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ABSTRACT

Motivation: Current high-throughput sequencing technologies allow

cost-efficient genotyping of millions of single nucleotide polymorph-

isms (SNPs) for hundreds of samples. However, the tools that are

currently available for constructing linkage maps are not well suited

for large datasets. Linkage maps of large datasets would be helpful in

de novo genome assembly by facilitating comprehensive genome

validation and refinement by enabling chimeric scaffold detection, as

well as in family-based linkage and association studies, quantitative

trait locus mapping, analysis of genome synteny and other complex

genomic data analyses.

Results: We describe a novel tool, called Lepidoptera-MAP (Lep-

MAP), for constructing accurate linkage maps with ultradense

genome-wide SNP data. Lep-MAP is fast and memory efficient and

largely automated, requiring minimal user interaction. It uses simultan-

eously data on multiple outbred families and can increase linkage map

accuracy by taking into account achiasmatic meiosis, a special feature

of Lepidoptera and some other taxa with no recombination in one sex

(no recombination in females in Lepidoptera). We demonstrate that

Lep-MAP outperforms other methods on real and simulated data.

We construct a genome-wide linkage map of the Glanville fritillary

butterfly (Melitaea cinxia) with over 40 000 SNPs. The data were gen-

erated with a novel in-house SOLiD restriction site-associated DNA

tag sequencing protocol, which is described in the online supplemen-

tary material.

Availability and implementation: Java source code under GNU gen-

eral public license with the compiled classes and the datasets are

available from http://sourceforge.net/users/lep-map.

Contact: pasi.rastas@helsinki.fi

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on June 14, 2013; revised on September 17, 2013; accepted

on September 20, 2013

1 INTRODUCTION

Current high-throughput sequencing technologies, such as

whole-genome sequencing and restriction site-associated DNA
(RAD) tag sequencing (Miller et al., 2007), allow cost-efficient

detection of millions of SNPs (single nucleotide polymorphisms)

and other markers for hundreds of samples. Linkage maps con-

structed from these large datasets would have significant poten-

tial in de novo genome assembly, especially in the case of the

genomes of non-model species assembled with short sequencing

reads. Linkage maps can be used to order scaffolds and contigs

as well as to validate and refine genomes by detecting chimeric

scaffolds.

However, current tools for constructing linkage maps are not

well suited for large datasets. Here, we describe a novel tool,

called Lep-MAP (Lepidoptera-MAP) (LM), to construct linkage

maps for ultradense genome-wide SNP datasets. Apart from

their use in genome assembly, genome-wide linkage maps are

valuable in family-based linkage and association studies (Laird

and Lange, 2008) and quantitative trait locus mapping (Doerge,

2002) by providing increased power and accuracy through multi-

point and haplotype-based analyses. Morever, genome-wide

linkage map enables the analysis of genome synteny (Baxter

et al., 2011; Beldade et al., 2009) and other complex genomic

data analyses.
Traditionally, linkage maps are constructed using crosses of

inbred lines (Cheema and Dicks, 2009). However, such lines are

difficult and expensive to create for many non-model species. For

example, the Glanville fritillary butterfly (Melitaea cinxia), a

well-established study system in population ecology (Ehrlich

and Hanski, 2004), has only one generation per year and an

obligatory winter diapause. LM was developed for the purposes

of the Glanville fritillary genome project and was designed to be

applied to full-sib families, crosses of individuals sampled from

natural populations and their offspring. The present approach is

cost-efficient for many non-model species. Other novel features

of LM include the following. (i) It is largely automated and

requires minimal user interaction; (ii) it is fast and memory

efficient and produces accurate maps; (iii) it can handle large

whole-genome sequencing datasets; (iv) it can analyze multiple

outbred families as well as typical inbred crosses; (v) it can select

necessary parameters based on their significance; and (vi) it can

combine genotype data and genome scaffold information in the

construction of linkage maps. Finally, LM (vii) can take into

account achiasmatic meiosis (recombination in one sex only), a

special feature of Lepidoptera (recombination in males only) and

some other taxa, to correct and impute genotypes.

