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Abstract

Rationale—Repeated methamphetamine (MA) use leads to increases in the incentive 

motivational properties of the drug as well as cognitive impairments. These behavioral alterations 

persist for some time following abstinence, and neuroadaptations in the structure and function of 

the prefrontal cortex (PFC) are particularly important for their expression. However, there is a 

weak understanding of the changes in neural firing and oscillatory activity in the PFC evoked by 

repeated drug use, thus complicating the development of novel treatment strategies for addiction.

Objectives—The purpose of the current study was to assess changes in cognitive and brain 

function following MA sensitization.

Methods—Sensitization was induced in rats, then temporal and recognition memory were 

assessed after 1 or 30 days of abstinence. Electrophysiological recordings from the medial PFC 

were also acquired from rats whereupon simultaneous measures of oscillatory and spiking activity 

were examined.

Results—Impaired temporal memory was observed after 1 and 30 days of abstinence. However, 

recognition memory was only impaired after 1 day of abstinence. An injection of MA profoundly 

decreased neuronal firing rate and the anesthesia-induced slow oscillation (SO) in both sensitized 
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(SENS) and control (CTRL) rats. Strong correlations were observed between the SO and gamma 

band power, which was altered in SENS animals. A decrease in the number of neurons phase-

locked to the gamma oscillation was also observed in SENS animals.

Conclusions—The changes observed in PFC function may play an integral role in the 

expression of the altered behavioral phenotype evoked by MA sensitization.
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Introduction

Repeated methamphetamine (MA) use is associated with progressive increases in drug 

craving and seeking behavior (Tolliver et al. 2010). MA abusers also exhibit impairments in 

a range of cognitive functions including decision-making (Paulus et al. 2003), attention 

(Salo et al. 2009), and episodic memory (Simon et al. 2004). Following abstinence, 

enhanced craving and seeking are observed in parallel with impairments in executive 

function, which may persist for over a year (Salo et al. 2011; Sax and Strakowski 2001). 

However, performance on other forms of cognitive function including episodic memory, 

may improve after ~6 months of abstinence (Simon et al. 2004). Given the well-defined role 

of the prefrontal cortex (PFC) in drug craving (George and Koob 2010) and advanced forms 

of cognitive function (Euston et al. 2012), impairments in neural processing in the PFC may 

be among the most enduring and debilitating features of repeated MA use.

Similar to MA users, MA-sensitized rodents exhibit craving and seeking behaviors in 

parallel with cognitive abnormalities during abstinence (Dalley et al. 2005). Sensitized 

behavioral responses to drugs are thought to be associated with increases in the attribution of 

incentive salience to drug-paired stimuli that are likely mediated by changes in structure and 

function of neural circuits necessary to encode reward-related information (Steketee and 

Kalivas 2011).

Deficits in cognitive flexibility (Kosheleff et al. 2012; Simon et al. 2000), in addition to 

temporal and episodic memory (Cheng et al. 2007; Wittmann et al. 2007; Belcher et al. 

2006; Simon et al. 2004) are observed in both humans and animals following repeated MA, 

which may play a role in the inability to abstain from drug taking. It has been argued that 

deficits in episodic or temporal memory may increase the difficulty for an addicted 

individual to follow a treatment plan and apply it in the future (Pitel et al. 2007; Bechara 

2005). Impairments in time perception are also observed in MA abusers (Williamson et al. 

2008), which could contribute to their propensity for impulsive decision-making and 

increase the probability of relapse (Kurti et al. 2013; Hoffman et al. 2006). Furthermore, 

MA abusers have impairments in episodic memory during initiation, retrieval, and execution 

of previously experienced and encoded memories (Iudicello et al. 2011).

Temporal and episodic memory are commonly measured in rodents using temporal order 

recognition memory (TORM) and novel object recognition (NOR) tasks, respectively. 
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TORM examines an organism’s ability to sequence events in time and is disrupted by 

transient inactivation of the PFC (Hannesson et al. 2004). However, no studies to date have 

examined the effects of repeated MA on this behavior. Recognition memory is impaired 

following transient inactivation of the hippocampus (HC) (Broadbent et al. 2010) and the 

perirhinal cortex (Hannesson et al. 2004), specifically during memory encoding, retrieval, 

and consolidation (Winters and Bussey 2005). Furthermore, rodents receiving repeated MA 

exhibit impairments in NOR (Belcher et al. 2006; Camarasa et al. 2010; Herring et al. 2008; 

Lu et al. 2010; Mizoguchi et al. 2008; Reichel et al. 2010, 2012). As such, the goal of this 

study was to induce sensitization in rats, and then use TORM and NOR as indices of frontal 

and temporal lobe function to determine how repeated MA effects cognitive functions after 

short-term and extended abstinence.

