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Abstract

The segmentation of diffusion tensor imaging (DTI) data is a challenging problem due to the high 

variation and overlap of the distributions induced by individual DTI measures (e.g., fractional 

anisotropy). Accurate tissue segmentation from DTI data is important for characterizing the 

microstructural properties of white matter (WM) in a subsequent analysis. This step may also be 

useful for generating a mask to constrain the results of WM tractography. In this study, a graph-

cuts segmentation method was applied to the problem of extracting WM, gray matter (GM) and 

cerebral spinal fluid (CSF) from brain DTI data. A two-phase segmentation method was adopted 

by first segmenting CSF signal from the DTI data using the third eigenvalue (λ3) maps, and then 

extracting WM regions from the fractional anisotropy (FA) maps. The algorithm was evaluated on 

ten real DTI data sets obtained from in vivo human brains and the results were compared against 

manual segmentation by an expert. Overall, the graph cuts method performed well, giving an 

average segmentation accuracy of about 0.90, 0.77 and 0.88 for WM, GM and CSF respectively in 

terms of volume overlap(VO).

I. INTRODUCTION

Segmentation is a necessary first step for quantitative analysis of region and tissue specific 

image measures in neuroimaging. Manual segmentation by experts is typically considered 

the gold standard, but there is substantial performance variability between experts and even 

within indications by the same expert. Further, manual segmentation is very time consuming 

and an ineffective method for quantitative analyses [1]. Therefore, automatic segmentation 

approaches are clearly desirable to generate reproducible and effective results for objective 

segmentation without human intervention. Image segmentation remains a challenging 

problem in neuroimaging [2], [3]. Recently, graph cuts [4], [5], [6] based methods have 
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emerged as a popular technique for automatic image segmentation (with minimal 

intervention) in computer vision. This is the method of choice in this paper.

Diffusion tensor imaging (DTI) is a relatively new method for non-invasively characterizing 

the microstructural features of biological tissues in vivo [7], [8], [9]. DTI has rich 

information on diffusion anisotropy and diffusivity. Diffusion anisotropy measures such as 

FA and relative anisotropy (RA) can be calculated using standard formulas [10]. Such 

diffusion anisotropy measures are high in WM. Therefore, we can use these measures to 

segment WM/non-WM regions. The three eigenvalues (λ1, λ2, λ3) of diffusion tensors and 

mean diffusivity (MD) can be used for characterizing the diffusion of water [7], [9]. It is 

known that the diffusivity value of CSF is more than twice that of the GM and WM regions 

[11]. Therefore, eigenvalues and MD are suitable to segment CSF/non-CSF regions. It 

seems plausible that the segmentation of WM/non-WM and CSF/non-CSF can be combined 

into a complete WM/GM/CSF segmentation in the same DTI space without requiring a 

registration step. A potential problem here is that DTI is highly sensitive to changes in the 

brain tissue microstructure from disease, injury, development and/or aging [12], [13], [14], 

[15]. The analysis of DTI is difficult due to the high level of variation of DTI measures like 

FA or RA across cerebral WM. For example, there is considerable overlap between the RA 

distributions of GM and WM, such that a simple binary thresholding method (which is 

commonly done) is not adequate [9]. Segmentation may be performed by co-registering DTI 

maps to a structural MR image and segmenting the DTI maps [16], [17]. However, 

misregistration will lead to errors in the DTI segmentation. Consequently, methods are 

necessary for segmenting DTI maps into specific tissue regions for both global and local 

characterization. In this paper, a 3D graph cuts algorithm was applied to automatically 

segment WM/GM/CSF tissue regions from DTI maps.

A two-phase segmentation approach was employed. First, CSF was segmented by a graph 

cuts algorithm and CSF was masked from the DTI maps. The initial segmentation of CSF 

was important to remove voxels with significant CSF contamination and corresponding high 

MD values. Then, the graph cuts algorithm was applied to segment the WM/GM from the 

FA maps. The method was applied to 40 images from DTI brain scans of 10 human subjects 

and the results were compared against manual segmentation by an expert of brain anatomy. 

In the next section, we briefly describe the methodology and then present the results of our 

experimental evaluations.