1.1 Previous work

The construction of linkage maps is a fundamental computational

problem in genetics. Well-known tools for linkage map construc-

tion include MAPMAKER, CRI-MAP (Lander and Green, 1987)

and JOINMAP (Stam, 1993; Van Ooijen, 2011). More recent

tools include RECORD/SMOOTH (van Os et al., 2005a, b),*To whom correspondence should be addressed.
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CARTHAGENE (de Givry et al., 2005), MSTMAP (Wu et al.,
2008) and AntMap (Iwata and Ninomiya, 2006). Previous studies
have paid some attention to achiasmatic meiosis while construct-

ing linkage maps (Baxter et al., 2011; Beldade et al., 2009;
Yamamoto et al., 2006; Yasukochi, 1998), by considering mater-
nal and paternal informative crosses separately. In LM, we use

achiasmatic meiosis fully to infer haplotypes from full-sib crosses.
Haplotype information allows one to place more markers more
accurately both into and within chromosomes. Furthermore, the

previous analyses involve much time-consuming manual work.
For instance, in Beldade et al. (2009) the LOD score limit param-
eter is chosen visually comparing results and by simulations. Such

manual inspection is possible only with datasets of modest size.
The tools described in this article are fully or mostly automated.
A model for genotyping error is a critical part of any compu-

tational tool using next-generation sequencing data, which con-

tain a high frequency of errors. Ignoring genotyping errors is
likely to generate an expanded (too long) genetic map and hin-
ders the determination of the correct marker order (Cartwright

et al., 2007; Lincoln and Lander, 1992). Much research has been
conducted on correcting genotyping errors in the marker order-
ing phase (Cartwright et al., 2007; de Givry et al., 2005; Jansen

et al., 2001; van Os et al., 2005b; Wu et al., 2008). LM uses
achiasmatic meiosis to correct for genotyping errors, even with-
out knowledge of the marker order within chromosomes. The

ordering phase of LM uses full likelihood to model errors, and
we show that LM outperforms other tools on simulated data in
the absence of achiasmatic meiosis.

Ordering markers with data on multiple families is more
difficult than with data on a single family, as each marker is
informative only for a subset of families. Some marker pairs

are not mutually informative at all and hence their genetic dis-
tance cannot be calculated directly (in two-point fashion).
However, the distance of mutually non-informative markers

can be assessed by inspecting the nearby markers of the
marker pair in question. The framework of Lander and Green
(1987) to compute order likelihood takes into account nearby

markers and allows the detection of genotyping errors (Lincoln
and Lander, 1992). This framework is based on dynamic pro-
gramming to enumerate all inheritance vectors, describing how

individuals’ alleles were inherited from their grandparents.
Owing to the exponential time and space complexities of this
approach, it can only be applied to small families. LM uses

haplotypes directly as partial inheritance vectors to achieve fast
linear time algorithm for the likelihood evaluation.
MSTMAP (Wu et al., 2008) orders markers based on approxi-

mate solutions of the NP-complete (Garey and Johnson, 1979)
traveling salesman problem. The solution is found with an effi-
cient algorithm by traversing the minimal spanning tree of a

graph. The nodes of this graph are the markers and the edge
weights are the recombination distances between the correspond-
ing markers. To construct this graph, distances between all pairs

of markers are required. Unfortunately, such distances can not
be obtained in our full-sib study setting. Our solution combines
maximum likelihood and approximate traveling salesman prob-

lem solutions efficiently. We imitate spanning tree construction
to find a feasible initial marker order. Missing and inaccurate
distances are refined based on nearby markers in the partial so-

lution (similar to multipoint linkage analysis). After the initial

order has been established, local changes are applied to it to
maximize the likelihood of the final order.
In this article, we compare the performance of LM against

MSTMAP (Wu et al., 2008), R/qtl (Broman et al., 2003) and
AntMap (Iwata and Ninomiya, 2006). These latter tools were
included as they require minimal user interaction and thereby

make the analysis of hundreds of datasets possible. Analyzing
hundreds of datasets by visual inspection would be too time-

consuming and subjective. Well-known software for such inter-
active linkage mapping is CRI-MAP (Lander and Green, 1987),

allowing arbitrary pedigree structure and thus also full-sib
families. Many other software were previously compared in
Wu et al. (2008) and hence are not included in our experiments.

2 METHODS

A typical workflow of LM is illustrated in Figure 1. The main modules of

LM are SeparateChromosomes, used to assign markers into linkage

groups (LGs), and OrderMarkers, which orders the markers within

each LG. Additional modules include JoinSingles, ScaffoldHMM and

EstimateLODLimit. JoinSingles assigns singular markers to existing

LGs, whereas ScaffoldHMM uses scaffold positions of markers in link-

age map construction. EstimateLODLimit automates the choice of LOD

score (Morton, 1955) limit by computing its empirical distribution. The

sex-specific LOD score used here is defined in the Supplement. The

algorithmic details of LM are described in the following subsections.

2.1 Notation

Let the input data consist of genotypes of individuals in k families, or

crosses, over n SNP markers. Each family has two parents (P generation)

and their offspring (F1 generation). Without loss of generality, we assume

that each family consists of exactly m offspring.