Persistent changes in neural activity that last beyond the acute pharmacological effects of 

MA are likely critical for the expression of sensitization and the impaired cognitive 

phenotype observed following repeated MA use. For example, individuals using or recently 

abstinent from MA display increases in EEG power in delta and theta frequencies, which 

correlates with poor episodic memory and information processing compared with controls 

(Newton et al. 2004). Repeated psychostimulant administration has also been shown to 

change firing and oscillatory activity in the rodent PFC, which supports the hypothesis that 

altered neural processing in this structure may contribute to impaired cognitive function 

(Homayoun and Moghaddam 2006; Lapish et al. 2012).

Considerable evidence points to synchronous activity among neural oscillations and spiking 

as a mechanism for encoding information (Ward 2003). In reduced states of vigilance, such 

as sleep and anesthesia, transient states of synchronous activity are observed in a number of 

brain regions (Steriade 1997). During these states, a <1.5-Hz slow oscillation (SO) is 

commonly observed that is associated with intense bouts of synaptic activity resulting in 

bursts of action potentials and increased oscillatory power (Steriade et al. 1993). A number 

of physiological phenomena, from replay to increased gamma power, are observed during 

the SO (Steriade 2006). These phenomena are driven, in part, by increases in synaptic drive 

resulting in large positive deflections (upstates) of local field potentials (LFP) and likely 

play a critical role in plasticity and neural encoding (Masquelier et al. 2009). SOs remain 

intact following urethane anesthesia (Pirch et al. 1985), thus motivating its use in this study 

to examine how repeated MA use alters PFC firing and oscillatory activity evoked by the 

SO.

Gamma oscillations (30–100 Hz) are considered important for temporal encoding (Buzsaki 

and Chrobak 1995), storage and recall of information (Lisman and Idiart 1995), and are 

modulated by SOs (Isomura et al. 2006). Phase locking of spike activity to the gamma 

oscillation is hypothesized to play an important role in the formation of localized cell 

assemblies and information transfer between them (Sirota et al. 2008). Moreover, 

disturbances in gamma are observed in a number of neuropsychiatric disorders, including 

addiction (Liu et al. 2005) and schizophrenia (Williams and Boksa 2010), and these 

disturbances may represent an aspect of neural processing that is critically altered in these 

clinical populations. The current study provides the first examination of the persistent 

changes in neural firing and ongoing oscillatory activity evoked by repeated MA 
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administration, to better understand the changes in brain function brought about by drugs of 

abuse.

Materials and methods

Subjects

Seventy-one adult male (PND 64 at beginning of experiments) Sprague–Dawley rats 

(Harlan, Indianapolis, IN) weighing 250–300 g were individually housed and maintained on 

a reverse light/dark schedule with ad libitum access to food and water. All procedures were 

approved by the Purdue School of Science Institutional Animal Care and Use Committee 

and conformed to the Guidelines for the Care and Use of Mammals in Neuroscience and 

Behavioral Research (2003).

Drug treatments

Rats were administered either methamphetamine hydrochloride (MA; Sigma Chemical Co., 

St Louis, Mo., USA) or 0.9 % saline (SAL) via intraperitoneal (i.p.) injection. MA was 

dissolved in sterile SAL and injected at a dose of 0.5 or 5.0 mg/kg in a final volume of 1.0 

ml/kg. For surgeries, rats received an i.p. injection of urethane (Sigma Chemical Co., St 

Louis, Mo., USA) ~4 h before surgery at a dose of 1.5 g/kg dissolved in sterile water in a 

volume of 0.1 ml/kg. Rats were administered additional urethane if necessary at a dose of 

0.75 g/kg.

Behavioral measures

Behavioral sensitization—Animals were acclimated to the locomotor chamber (54.61-

cm diameter×41.91-cm height) for 60 min, then were injected, and placed back into the 

chamber for 60 min. Animals received 5.0 mg/kg of MA (SENS) or SAL (CTRL) every 

other day for 13 days (induction phase), and then were undisturbed for 7 days in their home 

cage. Following this period, rats were injected on Day 21 to provide an initial assessment of 

sensitization prior to cognitive testing. After all cognitive testing, SENS and CTRL groups 

were split into groups receiving one of two doses of MA (0.5 or 5.0 mg/kg) and SAL, 

counterbalanced over two consecutive days to confirm sensitization (MA challenge, days 

54–55). In each experiment, behavior was acquired via video camera mounted above the 

chambers, recorded in ANY-maze (Wood Dale, IL), and scored offline by two 

experimenters that were blind to animal treatment. Distance traveled (m) and stereotypy 

were the dependent variables used to assess sensitization. Cronbach’s alpha was used to 

assess the internal consistency of the 126 stereotypy values between the two raters. The 

scores between the two raters were highly reliable (α=0.82).