II. 3D SEGMENTATION WITH GRAPH CUTS

In the graph-cuts framework, the image segmentation is formulated as a discrete labeling 

problem where the objective is to assign the set of pixels in the image to a smaller set of 

labels. Typically, each label represents a distinct region (e.g., WM, CSF) desired in the final 

segmentation. The determination of the optimal labeling for an image is expressed as a 

Markov Random Field (MRF) energy function. The key advantage of such an approach is 

that the MRF energy can be optimized efficiently using maximum flow algorithms on a 

graph [4], known as graph cuts algorithms. The segmentation function has the form of
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(1)

The first term is called the data term and measures how well a label fp fits a pixel p. The 

second term is the smoothness term, and considers similarity between neighbors (in terms of 

the labels assigned to them), see [4]. In this paper, an estimate of the labels is calculated 

using a k-means clustering algorithm. The centers from this clustering method are used as 

the labels. The weights for the terms in (1) are calculated using a radial basis function (with 

user specified width parameter σ). The smoothness term is calculated as

(2)

where common choice for , Iq and Iq are intensities for pixel p and q 

respectively, and λ = k for fp ≠ fq, otherwise 0. To segment DTI images using the graph cuts 

algorithms from [4], the volume of DTI images is represented as a 3D graph. The empirical 

performance of the algorithm depends on parameter selection (automatic parameter selection 

continues to be a topic of research [18], [19], [20]). In order to ensure the best possible 

segmentation, settings that led to the best overall performance on our data set were chosen 

(automatic selection was not used). Our experiments made use of the FA and λ3 maps for 

segmentation. We adopted a 10-neighborhood system for the 3D graph construction. We set 

k = 1, , and  for WM segmentation with FA images, while k = 1, , and 

 were chosen for CSF segmentation with the λ3 maps (where σd and σs correspond to 

the data and smoothness terms respectively). Since λ3 has high contrast between the CSF 

and other regions[9], we selected λ3 to segment CSF/non-CSF regions. Conversely, FA was 

used for the WM/non-WM segmentation.

The segmentation procedure using the graph cuts was performed in two steps in Fig.1. First, 

CSF/non-CSF regions were segmented using the λ3 maps. The determined CSF regions 

were then masked from FA maps. In the second phase, GM and WM were segmented using 

the FA maps. We note that α-expansion type methods may be directly applied for three class 

segmentation. However, the DTI application permits two-step two class segmentation (i.e., 

CSF/non-CSF and WM/non-WM), which can be solved optimally in an efficient manner, 

and we adopted this strategy. The execution time of our two-phase segmentation was 100 − 

105s for each 128 × 128 × 62 sized DTI data set at the platform of Pentium D 2.8GHz 

processor with 2 GB memory. Finally, we calculated the accuracy of the segmented 

WM,GM and CSF regions, as described next.

III. SEGMENTATION EVALUATION

The segmentation was evaluated on brain DTI data from 10 subjects in all. The DTI data 

were collected at 3.0T using an 8-channel receiver coil, DW-EPI with SENSE under-

sampling of 2, b = 1000s/mm2, 12 encoding directions, a b=0 reference image, 3 averages, 

2×2×2.5 mm voxels, and 50 contiguous axial slices. Informed consent was obtained from 

each subject in compliance with the guidelines for human subjects research. Head motion 
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and eddy current distortions were corrected before our analysis. Maps of the λ3 and FA were 

generated for image segmentation.

In this study, gold standard CSF and WM maps were manually segmented from FA and λ3 

maps in each of the data sets by a brain anatomy expert with Brainmaker[21]. Manual 

segmentation was performed on a combination of the FA and λ3 maps (CSF appears 

hyperintense and WM appears hypointense on λ3 maps) and a co-registered (although not 

perfectly) T1-W map was used as a rough guide. The expert was blinded to the graph cuts 

segmentation results. Four randomly chosen slices from each subject were segmented – a 

total of 40 images from 10 subjects.

The segmentation evaluation was done by measuring volume overlap [16], which is defined 

by

(3)

where Ti is segmentation map by the graph cuts and Tj is manual segmentation map. V (·) is 

the volume of the tissue map. Table I shows the results of segmentation. The volume overlap 

from the graph cuts was roughly 0.90 in case of WM, 0.77 for GM and 0.88 for CSF. These 

values are slightly higher than the results using the mFAST (FSL -Oxford) segmentation 

algorithm in table I. A segmentation using a simple binary thresholding method (CSF: λ3 > 

0.0009mm2/s; WM: FA>0.2) was also compared. Although the volume overlaps were 

similar for thresholding and the graph cuts, the sensitivity of the WM segmentation was 

higher and the WM volumes had fewer ’holes’ for the graph cuts. These volume overlaps 

are also relatively higher compared with 0.67, 0.65 and 0.43 respectively reported in [16] 

and 0.68, 0.64, and 0.63 respectively reported in [17]. We note, however, that direct 

comparison of these values may not be meaningful since the segmentation frameworks (as 

well as the data) are different. Nonetheless, because the final goal of segmentation is to 

match to gold standard as well as possible, the graph-cuts method shows superior 

performance in terms of volume overlap for each WM, GM and CSF. Example 

segmentations shown in Figs. 2–4 demonstrate generally good correspondence between the 

manual and graph cuts segmentations for each case.