We denote the two homozygous genotypes as 0 and 1, heterozygous

genotype as 2 and missing genotype as �1. A marker is maternally (pa-

ternally) informative in a family if the mother (father) of this family is

heterozygous. The haplotypes (alleles inherited together from one parent)

of each offspring can be partially deduced from the genotypes of the

offspring and its parents (trios). We denote these haplotype alleles as 0

or 1 and missing or unknown haplotype as �1. We define maternal (pa-

ternal) segregation pattern for a marker and a family as a string of

maternal (paternal) haplotype alleles at that marker.

2.2 Separate chromosomes and join singles: the marker

assignment modules

The module SeparateChromosomes assigns markers into LGs as follows:

(1) Filtering and haplotype deduction. Probable errors and inconsisten-

cies are filtered out from the data, and partial haplotypes are

deduced from genotype trios (see Section 2.2.1).

(2) The following steps are repeated until the LG assignment of mar-

kers converges:

(a) All marker pairs that have a LOD score � L are joined

together to form LGs.

(b) Completing the haplotypes. Achiasmatic meiosis is used to cor-

rect and impute genotypes (see Section 2.2.2).

Several LOD scores L ¼ L1,L2, . . . can be provided in descending

order for each LM run. If the maximum LOD score obtained with

some marker is lower than the first limit, the next limit is used instead.

This option is useful when there are several families, and the maximum

LOD score may differ based on how many families are informative on
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each marker. Step 2b can be disabled in LM to study species without

achiasmatic meiosis.

The module JoinSingles can be used to add single markers, not as-

signed originally to any LG, to existing LGs. For each single marker, a

multipoint LOD score is computed by inspecting several markers (within

a given similarity) of the existing LGs to find more informative families.

Each single marker is joined only if it can be linked uniquely to a LG.

2.2.1 Filtering and haplotype deduction LM filters out SNPs for

which the offspring allele distribution deviates toomuch from the expected

Mendelian proportions [segregation distortion in Cheema and Dicks

(2009)]. Genotype errors are modeled by allowing each underlying haplo-

type to be incorrect with an independent probability " specified by the user.

Sum of squares is computed between expected and observed allele distri-

butions separately for each family. If the P-value of this sum in a family is

lower than a given parameter �, the SNP is discarded from that family.

During the filtering, any missing parental genotypes are imputed if

possible. There is also the option to cope with cases where both parents

are missing and only one parent is informative. Filtering is also possible

based on the proportion of missing genotypes, parental genotype com-

bination and the number of identical segregation patterns.

Following filtering, the haplotypes of each offspring are deduced from

the genotype trios. Because of uninformative trios and missing genotypes,

only partial haplotypes can be deduced.

2.2.2 Completing the haplotypes Assuming achiasmatic meiosis,

there are only two maternal haplotypes for each chromosome. This ob-

servation is used by clustering maternal haplotypes over each LG into

two similar groups with small Hamming distance (Hamming, 1950)

within groups. By using the consensuses of both groups as true haplo-

types, missing genotypes are imputed and erroneous genotypes are cor-

rected. This provides more complete haplotype information, which allows

LM to place more markers more accurately both into and within chromo-

somes (see Section 3.3).

The decision problem corresponding to the clustering of haplotypes

into two similar groups with minimum Hamming distance can be shown

to be NP-complete (proof omitted). If the data are error-free, the optimal

clustering can be found efficiently in polynomial time (by checking

whether a graph is bipartite). As the rate of genotyping errors is usually

relatively low (due to filtering), typical instances are easy to solve. The

following algorithm is used for haplotype clustering:

(1) For each family and LG, the maternally informative markers are

processed in ascending order of missing haplotypes. The maternal

segregation pattern of each marker is either complemented or not,

to obtain a phased pattern. The phase is chosen to make the new

pattern as similar as possible to the previously phased patterns.

(2) A consensus segregation pattern is constructed for each LG by

taking the most common alleles from the phased patterns.

(3) This consensus (or its complement) is used as the true maternal

segregation pattern for each marker.

2.3 Choosing LOD score limit L

LM can choose LOD score limit(s) L automatically. The module

EstimateLODLimit accomplishes this task by generating 100 datasets,

by permutating the input genotypes of each offspring, separately for

each marker. Maximum LOD score is computed from these datasets,

which defines the empirical distribution from which the value of L can be

chosen with a desired significance level. LM will display the P-value and

the expected number of joined marker pairs and triplets for each positive

limit. Several limits can be found by first finding one and then re-estimat-

ing new limit(s) among marker pairs that cannot obtain as high LOD

score as the previous limit.