Cognitive testing—Rats were tested on TORM and NOR after 1 and 30 days of 

abstinence from repeated MA injections (Online Resource 1 Fig. S1 for timeline). For these 

experiments, an open field chamber (86.36×93.98×31.24 cm) was used that contained a strip 

of Velcro on two opposite sides of the chamber, approximately 16.5 cm from the corner of 

the box. The objects included two rubber ducks (8.1×6.35 cm), Rubik’s cubes (5.8×5.8 cm), 

or circular white cups (7.62×4.57 cm). The order that animals experienced the objects was 

randomized.
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On testing days, animals were placed in the chamber and were allowed to explore two 

identical objects for 4 min (trial 1). In trial 2, after a 60-min inter-trial interval, animals were 

placed in the chamber for 4 min with two identical objects different than the ones 

experienced previously. To assess temporal memory, rats were exposed to two objects (one 

from each previous trial) for another 4 min after a 45-min inter-trial interval (trial 3). NOR 

testing took place in the same chamber after a 45-min inter-trial interval. Animals in the 1- 

and 30-day abstinence groups were placed in the chamber with the most recent object (from 

trial 2) encountered along with a novel object for 4 min (trial 4). The amount of time 

(seconds) that an animal spent interacting with each object was the dependent variable.

Surgical procedures

Simultaneous spike train and LFP recordings were acquired from the PFC of anesthetized 

rats that went through an identical SENS procedure as described above. Following SAL or 

MA injection on day 21, one animal per day over 9 days underwent electrophysiological 

procedures. This period was chosen based on observations of TORM impairments in 

animals repeatedly treated with MA. Animals were anesthetized with urethane and placed 

into a Kopf stereotaxic frame for surgery. An incision was made, the skull was exposed, and 

a craniotomy was made over the PFC. After removal of the dura, a microelectrode array was 

lowered into the right medial PFC (AP, +2.70; ML, +0.50; DV, −1.5: relative to bregma).

To make the electrode arrays, 4×16 μm stablohm wires (California Fine Wire; Grover 

Beach, CA) were twisted into tetrodes and fed through 75 μm polyamide tubing (Small 

Parts, Logansport, IN). These were then fed through 34-gauge microfil tubing arrays (World 

Precision Instruments, Sarasota, FL). The array was fed through a 200-μl pipet tip, and 

tetrodes were wired to EIB-27 micro (Neuralynx; Bozeman, MT) and secured with dental 

acrylic.

LFP and single-unit recordings

Probes were lowered and cells were located before the start of recording (Online Resource 1 

Fig. S2 for timeline). At least one wire was referenced to a ground screw over the 

cerebellum (for LFPs) while the remaining wires were referenced locally (for single-unit 

recording). LFPs and spikes were acquired using a Neuralynx recording system. LFPs were 

sampled at 32,556 Hz then to 1017 Hz prior to analysis. After recordings, animals were 

euthanized using CO2 and brains were extracted to assess placements (Fig. 6). The shape 

and size of the probe are illustrated in the +3.20-mm section.

Data analysis

Locomotor activity was analyzed using repeated measures (RM) analysis of variance 

(ANOVA) with treatment as a between-subject factor and days as a within-subject factor. 

Stereotypy was scored using a 1–9 rating scale (Ellinwood and Balster 1974) and was 

analyzed using Kruskal–Wallis comparing day as a factor between and within treatments. 

Bonferroni and Dunn’s multiple comparisons were used for post-hoc testing locomotor and 

stereotypy, respectively. For the MA challenge data, stereotypy was examined via Mann–

Whitney to assess between-group differences. Time-series analysis using the first 25 min 

was conducted for locomotor activity and stereotypy on the final challenge day (5.0 mg/kg). 
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For locomotor activity, a two-way RM ANOVA was conducted with treatment as the 

between-subject factor and time as the within-subject factor. For stereotypy, a Friedman test 

for CTRL and SENS groups were performed separately with bin as the repeated measure. 

Mann–Whitney U tests (corrected to p<0.01) were conducted to compare between-group 

differences for each bin. Total time spent with each object for TORM and NOR were 

assessed via Bonferroni corrected planned comparisons within each experiment. Total 

exploration time for TORM and NOR was assessed using unpaired t tests to compare group 

differences between CTRL and SENS groups. Significance thresholds for planned 

comparisons (alpha) were adjusted for the number of comparisons and are stated in the 

results, whereas p values for Bonferroni post-hoc tests are reported as already corrected for 

number of comparisons by this statistic.

Spike trains were manually identified and sorted into individual cell clusters based on the 

features of the waveform in Spike Sort 3D (Neuralynx, Bozeman, MT). After cell sorting, 

duplicate timestamps and inter-spike intervals <3 ms were removed from spike trains. Only 

spike trains containing >150 spikes were analyzed.

All electrophysiological data were analyzed in MATLAB (MathWorks, Natick, MA). To 

detect the SO, LFPs were subsampled to 10 Hz to remove transient voltage deflections 

(Online Resource 1 Fig. S4). A SO was detected as an increase in voltage of >2000 μV 

lasting >200 ms. The duration was measured as the time voltage increased beyond 2000 μV 

until it dropped below 500 μV. The peak was determined as the maximum voltage in the 10-

Hz subsampled signal observed during a SO. The frequency was derived as the time 

between the beginning of two consecutive SOs.

