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Abstract

We present a novel parametric encoding scheme for efficiently recording white matter fiber 

bundle information obtained from diffusion tensor imaging. The coordinates of fiber tracts are 

parameterized using a cosine series expansion. For an arbitrary tract, a 19 degree expansion is 

found to be sufficient to reconstruct the tract with an average error of about 0.26 mm. Then each 

tract is fully parameterized with 60 parameters, which results in a substantial data reduction. 

Unlike traditional splines, the proposed method does not have internal knots and explicitly 

represents the tract as a linear combination of basis functions. This simplicity in the representation 

enables us to design statistical models, register tracts and perform subsequent analysis in a more 

streamlined mathematical framework. As an illustration, we apply the proposed method in 

characterizing abnormal tracts that pass through the splenium of the corpus callosum in autistic 

subjects.
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I. Introduction

Diffusion tensor imaging (DTI) can be used to characterize the microstructure of biological 

tissues using measures of the magnitude, anisotropy and aniotropic orientation [2]. It is 

assumed that the direction of greatest diffusivity is most likely aligned to the local 

orientation of the white matter fibers. White matter tractography offers the unique 

opportunity to map out, segment and characterize the trajectories of white matter fiber 

bundles noninvasively in the brain. Most deterministic tractography algorithms use the local 

diffusion tensor orientation to estimate the local direction of propagation along the 

reconstructed pathway or fiber tract [3] [8] [13] [15]. Tractography has been used to 

visualize and map out major white matter pathways in individuals and brain atlases [6] [16] 

[23] [24], segment specific white matter areas for region of interest analyses [12], quantify 

white matter morphometry and connections [19] [22], and visualize the relationships 

between brain pathology and white matter anatomy for clinical applications like 

neurosurgical planning [1] [17] [18]. However, tractography data can be challenging to 

interpret and quantify. Whole brain tractography studies often generate many hundreds of 

thousand tracts. Recent efforts have attempted to cluster [20] and automatically segment 

white matter tracts [21] as well as characterize tract shape parameters [4]. Many of these 

techniques can be quite computationally demanding. Clearly efficient methods for 

representing tract shape, regional tract segmentation and clustering, tract registration and 

quantification would be of tremendous value to researchers.

In this paper, we present a novel approach for parameterizing tract shapes using Fourier 

descriptors. Fourier descriptors have been previously used to classify tracts [4]. The Fourier 

coefficients are computed by the Fourier transform that involves the both sine and cosine 

series expansion. Then the sum of the squared coefficients are obtained up to degree 30 for 

each tract and the k-means clustering is used to classify the fibers globally. Our approach 

differs from [4] in that we obtain local shape information employing cosine series only, a 

special case of Fourier series. Using the new representation, we demonstrate how to quantify 

abnormal pattern of white matter fibers passing through the splenium of the corpus callosum 

for autistic subjects.

II. Cosine Representation

We are interested in encoding a tract ℳ consisting of noisy control points 1, ⋯, . 

Consider a mapping ζ−1 that maps the control point  onto the unit interval [0, 1] as

(1)

This is the ratio of the arc-length from the point 1 to p , to 1 to . We let this ratio to be . 

We assume ζ−1( 1) = 0. Then we parameterize the smooth inverse map

using the cosine basis functions:
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The representation is first introduced in [7]. The constant  is introduced to make the 

eigenfunctions orthonormal in [0, 1] so that

(2)

the Dirac-delta function. If we denote the coordinates of ζ as (ζ1, ζ2, ζ3), the 𝗄-th degree 

cosine series representation is given by

(3)

The Fourier coefficients  are estimated by solving the system of equations obtained at the 

control points:

(4)

In the matrix notation, we write (4) as

where 𝖸 = (ζ ( )), Ψ = (ψ ( )) and 𝖢 = ( ). Then the least squares estimation of 𝖢 is given by

The proposed least squares estimation technique avoids using the Fourier transform (FT) [4] 

[5] [9]. The drawback of the FT is the need for a predefined regular grid system so some sort 

of interpolation is needed. After various experiments to obtain the optimal degree, we 

decided to use 𝗄 = 19 through out the paper (Figure 1). This gives the average error of 

0.26mm along the tract. The plot of the average reconstruction error for other degrees is 

given in Figure 1.

The advantage of the cosine representation is that, instead of recording the coordinates of all 

control points, we only need to record 3 · (𝗄 + 1) number of parameters for all possible tract 

shape. This is a substantial data reduction considering that the average number of control 

points is 105 (315 parameters). We recommend readers to use 𝗄 ≤ 30 degrees for most 

applications.
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III. Application to autism study

A. Image Acquisition and Preprocessing

DTI data were acquired on a Siemens Trio 3.0 Tesla Scanner with an 8-channel, receive-

only head coil. Diffusion-weighted images were acquired in 12 non-collinear diffusion 

encoding directions with diffusion weighting factor 1000 s/mm2 in addition to a single 

reference image. Data acquisition parameters included the following: contiguous (no-gap) 

fifty 2.5mm thick axial slices with an acquisition matrix of 128×128 over a FOV of 256mm, 

4 averages, repetition time (TR) = 7000 ms, and echo time (TE) = 84 ms.

Eddy current related distortion and head motion of each data set were corrected using AIR 

and distortions from field inhomogeneities were corrected using custom software algorithms 

based on [11]. Distortion-corrected DW images were interpolated to 2 × 2 × 2mm voxels 

and the six tensor elements were calculated using a multivariate log-linear regression 

method [2].