2.4 Marker ordering

The module OrderMarkers orders markers within each LG as follows:

(1) Steps filtering and haplotype deduction and completing the haplo-

types are performed (see Sections 2.2.1 and 2.2.2)

(2) Initial order. Initial marker order for paternally informative mar-

kers is found in a greedy fashion (see Section 2.4.1)

(3) Refining order. Starting from the initial order, marker orders are

changed locally to maximize the likelihood of the order, which

gives the final marker order (see Section 2.4.2).

2.4.1 Initial order First, the recombination fractions between all in-

formative marker pairs are computed. To be able to explore possible

several locally optimal orders, the search of the initial order is rando-

mized by adding random noise to the recombination fractions to obtain

distances between the markers. The distance used is a linear combination

of the recombination fraction and a value sampled from a beta

(aþ 1, bþ 1) distribution, where a and b are the number of recombinant

and non-recombinant haplotypes, respectively (a � b). The amount of

noise can be controlled by a user-specified parameter giving the linear

combination coefficient between 0 (no noise) and 1 (beta sample).

Adjacent marker pairs are then added to the solution in ascending

order of distance, making sure that no loops are formed and no more

than two neighbors per marker are added. After each marker pair has

been added, new distances are computed between the newly constructed

chain of two or more adjacent markers and all other markers and chains.

This is done in such a manner that if the end point marker of a chain is

not informative in some family, the next informative marker toward the

other end of the chain is used to compute the respective recombination

fraction with added noise. Only a subset of the smallest distances between

markers is stored to avoid quadratic memory requirement.

2.4.2 Refining order and the likelihood computation Given the

initial order with N markers, 2N2 random local changes (illustrated in

Fig. 2) to this order are evaluated and accepted if the likelihood is im-

proved. Our experiments showed no significant improvement by using

more sophisticated search strategy, such as the simulated annealing

(Kirkpatrick et al., 1983), in this step.

For now, let us assume a fixed order of markers for which the likeli-

hood is computed. Furthermore, we assume that the phase of each

marker is known, i.e. we know whether the segregation patterns should

be complemented or not to obtain partly missing inheritance vectors. The

(a)

(b)

(c)

(d)

Fig. 2. Local changes used in order refinement include (a) swapping two

markers in the order, (b) moving one marker to a new place in the order,

(c) reversing the order of three or more adjacent markers and (d) moving

the prefix or suffix of the order to a new position with or without

reversing

Fig. 1. The linkage map construction workflow with LM. The nodes

present modules of LM (described in Section 2) and the arrows show

the order in which these modules are typically applied
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recombination events (and haplotype errors) are detected by differences

(Hamming errors) in these vectors. More precisely, while reading the

markers in the fixed order, a change in an individual’s value from 1 to

0 or from 0 to 1 indicates recombination. The number of these changes

(0�1 or 1�0) is denoted as COUNT, and a solution with a small

COUNT is desired.

LM computes the likelihood of marker order by using a standard

hidden Markov model (HMM). This model has states 0 and 1 for each

marker, and transitions are allowed only between states of adjacent mar-

kers. A transition from state 0 to 1 or from 1 to 0 between markers j and

jþ 1 is made with probability given by the corresponding recombination

fraction rj. Each state s 2 f0, 1g emits either s with probability 1� ej or

1� s with probability ej, and thus ej gives the haplotype error probability

for marker j. The HMM is learned with the Baum–Welch expectation-

maximization (EM) algorithm (Durbin et al., 1998) from the partial in-

heritance vectors. In this manner, the likelihood computation is efficient

(linear time), compared with solutions in which the actual inheritance

vectors are enumerated [e.g. Lander and Green (1987)].

It is also possible to use fixed values for both or one of rj and ej. If both

are fixed, there is no need for the EM-algorithm and likelihood compu-

tation becomes faster. Moreover, fixing error parameters to some small

value would make the likelihood non-invariant to end point symmetries

(swapping of the two last or the two first markers) as described in

Cartwright et al. (2007). There is also an option to deal with these sym-

metries by specifying a penalty parameter � to use ‘likelihood - ��

COUNT’ as the optimization score.

LM chooses the phases of the segregation patterns to obtain partial

inheritance vectors by minimizing COUNT. If there are no missing

haplotypes, the inheritance vectors can be obtained simply by inspecting

patterns of adjacent informative markers. However, with an excessive

number of missing values, the corresponding decision problem can be

shown to be NP-complete (proof omitted).

Typically, however, the mapping minimizing COUNT is easy to find.