To assess spike-LFP coupling, all spike trains from a recording session were binned at 1 ms 

resulting in a n×p spike train matrix where n=spike train number and p=time (1 ms bins). 

The spike train matrix was summed over time resulting in a 1×p vector, which was then 

convolved with a Gaussian kernel (1 ms step, 200 ms window). Synchrony between the 

spike train vector and the LFP was then assessed via magnitude squared coherence.

To assess chance levels of spike train-LFP synchrony, a Monte Carlo approach was 

employed. The ISIs of each spike train matrix were shuffled and then a spike train vector 

was created from the shuffled data as described above (Online Resource 1 Fig. S3). 

Synchrony between the LPF and the convolved vector constructed from shuffled spike trains 

was also assessed via magnitude-squared coherence as described above. This process was 

repeated (500 bootstraps) and for each bootstrap coherence was quantified by integrating the 

spectrum in the <1-Hz range. The resulting scalar values were then used to compute the 

mean and standard deviation of <1 Hz coherence in the shuffled data.

To assess coupling between slow and gamma oscillations, LFPs were digitally filtered with 

a first-order Chebyshev lowpass filter (<5 Hz) and a Chebyshev bandpass filter (30–50 Hz) 

to isolate the slow and gamma oscillation, respectively. To quantify the relationship between 

these oscillations, the analytic phase and amplitude of the gamma isolated signal was 

derived via Hilbert transform. From the analytic amplitude, the amplitude envelope of 

gamma was derived for the entire function and extracted for ±1.0 s surrounding the initiation 
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of the SO. Only recordings with clear up/down state transitions were analyzed in order to 

control for possible differences in synaptic activity induced by urethane anesthesia.

The relationship between the size of the SO and gamma power was determined by 

computing power in the 30–50-Hz band from the gamma-filtered signal during each SO. 

Gamma power was quantified by integrating the power in the 30–50-Hz range, which was 

computed via Thompsons multitaper method. Gamma power was then stratified by the 

corresponding size of the SO.

Phase locking to gamma was determined by extracting the phase of the gamma oscillation 

from the entire gamma-filtered time series. Then, the corresponding phase occurring with 

each spike was extracted and used to compute the probability density function (PDF) for 

each cell with phase increments of 20°. PDFs were then subjected to Rayleigh’s test of 

uniformity at alpha=0.01. All LFPs were acquired from different tetrodes than those used to 

acquire spike train data. For phase-locked cells, κ was estimated as the inverse of the sample 

variance. To determine the extent that cells would be phase-locked by chance, Monte Carlo 

analysis was performed on each spike train (500 bootstraps). The ISIs of each spike train 

were shuffled in time and then phase locking to an unshuffled LFP was assessed as 

described previously.

Results

Analysis of locomotor activity revealed progressive decreases over days in the SENS group 

(treatment×day interaction, F(7, 238)=3.18, p<0.005; Fig. 1a), which were paralleled by 

increases in stereotypy, depicted by a score of 6 or above on the rating scale indicating 

repetitive stereotypic movements (dashed line) (Fig. 1b; χ2=22.89, p<0.005). This inverse 

relationship likely reflects the transition from enhanced locomotor output to stereotypy.

Increased locomotor activity was observed on days 54–55 in both CTRL and SENS groups 

following the 0.5 mg/kg MA challenge (Fig. 1c, left, main effect of treatment, F(1, 42)= 

25.67, p<0.0001). Increased locomotor activity was observed only in the CTRL group 

following the 5.0 mg/kg dose (Fig. 1c, right, treatment x injection interaction F(1, 26)= 8.99, 

p<0.05). No differences in stereotypy between groups were observed following the 0.5 

mg/kg MA challenge (Fig. 1d, left). However, increased stereotypy was observed following 

the higher 5.0 mg/kg dose (SENS, U=2.00, p<0.005; CTRL, U=0.0, p<0.005; Fig. 1d, right). 

A significant increase in behavioral stereotypies were also observed between CTRL and 

SENS animals treated with MA (directional Mann–Whitney U=9.00, p<0.04)

For locomotor activity, time-series analyses on the challenge day (5.0 mg/kg) shows a main 

effect of time (F(4, 96)= 6.68, p<0.0001), treatment (F(3, 24)=18.95, p<0.0001), and a time 

by treatment interaction (F(12, 96)=7.38, p<0.0001) (Fig. 1e). Bonferroni post-hocs revealed 

a significant difference in locomotor activity between CTRL animals that received MA vs. 