The images were isotropically resampled at 1mm3 resolution before applying the white 

matter tractography algorithm. The second order Runge-Kutta streamline algorithm with 

tensor deflection [13] was used. The trajectories were initiated at the center of the seed 

voxels and were terminated if they either reached regions with the factional anisotropy (FA) 

value smaller then 0.15 or if the angle between two consecutive steps along the trajectory 

was larger than π/4. Each tract consists of 105 ± 54 control points. The distance between 

control points is 1mm. Whole brain tracts are stored as a file of size approximately 600MB. 

Whole brain white matter tracts for 74 subjects are further aligned using the affine 

registration [10] of FA-maps to the average FA-map.

B. Autism Population Study

The representation provides 60 dimensional feature vectors (coefficients) for characterizing 

a single tract. We have investigated the utility of the proposed representation in the ability to 

discriminate the different clinical populations (42 autistic and 32 control subjects). We have 

focused our detailed anatomical study on the splenium of the corpus callosum, which is 

manually masked by J.E. Lee [14]. Then the tracts passing through a ball of radius 5mm at 

the spleninum are identified. Each subject have 1943 ± 1148 number of tracts passing 

through the ball. The within-subject tract averaging can be easily done within our 

representations by summing the coefficients of the same degree [7] (Figure 2). First two 

images in Figure 3 shows the 74 average within-subject tracts color coded according to 

autism (red) and controls (blue). The control subjects seem to show more clustering of fibers 

compared to autistic subjects. So we have tested the statistical significance of the clustering.

Given two tracts

the 𝖫2-distance between the two tracts is defined as
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The metric ρ computes the Euclidean distance between corresponding points along the two 

tracts at each  Given a fiber consisting of n tracts η1, ⋯, η  within a subject, the average 

tract η̄ is obtained by averaging the coefficients within the corresponding basis. Then we 

define the tract concentration map  as

The value of  increases as tracts get more clustered. The concentration map  is a function 

of the parameter and can be projected along the average tract η̄. We can compute the 

average of the 74 average tracts by averaging the coefficients of the average tracts. We have 

constructed the two sample statistic (control - autism) using 74 -values and projected the 

statistic on the population average tract in the third image in Figure 3. We have detected the 

higher concentration of fibers in control subjects in the left hemisphere ( stat 1.79, value 

0.078). Autistic subjects show abnormal brain lateralization effect in fibers passing through 

the splenium.

IV. Discussion

Although the cosine representation is efficient for normalizing and averaging tracts, 

unfortunately it is not translation, rotation and scale invariant. This might be a reason why 

the resulting signal is a bit weak ( value < 0.078). One simple way of obtaining translation, 

rotation and scale invariant representation is to project white matter fiber tracts onto a unit 

sphere. Consider directional vectors ν  =  − 1 with the convention ν1 = 1. The vectors ν

contain all the necessary information to reconstruct the original tract.

The advantage of using the spherical projection method is that it offers a translation, rotation 

and scale invariant tract representation. Two tracts with the identical shape but at different 

positions will be identically represented as the same spherical curve. The translation 

information is stored in ν1 value, which should be stored separately.

Since ν  are unit vectors (except ν1) in our tractography algorithm [13], they are all in 𝖲2. 

For a general case, which will likely happen for other tractography algorithms, we project ν

onto 𝖲2 via the spherical projection 𝖯:

𝗐  defines control points for a spherical curve. The spherical curves can be parameterized 

using the cosine representation
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(5)

However, directly solving for each coordinate ζ  will violate the quadratic constraint that the 

spherical curve has to be embedded on 𝖲2, i.e.

(6)

This is easily seen from Figure 4, in which the degree 10 representation is visibly not 

embedded in 𝖲2. The average absolute error for reconstruction is relatively large for low 

degree due to the fact that the representation is no longer embedded in 𝖲2. Note that at 

degree 30, the average absolute error is small enough, i.e. 0.0153mm, to be used for 

subsequent modeling.

The spherical projection based representation can not be obtained in a straightforward 

fashion and requires solving three least squares problem simultaneously with the quadratic 

constraint (6) that relates the three equations (5). We will not consider this issue in this paper 

and leave it for a future study.

Another possible reason for the weak signal might be the improper choice of the fiber 

concentration map . Although  increases as tracts get more clustered, it may not be a 

proper metric for separating the groups. Possibly a better metric would be to use the inverse 

of the sample variance, i.e.

This new metric is normalized by the total number of tracts accounting for variable number 

of tracts for different subjects.
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Fig. 1. 
Cosine representation of a tract at various degrees. Red dots are control points. The degree 1 

representation is a straight line that fits all the control points in a least squares fashion. The 

error plot displays the average reconstruction error in millimeter (vertical) vs. degree 

(horizontal).
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Fig. 2. 
The within-subject average tract (red) of 2149 fibers. 2149 fiber tracts are subsampled to 

show few selective tracts (blue). The average tract is obtained by averaging the Fourier 

coefficients of 2149 cosine representations.
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Fig. 3. 
Each streamtube is the average of tracts passing through a ball of 5mm radius around the 

splenium in a subject. White matter fibers in controls (blue) are more clustered together with 

smaller spreading compared to autism (red). Thick streamtube at the bottom right image is 

the population average tract of all 74 subjects. Based on the fiber concentration map, we 

constructed statistic and the corresponding value.

Chung et al. Page 11

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2015 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Left: a single white matter fiber tract passing through the splenium of the corpus callosum. 

Middle: the cosine representation of the spherical projection of tracts at degree 10 and 30. 

The error plot displays the average reconstruction error in millimeter (vertical) vs. degree 

(horizontal) in the spherical projection method.
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