LM finds suitable mapping by first inspecting only segregation patterns

of adjacent informative markers. Next it analyzes whether the mapping

can be improved by complementing partial inheritance vectors obtained

so far. This mapping corresponds to the two-way pseudo-test cross, dis-

cussed in van Os et al. (2005b). LM does the mapping independently for

each order to be evaluated, which allows the mapping to vary as the

optimal order is being searched for.

2.5 The ScaffoldHMM module

The module ScaffoldHMM uses marker positions on genome scaffolds to

assign markers into LGs. This option is helpful with datasets containing

so few offspring that only maternally informative markers can be sepa-

rated into chromosomes (achiasmatic meiosis), whereas paternally in-

formative markers can be separated into LGs that cannot be assigned

to chromosomes. The proposed framework is suitable for other tasks as

well, e.g. to combine linkage maps constructed from different datasets

and to find probable scaffolding, mapping and linkage map errors. The

input to ScaffoldHMM consists of two linkage maps (or one map twice)

with scaffold mappings, and the module calculates the most probable LG

(of the first map) and the log-odds of this assignment for each marker and

scaffold.

ScaffoldHMM uses HMMs to model mapped markers in scaffolds.

Let K be the number of LGs (chromosomes) in the first (input) map.

Every scaffold defines a topology for one HMM, which has K states for

each mapped marker in the scaffold. The K states of each marker cor-

respond to the K LGs of the first map. There are two types of emission

distributions in the model. First one emits LG name (number) from a

state that corresponds to the first map. If there are no errors in the first

map, state k should always emit name k in this distribution. The second

distribution emits LG name of the second map. If there is one-to-one

mapping f between the LGs of the input maps, state k should always emit

name f(k) in this distribution. The transition parameters corresponding to

scaffold errors are fixed based on empirical distance distribution of

detected scaffold errors in the first map.

Maximum likelihood emission parameters are learned simultaneously

for all HMMs using Baum–Welch algorithm. Posterior decoding (Durbin

et al., 1998) is used to compute the probability of each marker being in

certain LG k, i.e. the LG name of this mapped marker is emitted from the

state k. This approach takes simultaneously into account all scaffolds and

LGs to find the most probable LG (chromosome) assignment.

2.6 Asymptotic running times and memory space

The asymptotic running time of marker assignment and the estimation of

LOD score limit significance is Oðmkn2Þ. Thus, it scales quadratically on

the number of SNPs n, as each marker pair has to be tested, and linearly

on the number of individuals km. The marker ordering phase has asymp-

totic running time of OðmkN3Þ for one LG with N SNPs. Here the local

search procedure to find the maximum likelihood solution dominates the

running time as there are OðN2Þ local changes to be evaluated. Thus, the

marker ordering scales cubically on the number of SNPs and linearly on

the number of individuals. LM reduces the latter running time by auto-

matically discarding every marker that is equal to or less informative than

some other marker not yet discarded. To further reduce the runtime, it is

possible to combine markers with near identical inheritance patterns (up

to missing values). However, only O(mnk) space is used, and therefore

LM can be applied even to large datasets. ScaffoldHMM has OðnK2Þ

time and OðnKÞ space complexity, where K is the number of LGs in

the first linkage map given as input.

2.7 Implementation details of LM

The input files of LM are required in pre-makeped LINKAGE (Lathrop

et al., 1984) format, and only unphased full-sib families with at most four

alleles per marker are allowed. Only paternal haplotypes are used in

marker ordering due to the assumption of achiasmatic recombination.

To study species without achiasmatic recombination, each individual

can be coded as two paternally informative individuals to achieve sex-

averaged recombination fractions.

Data from other types of crosses can be analyzed as independent full-

sibs. The simulated F2 backcross data in Section 3.3 was analyzed in this

manner with LM. Loss of information in this case can be reduced by

adding artificial individuals giving the phase of data and/or by coding the

SNP values with three or four alleles based on the information given by

the cross. In some species, such as the common fruit fly (Drosophila

melanogaster), only females exhibit recombination, in which case one

may use LM by swapping the sexes in the input data. Any type of

cross from which one can separate parents and their offspring can be

analyzed with LM.

