglobin content following radiotherapy with whole body γ-rays 

[209].

Telintra

TLK199 [γ-glutamyl-s-(benzyl)-cysteinyl-R-(−) phenyl glycine diethyl ester], now called 

Telintra or Ezatiostat is a glutathione peptidomimetic inhibitor of the enzyme GSTP. While 

early preclinical testing focused on overcoming GSTP-associated drug resistance, preclinical 

studies in rodents revealed that the drug also increased circulating blood cells of all lineages 

[171]. Furthermore, GSTP null mice exhibit an increase in myeloid cell differentiation and 

proliferation, evidenced by elevated leukocyte numbers and bone marrow derived dendritic 

cells [174, 175]. Telintra causes dissociation of GSTP from the JNK/c-Jun complex, leading 

to JNK activation by phosphorylation. Activated JNK phosphorylates c-Jun, which 

ultimately contributes to the stimulation of hematopoietic progenitor cell (HPC) 

proliferation and maturation [174]. Phase 2 studies of Telintra showed significant 

therapeutic responses in a proportion of patients with low- to intermediate-risk MDS [211]. 

The Telintra response profile contains two miRNAs (under-expressed miR-129 and over-

expressed miR-155) that regulate expression of genes known to be implicated in MDS 

disease pathology. Moreover, the JNK/c-Jun pathway is under-expressed in Telintra 

responding patients and over-expressed in non-responding patients, suggesting that patients 

whose cells do not under-express the JNK/c-Jun pathway are not likely to benefit from 

additional activation by Telintra. These signature genes and signaling pathways positively 

correlate with the known mechanism of action of Telintra and could potentially be 

developed into a predictive diagnostic test for MDS patients who may be sensitive to 

Telintra [210].

Vorinostat

Vorinostat (suberoylanilide hydroxamic acid, Zolinza) is a HDAC inhibitor that promotes 

cell cycle arrest, growth inhibition, apoptosis and differentiation of cells from AML and 

MDS patients [212]. Vorinostat received FDA approval for use in cutaneous T-cell 

lymphomas in 2006. This drug increased expression of genes previously found to be down 

regulated in MDS and/or AML (cFOS, COX2, IER3, p15, RAI3) and suppressed expression 

of genes over-expressed in these malignancies (AXL, c-MYC, Cyclin D1) [214]. One 

mechanism by which HDAC inhibitors can induce cancer cell apoptosis is by induction of 

DNA damage and genomic instability through generation of ROS [213]. Therapeutic index 

is enhanced because sensitivity to normal cells is lower than tumor cells [225].

Conclusion

Cellular redox homeostasis mediates a plethora of cellular pathways that determine life and 

death events. For example, ROS intersect with GSH based enzyme pathways to influence 

cell differentiation, a process integral to normal hematopoiesis, but also affecting a number 

of diverse cell differentiation related human diseases. Recent attempts to manage such 
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pathologies have focused on intervening in some of these pathways, with the consequence 

that redox biology has provided a platform for drug discovery and development.

Acknowledgments

This work was supported by grants from the National Institutes of Health (CA08660, CA117259, NCRR 
P20RR024485 - COBRE in Oxidants, Redox Balance and Stress Signaling) and support from the South Carolina 
SmartState program and was conducted in a facility constructed with the support from the National Institutes of 
Health, Grant Number C06 RR015455 from the Extramural Research Facilities Program of the National Center for 
Research Resources. Supported in part by the Drug Metabolism and Clinical Pharmacology shared Resource, 
Hollings Cancer Center, Medical University of South Carolina. J. Z. was supported by the Swedish Research 
Council (No. 524-2011-6998).

Abbreviations

AML acute myeloid leukemia

APL acute promyelocytic leukemia

ATRA all-trans retinoic acid

BHA butylated hydroxyanisole

C/EBP CCAAT/enhancer binding proteins

CREB cyclic AMP response element-binding proteins

CSF cerebrospinal fluid

DUOX dual oxidase

ER endoplasmic reticulum

Ero1 ER oxidoreductin 1

ETC electron transport chain

FoxO forkhead box-O

GPx glutathione peroxidases

GR glutathione reductase

Grx Glutaredoxins

GSH glutathione

GST glutathione S-transferase

GSTP glutathione S-transferase pi

HDAC histone deacetylases

HIF hypoxia-inducible factors

HPC hematopoietic progenitor cell

HSC hematopoetic stem cells

IGF-1 insulin-like growth factor-1

JNK c-Jun NH2-terminal kinase
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MDS myelodysplastic syndromes

MKP-1 mitogen-activated protein kinase phosphatase-1

MSC mesenchymal stem cells

(mtROS) mitochondrial ROS

NAC N-acetylcysteine

NOS Nitric oxide synthases

NOX NADPH oxidases

NSC Neural stem cells

PDI protein disulfide isomerase

PPARγ proliferator-activated receptor gamma

Prx peroxiredoxins

RNS reactive nitrogen species

ROS reactive oxygen species

SeCys selenocysteine

SOD superoxide dismutase

TBI traumatic brain injury

TG2 tissue transglutaminase

TGFβ transforming growth factor beta

TrkA tyrosine kinase receptor-A

Trx thioredoxins

TrxR thioredoxin reductase

UPR unfolded protein response
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Highlights