SENS animals that received MA 15-min (p<0.001) and 20-min (p<0.002) post-injection. For 

stereotypy, we observed a significant difference between bins in the SENS group 

(χ2(4)=24.89, p<0.0001) and in the CTRL group (χ2(4)=16.93, p=0.0020; Fig. 1f). Mann–

Whitney U tests found significant differences between CTRL and SENS animals that 
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received MA 15-min (U=1.5, p=0.0037) and 20-min (U=2.5, p=0.0057) post-injection. 

Collectively, these data support that there is an augmented psychomotor response, indicative 

of behavioral sensitization, brought about by repeated injections of MA that persisted 41–42 

days following induction.

After 1 day of abstinence, neither TORM (Fig. 2(a1)) nor NOR (Fig. 2(a2)) was observed in 

the SENS animals. The CTRL group exhibited both TORM (t(7)=2.67, p<0.02; Fig. 2(a1)) 

and NOR (t(8)=3.02, p<0.01; Fig. 2(a2)) after this time point. After 30 days of abstinence, 

TORM (Fig. 2(b1)) was observed in the CTRL group (t(9)=4.19, p<0.005) but remained 

impaired in SENS animals. In contrast to TORM, no deficit in NOR (Fig. 2(b2)) was 

observed after 30 days of abstinence in SENS (t(9)=3.73, p<0.005) or CTRL animals 

(t(8)=2.72, p<0.02). Bonferroni planned comparisons were corrected to an alpha level of 

p<0.025. There were no differences after 1 or 30 days of abstinence between groups in total 

interaction time for TORM or NOR.

Twenty LFPs and 74 neurons were recorded from CTRL (n=7), and 14 LFPs and 65 neurons 

were recorded from SENS (n=6) animals (see Fig. 6 for placements). Spiking activity (top) 

and concomitant LFP activity (bottom) from a single animal throughout recording are 

illustrated in Fig. 3a. Power spectrum analysis of LFPs in CTRL and SENS animals prior to 

and following MA treatment found main effects of background (F(1, 3520)=4.92, 

p=0.0266), treatment (F(1, 3520)=46.29, p<0.001), and frequency (F(54, 3520)= 130.57, 

p<0.001). Decreases in power in both CTRL and SENS animals were observed following 

MA injection (Fig. 3b). Black lines above each power spectrum denote where 95 % 

confidence intervals for each frequency diverge.

No baseline differences in frequency of SOs (Fig. 3c) or firing rate (FR) (Fig. 3d) were 

observed between CTRL and SENS groups. No differences in the frequency of SOs (Fig. 

3c) during baseline or following SAL injection were observed across CTRL and SENS 

groups. However, an injection of 5.0 mg/kg of MA decreased the frequency of the SO 

(mixed design factorial ANOVA, main effect of treatment, F(2, 72)= 12.34, p<0.0001) and 

FR in both groups (mixed design factorial ANOVA, main effect of treatment, F(1, 

5472)=70.97, p<0.0001) when compared with baseline. The mean FR (1/mean ISI) of 

neurons ranged from 0.003 to 1.5 Hz (CTRL) and 0.003 to 1.3 Hz (SENS). The majority of 

spike trains recorded during baseline exhibited irregular firing properties as indicated by 

median values of >1.0 for both coefficient of variation (Dayan and Abbott 2001); 

CTRL=1.292, MA= 1.295) and Local Variation (Shinomoto et al. 2003); CTRL= 1.282, 

SENS=1.237) (Online Resource 1 Table S1). Median values of burst fraction assessed 

during baseline (Van Elburg and Van Ooyen 2004) were comparable for CTRL=0.162 and 

SENS=0.193 animals. Additionally, approximately half of the spike trains in both CTRL (50 

%) and SENS (55 %) met the criteria used in Parsegian et al. (2011) for burst neurons during 

baseline (see Online Resource 1 Table S1).

In order to assess changes in PFC function that might have contributed to the observed 

impairments in cognition (Fig. 2(a1 and a2)), and not those associated with the acute effects 

of MA administration, all subsequent analyses were performed during the baseline period 

prior to MA injection. During SOs (Fig. 4a, black), large increases in gamma oscillations 
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(Fig. 4a, green) were observed, which are highlighted in a zoomed in representation 

(bottom) showing that the gamma burst occurred during the up-state of the SO. The power 

in the gamma band was not distributed equally throughout the SO. Rather, a large spike in 

gamma power was observed during the rise of the SO (Fig. 4b; CTRL (left): goodness of fit, 

χ2(2034)=8.41×108, p<0.0001; SENS (right): χ2(2034)=5.01×108, p<0.0001). However, 

when the power of the gamma oscillation was stratified by the size of the corresponding SO, 

a clear positive relationship was observed where increases in the size of the SO 

corresponded to increases in gamma power (Fig. 4c, mixed design factorial ANOVA, main 

effect of SO size, F(1, 1358)=519.84, p<0.0001). Furthermore, the SENS group had less 

gamma power for relatively small SOs, while increases in gamma power were observed for 

larger SOs (treatment×size of SO interaction, F(1, 1358)=36.68, p<0.0001).