3 RESULTS

3.1 The Glanville fritillary butterfly data

We constructed a linkage map for the Glanville fritillary butter-
fly (M.cinxia) with data for four different families. The parents of

each family originated from populations from Finland (female)

and Spain (male).
Altogether 106 individuals of three families and 4989 SNPs

were genotyped with Roche NimbleGen (F. Hoffmann-La

Roche Ltd, Switzerland) SNP-chip platform by the manufac-

turer. In these data, 3941 and 2630 SNPs were maternally and

paternally informative, respectively, in one or more families.
The fourth family was genotyped with SOLiD3/5500 sequen-

cing platforms (Life Technologies Ltd, UK) to produce a denser
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SNP dataset. Sequencing was based on SOLiD RAD tag
libraries (Miller et al., 2007), constructed with a newly developed
in-house protocol. This dataset consists of sequencing data for 12

offspring and their parents. The raw reads have been mapped
with BWA (Li and Durbin, 2009) and SAMtools (Li et al., 2009)
to the draft reference genome (Lehtonen et al., in preparation)

(109 M mapped reads). SNPs and genotypes have been called
using LM (see the Supplement). The number of SNPs was
93 767, of which 43 431 and 62 172 were maternally and pater-

nally informative, respectively. All genotype data are provided as
raw signals/counts as well as called genotypes with LM, along
with the mapping information of the corresponding SNPs to our

draft reference genome.
The chromosome assignment for the NimbleGen data was

constructed with SeparateChromosomes using LOD score limit

L¼ 4.4 [obtained by EstimateLODLimit, 5% significance, con-
sidering only maternal information (�1 ¼ 0:5) and LGs with
three or more markers]. Additional markers were added to

these LGs with JoinSingles with L¼ 6 and all informative mar-
kers. A map with 32 LGs and 2928 SNPs was obtained, including
one LG with markers following Z chromosomal inheritance, i.e.

female offspring are homozygotes of one of the father’s alleles.
The smallest LG with three markers segregated according to the
sex, and hence we concluded that it consists of pseudo-autosomal

regions, homologous regions between the Z and W chromo-
somes. The pseudo-autosomal LG was merged with the other
sex LG, giving 31 LGs with sizes between 29 and 165 markers.

The actual number of chromosomes of the Glanville fritillary is
31 (2n¼ 62) (Federley, 1938).
In the NimbleGen data, the order of markers was obtained by

first running OrderMarkers on each chromosome without error
modeling. Next, markers with distances of over 20 cM were
removed from the ends of each chromosome (total number of

markers removed was 42) as likely errors. LM was then rerun on
the remaining markers both without and with genotype error
modeling (�¼ 0.1), which resulted in linkage maps of 1704 cM

and 1466 cM, respectively.
For the RAD tag data, the maternal map was constructed

using SeparateChromosomes with L¼ 3.2, joining markers

with identical maternal segregation patterns. By discarding
small LGs, 32 LGs remained. Using JoinSingles with L¼ 2.3,
we obtained a map with 19896 markers. Finally, we merged

the two sex LGs. Because of achiasmatic recombination, this
map assigns markers only to chromosomes (not within).
Similarly, a paternal map was constructed by grouping pater-

nally informative markers with identical inheritance patterns.
This map had 20 822 SNPs and 423 LGs with two or more
markers in each LG. The maternal and paternal maps were

combined using ScaffoldHMM based on information on
marker positions within reference genome scaffolds. By manually
inspecting paternal LGs assigned to each chromosome, each

chromosome was split into 4–10 ‘bins’ of paternal LGs. The
order of these bins was established during the manual process.
Based on the number of the bins (228), the genetic length is

estimated to be 1642 cM. More information on the manual pro-
cess is given in the Supplement. The combined map was used in
genome assembly validation (Lehtonen et al., in preparation).
The number of common SNPs in the NimbleGen and RAD

tag-based maps is 23. Nonetheless, ScaffoldHMM was able to

join the two maps. Chromosome by chromosome comparison of
these two maps can be found in the Supplement.

3.2 The squinting bush brown butterfly data

The publicly available data on the squinting bush brown butter-

fly (Bicyclus anynana) (Beldade et al., 2009) was used to test LM.

The data consist of 533 SNPs from 12 families, from which 22
offspring and the parents were genotyped per family.
EstimateLODLimit (5% significance) was used to find

the limit L ¼ L1,L2 ¼ 6:6, 4:8, which was used in
SeparateChromosomes. We thereby obtained a solution with

29 chromosomes, of which 28 matched uniquely the 28
(2n¼ 56) chromosomes reported in Beldade et al. (2009). This

solution assigned 19 markers to these 28 chromosomes that were
not assigned to any chromosome in Beldade et al. (2009), where-

as the result in Beldade et al. (2009) included only two markers
not assigned to any chromosome by LM.

For curiosity, another map was constructed by considering
only maternal information (by setting �1 ¼ 0:5). When recom-

bination parameter �2 was set to 0.001, 28 chromosomes match-
ing uniquely to those reported in Beldade et al. (2009) were found

(LOD score limits L ¼ L1,L2 ¼ 5:0, 4:3, 5% significance).
Adding single markers to the initial LGs using also paternal in-

formation with an LOD score limit 5.6, we obtained a map with
19 additional markers compared with 5 in Beldade et al. (2009).