IV. DISCUSSIONS AND FUTURE WORK

We have evaluated 3D automatic segmentation using a graph cuts for DTI image 

segmentation. The results showed good performance in terms of volume overlap, up to 0.90 

for WM, 0.77 for GM, and 0.88 for CSF segmentation compared with previous works with 

the same data set [22], simple thresholding method, and segmentation with other algorithms 

with different data sets [16], [17]. The lower classification accuracy in [16] and [17] might 

come from misalignment between the DTI images and spoiled gradient recalled (SPGR) 

images, due to geometric distortion in DTI imaging, the partial volume effect, the reslicing 

and interpolation of DTI data, and the co-registration error [17]. We note that such 

misalignment can impact segmentation performance seriously when voxel-based 

comparison like volume overlap is performed. We believe that these highly volume 
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overlapped WM segmentations can be used for further application like changes in the brain 

tissue microstructure from disease, injury, development and/or aging [12], [13], [14], [15].

CSF segmentation is simpler because of the large contrast in the diffusivity maps - 

particularly λ3 and MD maps. Our performance in WM segmentation is better in part 

because we were seeking to target this tissue more than GM. Also, the WM is actually more 

contiguous so the graph cuts should work better in extended tissue regions. Our experiments 

highlight some limitations of the methods. Primarily, the performance of segmentation by 

the graph cuts depends on the selection of parameters in the energy function equation. As 

Fig. 5 shows, the volume overlap in CSF and GM segmentation has relatively high variation. 

If we can adapt the parameters according to each image, we may be able to obtain improved 

segmentations. A natural extension of this work (in terms of a comprehensive experimental 

analysis) would be to use multiple DTI images such as FA and λ3 images which can be fed 

into graph cuts at the same time to improve the segmentation performance. Our preliminary 

investigation did not show any significant empirical benefit of using multispectral methods 

for segmentation.

V. CONCLUSIONS

Brain tissue segmentation based on DTI data set was performed on 40 images from 10 

subjects using an automatic 3D graph cuts algorithm. There were two steps for 

segmentation. First, CSF/non-CSF regions were segmented using λ3 map, and CSF masked 

FA map was used for WM/non-WM segmentation. Our results showed promising high 

measures of volume overlap for WM/GM/CSF segmentation.
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Fig. 1. 
An overview of the segmentation pipeline adopted in our study.
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Fig. 2. 
An example of WM segmentation (top left: FA map, top right: graph cuts segmentation, 

bottom left: manual segmentation, and bottom right: volume overlap (green/0.95).
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Fig. 3. 
An example of GM segmentation (top left: λ3 map, top right: graph cuts segmentation, 

bottom left: manual segmentation, and bottom right: volume overlap (green/0.85).
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Fig. 4. 
An example of CSF segmentation (top left: λ3 map, top right: graph cuts segmentation, 

bottom left: manual segmentation, and bottom right: volume overlap (green/0.95).
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Fig. 5. 
A plot of the volume overlap of each WM, GM and CSF.
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TABLE I

A table of the accuracy of the segmentation results using an expert segmentation as gold 

standard(sensitivity=true positive rate, specificity=true negative rate).

Volume overlap Sensitivity Specificity

WM GC 0.90 (±0.03) 0.94 (±0.03) 0.92 (±0.04)

FAST 0.87 (±0.03) 0.84 (±0.05) 0.95 (±0.03)

Thresholding 0.90 (±0.03) 0.86 (±0.05) 0.97 (±0.01)

GM GC 0.77 (±0.06) 0.73 (±0.12) 0.93 (±0.03)

FAST 0.77 (±0.06) 0.85 (±0.06) 0.84 (±0.06)

Thresholding 0.80 (±0.06) 0.93 (±0.04) 0.82 (±0.06)

CSF GC 0.88 (±0.09) 0.93 (±0.08) 0.98 (±0.03)

FAST 0.71 (±0.09) 0.66 (±0.15) 0.97 (±0.02)

Thresholding 0.71 (±0.10) 0.56 (±0.1l) 0.99 (±0.00)
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