Figure 5a shows a representative SO (top) and the same SO filtered in the gamma band 

(bottom) with the vertical black lines in each panel denoting an action potential. In Fig. 5b, a 

large proportion of spiking activity during the recording period was phase-locked to the 

gamma oscillations. In CTRL animals (white bar), 54 % of all cells were phase-locked to the 

gamma oscillation, which is consistent with previous observations (Senior et al. 2008; van 

Wingerden et al. 2010). However, a smaller proportion of cells (31 %) were phase-locked in 

the SENS group (gray bar; Fisher’s exact test, χ2(1, N=139)=12.35, p<0.001). The degree of 

phase locking to gamma oscillations was greater than chance levels in both groups (dashed 

lines) calculated via surrogate data. The inset shows a rose plot of a gamma phase-locked 

cell from a single animal during baseline recording. Lastly, Fig. 6 depicts the unilateral 

placement of probes relative to bregma, with examples of photomicrographs from one 

animal with a successful hit shown directly below.

Discussion

Low doses of MA are known to stimulate locomotor activity (Futamura et al. 2010; 

Zakharova et al. 2009), while moderate-to-high doses commonly evoke stereotypy, which 

has been demonstrated in rats using various doses ranging from 1.0 to 10.0 mg/kg (McGuire 

et al. 2011; Slamberova et al. 2011). In the current experiments, MA-induced 

hyperlocomotion progressively transitioned to behavioral stereotypy during the repeated 5.0 

mg/kg dose. These alterations were also demonstrated to be long lasting. Relatively low 

locomotor output in SENS animals following the induction phase was attributable to 

increased stereotypies, which are together indicative of behavioral sensitization (Pierce and 

Kalivas 1997). Although the CTRL group exhibited increased stereotypy scores when they 

received 5.0 mg/kg of MA compared with SAL, these scores were <6 on the rating scale, 

and, as such, stereotypies were not detectable. Furthermore, this score is similar to that of 

the SENS group that received MA on Day 1, which is indicative of an acute MA response. 

Collectively, these data confirm that animals that received repeated MA developed 

behavioral sensitization that persisted at least 42 days following the induction phase.

To our knowledge, this is the first study to demonstrate impairments in TORM as a 

consequence of repeated MA administration in non-MA-intoxicated rodents. Deficits in 

NOR observed in SENS animals following 1 day of abstinence might complicate the 

interpretation of the TORM impairments observed on this day. It is possible that the inability 
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of an animal to determine if it has seen an object precludes its ability to determine the order 

in which objects were observed. Thus, deficits in TORM may be attributable to an inability 

to detect novelty 1-day post induction. However, 30-day post-induction, NOR was intact 

while TORM was impaired, which establishes that deficits in TORM were likely not 

attributable to an inability to detect novelty at this time.

The observed results for NOR are consistent with previous studies that have examined this 

behavior following brief periods (7 days or fewer) of abstinence (Camarasa et al. 2010; 

Herring et al. 2008; Lu et al. 2010; Mizoguchi et al. 2008; Reichel et al. 2010, 2012). 

Furthermore, the only study to have evaluated NOR following 30 days or more of abstinence 

from repeated MA found that NOR is not impaired with protracted abstinence (Clark et al. 

2007), which is also consistent with the current results.

These differences in the duration of impairments in TORM and NOR following induction 

suggests some level of specificity in the neural systems that are altered following drug 

cessation. The PFC is critical for the expression for TORM in both rats (Hannesson et al. 

2004) and monkeys (Petrides 1991), which supports that PFC-mediated behaviors, and the 

underlying neural processes facilitating them, are altered following abstinence. In support of 

this view, other PFC-mediated cognitive functions, such as behavioral flexibility and 

impulsivity, are also impaired in preclinical rodent models of MA addiction following 

abstinence (Dalley et al. 2007; Parsegian et al. 2011). However, we cannot rule out that 

repeated MA altered TORM and NOR via changes in the acuity of sensory systems (i.e., 

smell, vision). Importantly, the duration of TORM impairments suggests that this behavioral 

measure of PFC function was impaired when electro-physiological testing was performed, 

thus allowing us to explore MA-induced alterations in this brain region at a time point where 

PFC-mediated behavioral deficits likely exist. However, without having performed 

electrophysiological recordings 30-days after induction when TORM was still impaired, it is 

not possible to conclude that MA-induced electrophysiological changes in the PFC last as 

long as the 30-day impairment seen in TORM.