Finally, we ordered the markers within chromosomes. The
LM solution orders 70% more markers than reported in

Beldade et al. (2009), obtained with CRI-MAP (Lander and
Green, 1987). By comparing the results for the subset of markers

ordered in Beldade et al. (2009), the likelihoods (computed
by LM) of the order found by LM were at least 10-fold better

on 10 chromosomes compared with the likelihood of the order
given in Beldade et al. (2009). The Supplement shows one

example of different orders, obtained by LM and reported in
Beldade et al. (2009), where the difference is in the position of

SNP C2817P666. We have contacted the authors of Beldade
et al. (2009), and they confirmed that based on their new (un-

published) data, the LM position for SNP C2817P666 is correct.
These results were obtained automatically by LM, without any

manual work and using only a few minutes of computing time.

3.3 Simulated data

We simulated F2 backcross data containing 100 SNPs and 100

individuals in the same fashion as in Wu et al. (2008). The dis-
tance of adjacent SNPs was on average 1 cM, whereas the rate of

genotype errors � and missing genotypes � varied as in Wu et al.
(2008). For each � and �, we generated 30 datasets and ran LM,

MSTMAP (Wu et al., 2008) and R/qtl (Broman et al., 2003).
AntMap has only a graphical user interface, and thus it needed

manual work for each dataset. Therefore, AntMap (Iwata and
Ninomiya, 2006) was applied only to 15 dataset for some � and

�. LM was run with recombination and error parameters fixed
(LM) and by learning these parameters (LM-full) from the data.

We measured the runtime for each software on a typical desktop
computer (Intel Core 2 Duo CPU, 3.16GHz). The accuracy was

measured by computing the number of erroneous marker pairs
of the obtained results (unnormalized version of Kendall’s � stat-
istic, a solution with higher accuracy has less erroneous marker
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pairs). The error rates and the running times are reported in

Table 1.
Second, we simulated 30 F2 backcross datasets with 200 indi-

viduals and 1000 SNPs. The distance of adjacent markers was on

average 0.1 cM and the data were error-free. The individuals

were organized into groups of size 20, and each group was set

to be missing with probability 0.75, independently for each

marker (similar to multifamily full-sib data). The results are

reported in Table 1 as ‘multifamily’.
Third, we simulated 30 F2 backcross datasets with 200 indi-

viduals and 10000 SNPs over 100 cM without errors and with a

moderate rate of errors and missing data (0.01). These results are

denoted as ‘10k’ in Table 1. We were able to run only LM and

MSTMAP on datasets with � 1000 SNPs (R/qtl ran out of

memory, AntMap gave an error message). With 100 000 SNPs

we were able to run only LM (data not shown, MSTMAP ran out

of memory).

LM outperformed the other methods in accuracy, and it was

the second fastest following MSTMAP on small datasets (others

but ‘10k’) but fastest with large numbers of SNPs when noise and

missing data were introduced. LM was about as fast as AntMap,

but the accuracy of AntMap decreased dramatically as soon

noise and missing values were included. Note that the result of

LM is not the same on each run as its algorithms are rando-

mized. We have noticed that running LM several times

and picking the result with the highest likelihood (or lowest

COUNT) improves the quality of results. However, for

Table 1 LM was run only once.
The difference in accuracy between LM and LM-full is not

large; hence in practice it might be a good idea to use fixed error

and recombination parameters to achieve a faster runtime for

LM. In fact, for small error rates the performance with fixed

parameters seems to be even better, probably because of the

fact that LM-full becomes attracted more easily to some locally

optimal order. Moreover, the choice of the actual fixed recom-

bination (and error) values was not critical, as values 2-fold

higher and lower to the simulated ones worked equally well.
The marker spacing for the simulated F2 data was uniform

with adjacent markers being either 1, 0.1 or 0.01 cM apart. When

the data were simulated, each individual had a constant prob-

ability to recombine between adjacent markers. Thus, the actual

distance between markers (based on the data) was distributed

according to a binomial distribution. Highest variation ð� 1Þ

was in the datasets with 100 individuals, where most datasets

contained adjacent markers with distance of at least 4 cM.
We evaluated different methods also on datasets with greater

distance variation. This was achieved by grouping 100 individ-

uals randomly into 10 groups of 10 individuals for each marker,

and assuming that all individual in a group recombined with

probability 0.02, producing datasets with an average length of

200 cM. The results for these data were not significantly different

from the ones in Table 1 (data not shown). Assuming fixed re-

combination and error parameters, LM performs about as well

as if these parameters were learned from the data.
Finally, we simulated 30 datasets with achiasmatic meiosis to

evaluate how much the linkage map accuracy could be improved

by using achiasmatic meiosis (to complete haplotypes) in LM.