• Redox homeostasis mediates cell pathways that determine life and death events

• Aberrant redox homeostasis causes pathologies linked with differentiation

• ROS intersects with GSH based enzyme pathways to influence cell 

differentiation

• Redox targeted differentiation therapy provides a drug discovery platform

Ye et al. Page 31

Biochim Biophys Acta. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Cellular ROS, consisting of radical and non-radical oxygen species, are mainly generated in 

three sites: mitochondrial ETC; ER and NOX complex. Cells have evolved a system to 

maintain a homeostatic balance between pro- and anti-oxidant processes. Cellular ROS are 

eliminated by constitutively expressing an arsenal of detoxifying enzymes, including those 

directly destroying ROS such as SOD, catalase, and GPx. NADPH and GSH are primary 

contributors to the maintenance of a reduced cellular redox state. In a reduced state, both 

TRx and GRx reduce disulfides and become oxidized. Oxidized GRx is converted back into 

a reduced state using GSH, which is regenerated by NADPH-GR, whereas oxidized TRx is 

converted back into a reduced state using NADPH-TRxR. Nitric oxide synthases are key 

enzymes for the production and regulation of nitric oxide.
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Figure 2. 
Bone marrow niche microenvironments. Various gradients help to define the osteoblastic 

and vascular niches of the marrow compartment. Movement between one niche and another 

can be facilitated by microenvironment gradients of calcium, oxygen and potentially thiol/

redox state. Hematopoietic stem and progenitor cells traverse this space and mature towards 

the variety of blood cells that present the circulating blood lineages. Two types of HSC 

exist. Depicted are low and high ROS populations. As ROS formation requires oxygen, ROS 

levels in HSC or HPC correspond with oxygen availability. For HSC, when cells are 

quiescent, both ROS levels and NOX enzyme expression are low. During differentiation and 

migration of HSC, high ROS levels occur and act as a signaling response to promote cell 

migration and differentiation, ultimately contributing to maintaining hematopoiesis and 

immune function.
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Figure 3. 
Representative MALDI-MS images of sectioned femurs showing niche distribution in bone 

marrow of GSH and GSSG in WT and Gstp1/p2−/− mice. From left to right: scanned image 

of matrix sprayed MALDI slide of mouse femur with bone marrow; corresponding images 

of: GSH ions at m/z = 306.08; GSSG ions at m/z = 611.14. Color heat map of the data points 

in the GSH and GSSG images represent averaged individual ion signal intensities of the 

spots (taken from [175]).
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Table 1

Examples of free radicals and their biological relevance.

Radical Reaction Biology/function Refs.

Superoxide
O2·−

O2 + e− → O2·− Mainly produced by the reaction of O2 with an 
escaped electron from mitochondria; also 
produced by xanthine oxidase, lipoxygenase, 
cyclooxygenase and NADPH dependent 
oxygenase.

[3, 6, 7]

Hydrogen peroxide
H2O2

2O2·− + 2H+ → 2H2O2 + O2 An intermediate detoxification of O2·− by 
SOD; comparatively low intrinsic toxicity and 
biological half-life make H2O2 well suited to 
act as an intracellular signaling molecule; 
involved in remodeling the structure of cells 
and activation of transcription factors.

[8–12]

Hypochlorous acid
HOCl

H+ + Cl− + H2O2 → HOCl+H2O Formed by myeloperoxidase reaction of H+, 
Cl−, and H2O2; can terminate bacterial DNA 
replication by destroying DNA anchoring at 
the membrane.

[13]

Hydroxyl radical
HO·

HOCl+ O2·− → HO·+O2 + Cl−

HOCl+ Fe2+ → HO·+Fe3+ + Cl−

HOCl+ Cu+ → HO·+Cu2+ + Cl−

H2O2+ Fe2+ → HO·+ Fe3+ + OH−

H2O2+ Cu+ → HO·+ Cu2+ + OH−

H2O2+ O2·− → HO·+O2 + Cl−

Produced spontaneously by HOCl with O2·− or 
metal ions; also produced from H2O2 through 
Fenton reactions. Because of its high 
reactivity, short half-life and irreversible 
modification of macromolecules, HO· has high 
biological toxicity.

[3] [14]

Nitric oxide
NO

L-arginine+O2+NADPH → L-citrulline+NO+NADP++e− Synthesized enzymatically by NOS; can 
function as a free radical scavenger as it has a 
long half-life compared with O2·− and HO·. At 
normal physiological concentrations, NO is an 
intracellular messenger for guanylate cyclase 
and protein kinases. NO conjugates with GSH.

[2, 15–17]

Peroxynitrite
ONOO−

NO + O2·− → ONOO− In cells with high NO cells (e.g. stimulated 
leukocytes), reaction can be faster than the 
dismutation of O2·− by SOD, then ONOO− can 
undergo hemolysis to form HO·.

[2]

Nitrogen dioxide
NO2

ONOO− + H+ → HO·+NO2

2NO+ O2 → 2NO2

Increased formation of ONOO− can lead to 
autohomolysis into HO· and NO2; NO2 can 
also be produced by direct oxidation of NO by 
O2.

[2, 18]
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