Interestingly, gamma band activity is elevated in both rodents and humans during 

recognition memory tasks. In one such study, awake-behaving mice exhibited elevated theta 

and gamma power in the dorsal subiculum, an area that receives projections from the CA1 

of the HC. In the same study, increased coherence in gamma between dorsal subiculum and 

CA1 was observed when rodents were exploring the environment without exploring objects 

(Chang and Huerta 2012). In humans, gamma activity assessed via EEG is increased when a 

familiar object is presented. However, decreased gamma power and phase locking between 

electrode pairs occurs as the familiar object is repeatedly presented, supporting that gamma 

activity is important for memory encoding (Gruber and Müller 2005). Although not directly 

measured in these experiments, it is possible that animals receiving repeated MA have 

difficulty encoding the memory of the familiar object due to alterations in normal gamma 

band activity. Furthermore, the aforementioned studies do not assess oscillatory activity in 

the PFC. Future studies will be necessary to determine whether repeated MA alters gamma 

band power and phase synchrony in the HC as well as the PFC in animals performing 

TORM and NOR to causally link the changes in physiology and behavior.
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The current study, to our knowledge, is the first to examine electrophysiological activity in 

the medial PFC using simultaneous measures of LFP and spiking activity in rodents 

following repeated MA. Initially, this structure was thought to be analogous to the primate 

dorsolateral PFC based on inputs from the medial dorsal thalamus (Rose and Woolsey 

1947). However, modern views of this structure suggest homology with ventromedial PFC 

(Balleine and O’Doherty 2009) and anterior cingulate cortex (Seamans et al. 2008).

Extended access self-administration of MA was previously shown to persistently alter the 

baseline FR and burst properties of PFC neurons (Parsegian et al. 2011). Furthermore, a 

single MA injection evoked a robust decrease in neural firing, which is consistent with 

previous studies using high doses of psychostimulants in either anesthetized or awake-

behaving animals (Gulley and Stanis 2010; Homayoun and Moghaddam 2006; Jang et al. 

2007). In the current study, no differences in baseline firing following sensitization were 

observed, which may be attributable to less exposure to the drug or the non-contingent route 

of administration. Importantly, the data presented herein suggest that alterations in 

oscillatory activity may be an initial neuroadaptation that precedes changes in baseline 

firing.

During baseline, we observed increases in neural firing and large increases of gamma power 

in both groups during the SO, which reflects increases in synaptic activity during the upstate 

(Hoffman et al. 2007). When gamma power was stratified by the size of the SO, a clear 

positive relationship was observed, which demonstrates that gamma power scales with the 

size of the SO, and by extension, possibly the strength of synaptic inputs. The gamma 

oscillation plays an important role in information processing, including object recognition 

(Martinovic et al. 2007). It is generated by GABAergic inter-neurons that provide inhibition 

in cortical networks (Bartos et al. 2007; Buzsaki and Chrobak 1995; Sohal et al. 2009) and 

while evoked increases in gamma power might be thought to reduce neural firing, 

experimental data suggest a more complex relationship. Driving the gamma oscillation 

increases the slope of the function that relates the number of spikes evoked by progressively 

larger inputs (stimulated excitatory postsynaptic currents) and was ultimately shown to 

amplify signals (i.e., increase spiking) in neocortical circuits (Sohal et al. 2009). In the 

current study, the slope of the function relating gamma power to SO size was steeper in the 

SENS group compared with CTRL, which could also reflect amplified signals in these 

neural circuits. In the PFC especially, optimal signal to noise ratios are hypothesized to be 

important for the maintenance and selection of behavior (Durstewitz and Seamans 2008). 

This balance could be persistently compromised in SENS animals and thus contribute to the 

impairments in cognitive function observed. Moreover, it is possible that alterations in the 

relationship between gamma power and the size of synaptic inputs could also contribute to 

the increases in the incentive motivational properties attributed to drugs and drug-related 

stimuli following repeated exposure.

Phase locking of action potentials to oscillatory activity is hypothesized to be an important 

feature of neural networks engaged in encoding, maintenance, or transfer of information 

(Lee et al. 2005; O’Keefe and Recce 1993). Specifically, gamma band phase locking is 

thought to coordinate neuronal activity in local neural networks and facilitates processes 

such as replay and memory consolidation (Carr et al. 2012; Colgin 2011). It may also be 
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critical for spike-time-dependent plasticity by strengthening connections between neurons 

and facilitating the formation of cell assemblies to transiently encode information (van 

Wingerden et al. 2010). Alterations in gamma band power and synchrony may be a critical 

long-term physiological change in individuals with mental illnesses, including addictions 

(Rømer Thomsen et al. 2013). The current study supports this view, as a larger portion of 

spike activity was phase-locked to the gamma oscillation in CTRL compared with the SENS 

group. This suggests that alterations in gamma band phase locking may be a physiological 

adaptation that persists following repeated MA administration, which also may negatively 

impact cognitive function. However, considering that these recordings were not collected in 

animals performing the cognitive tasks, it is not possible to confirm that changes seen in 

electrophysiology cause the observed deficits in cognition. To directly test this hypothesis, 

additional studies in awake-behaving animals will be required.