Each dataset consisted of four full-sib families with 20 individ-

uals in each, 30 simulated chromosomes, each having 100 SNPs

and 100 cM paternal length. The rate of missing genotypes and

genotype errors were both 0.01 and the minimum allele fre-

quency for the parents was 0.5.

Table 1. Comparison of the performance of LM, MSTMAP (Wu et al., 2008), AntMap (Iwata and Ninomiya, 2006) and R/qtl (Broman et al., 2003)

� � LM LM-full MSTMAP AntMap R/qtl

E Time E Time E Time E Time E Time

0.00 0.00 0.70 6 0.57 10 1.13 1 0.67 17 210.43 322

0.00 0.01 29.30 16 32.00 36 31.50 1 — — 1826.43 633

0.00 0.05 65.07 18 67.63 42 68.63 1 — — 2087.63 1080

0.00 0.10 117.83 18 115.73 42 134.17 1 — — 1887.23 1415

0.00 0.15 184.33 18 181.17 42 212.07 2 — — 1618.03 1835

0.01 0.00 8.47 8 7.97 16 15.03 1 — — 129.5 465

0.05 0.00 34.03 16 42.23 36 58.47 1 — — 564.13 525

0.10 0.00 38.50 18 48.57 36 59.90 1 — — 434.20 528

0.15 0.00 37.27 18 51.20 36 63.17 2 — — 572.30 559

0.01 0.01 31.33 18 33.03 40 34.13 1 55.07 18 713.47 875

0.05 0.05 63.20 18 72.13 42 77.90 1 711.8 18 747.7 1694

0.10 0.10 159.57 18 146.77 42 155.87 1 — — 1108.73 2083

0.15 0.15 235.67 18 236.37 42 326.77 2 — — 1285.57 2317

Multifamily

0.75* 0.00 616.70 1055 679.13 6580 12633.5 331 — — — —

10k

0.00 0.00 4.23 410 2.90 2040 44.43 295 — — — —

0.01* 0.01 1.73 409 1.77 641 7.13 73448 — — — —

Note: Each number is averaged over 30 (15 in AntMap) independent runs. Column E reports the average number of erroneous marker pairs among a subset of markers that

can be differentiated based on the data. The running time is in seconds; parameters � and � give the rates of missing values and genotyping errors, respectively. Best results for

each row are shown in boldface. (*¼ identical markers with missing values are combined with the option missingClusteringLimit in LM to reduce runtime.)
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The chromosome assignment was studied by

SeperateChromosomes on a single family with LOD score limit

5.6 and considering only maternal haplotypes. A single run of

JoinSingles with LOD score limit 5.6 was performed considering

all families and both parental haplotypes with and without

haplotype completion. With haplotype completion, we could

assign on average 2503 markers to chromosomes, compared

with 2460 without completion.
Next the marker ordering was studied by running

OrderMarkers on the known chromosome assignments. The aver-

age numbers of incorrect marker pairs were 312 (6.8% of all

pairs) and 485 (10.5%) with and without haplotype completion,

respectively. Thus, we could assign 1.7% more markers into

chromosomes and order these markers with 35% lower error rate.

3.4 Discussion of results

We have shown with real and simulated data that LM outper-

forms other methods compared in this study in accuracy and is

generally fast. Moreover, LM is versatile and it can be applied to

a wide range of different types of datasets. For instance, it would

have been difficult and time-consuming to construct linkage

maps for the Glanville fritillary data, described in Section 3.1,

without LM and its ScaffoldHMM module. For the purposes of

genome assembly validation or refinement, relative low map

resolution is sufficient (in our case data were obtained from 12

offspring), but the mapped markers must span the entire

genome. In particular, most scaffolds should have two or more

markers to detect chimeric scaffolds.
The experiments using simulated and real data suggest that

LM can use achiasmatic meiosis efficiently to achieve significant

improvement in linkage map accuracy.

4 CONCLUSION

We have described a novel tool, Lep-MAP, which can be used to

construct accurate linkage maps for large SNP datasets with high

rates of noise and missing values, commonly generated by next-

generation sequencing. Lep-MAP outperformed other methods

compared in this study in accuracy on real and simulated data. It

is light-weight in computation burden and highly automated,

allowing fast and objective linkage map construction.
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