The current study demonstrates that repeated MA administration causes impairments in 

temporal and recognition memory, although the impairments in recognition memory may 

improve after extended abstinence. These impairments may be paralleled by alterations in 

the integrating and synchronous properties of gamma band activity in the PFC. Collectively, 

these results suggest that repeated MA exposure evokes large scale alterations in the 

physiological processes that mediate gamma band activity and possibly inhibitory drive in 

cortical networks. Further elucidation of these processes will inform our understanding of 

how information processing is altered and how this contributes to alterations in behavior in 

addicted individuals.
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Fig. 1. 
Locomotor activity and stereotypy during the induction phase and MA challenge. (a) Mean 

locomotor activity immediately following injections for each day of the induction phase 

(SENS, n=20; CTRL, n=17). (Bonferroni correction, #p<0.05; ##p<0.005; ###p<0.0005—

significantly lower within-group locomotor activity compared with day 1 in SENS animals). 

(b) Mean stereotypy during the induction phase (SENS, n=9; CTRL, n=8). 

(Dunn’s, #p<0.05; ###p<0.0005—significantly greater within-group stereotypy compared 

with day 1 in SENS animals). (c) Locomotor activity on days 54 and 55 following the 0.5 

mg/kg MA dose (left; SENS, n=12; CTRL, n=9) and 5.0 mg/kg dose (right; SENS, n=8; 

CTRL, n=9). (Bonferroni correction: *p<0.05; **p<0.005; ***p<0.0005—significantly 

different than rats that received a SAL injection). (Bonferroni correction: ###p<0.0005—
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significantly different than rats that received a MA injection). (d) Stereotypy on days 54 and 

55 following treatment with 0.5 mg/kg MA (left; SENS, n=12; CTRL, n=9) and 5.0 mg/kg 

dose (right; SENS, n=8; CTRL, n=6); (Mann–Whitney, *p<0.05—significantly different 

than CTRL rats that received a MA injection); (Mann–Whitney, *p<0.005—significantly 

different than rats that received a SAL injection). (e) Locomotor activity post-injection on 

the 5.0 mg/kg challenge day (SENS, n=8; CTRL, n=6). (Bonferroni correction, *p<0.01; 

**p<0.001—significantly different than SENS animals that received a MA injection). (f) 
Stereotypy post-injection on the 5.0 mg/kg challenge day (SENS, n=8; CTRL, n=6). (Mann–

Whitney, *p<0.01). All data are depicted as mean±SEM
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Fig. 2. 
(a1) TORM and (a2) NOR 1 day following the last injection of the induction phase (TORM: 

SENS, n=9; CTRL, n=8; NOR: SENS, n= 10, CTRL, n=9), and after 30 days of abstinence 

(TORM (b1): SENS, n= 10; CTRL, n=10; NOR (b2): SENS, n=10; CTRL, n=9). 

(Bonferroni corrected planned comparison, *p<0.02; **p<0.01; ***p<0.005—significantly 

different than other object)
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Fig. 3. 
(a) Representative spike trains (top) and an LFP trace (bottom) from a single animal 

throughout an experiment. (b) The mean (solid line)±SEM (shaded portion) of log spectral 

power of LFPs recorded from CTRL (left) versus SENS (right) animals pre-and post-

injection. (c) Frequency of SO (d) and frequency of FR during the entire recording session; 

(Tukey’s post-hoc, **p<0.005—significantly different than both groups during baseline)
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Fig. 4. 
(a) SO and gamma oscillation coupling during baseline. Representative SOs and gamma 

oscillations in a single animal, with a zoomed in representation from 1446 to 1451 s below. 

(b) Color: gamma envelope power for all SOs present in the dataset from all animals sorted 

via most gamma power (top) to least (bottom). Black: the overall mean from all SOs. (c) The 

relationship between the size of the SO and gamma power. The inset shows the distribution 

of sizes of SO collapsed on treatment. (Mixed design factorial ANOVA, treatment×size of 

SO interaction, ***p<0.0001)
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Fig. 5. 
(a) A representative example of a SO (top) and the same example bandpass filtered in the 

gamma band (bottom) during baseline from a single animal. The vertical black lines 

represent spiking activity of a single cell, notice they align with the peaks of the gamma 

oscillation. (b) Percentage of gamma phase-locked cells in the CTRL (white bar) and SENS 

(gray bar) groups with dashed lines reflecting chance levels of phase locking from surrogate 

data. (Fisher’s exact test, **p<0.001—significantly different than SENS group). The inset 

shows a rose plot of a gamma phase-locked cell from a single animal during baseline 

recording
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Fig. 6. 
Three coronal sections (Paxinos and Watson 1997) from +3.20 to +2.20 mm depict the 

unilateral placement of probes (AP, +2.70; ML, + 0.50; DV, −1.5) relative to bregma, with 

photomicrographs of a successful placement from one animal shown directly below. Open 

circles represent placements for CTRL animals (n=7), and closed circles represent 

placements for SENS animals (n=6)
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