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Abstract

“Cu–CF3” species have been used historically for a broad spectrum of nucleophilic 

trifluoromethylation reactions. Although recent advancements have employed ligands to stabilize 

and harness the reactivity of this key organometallic intermediate, the ability of a ligand to 

differentiate a regiochemical outcome of a Cu–CF3-mediated or -catalyzed reaction has not been 

previously reported. Herein, we report the first example of a Cu-catalyzed trifluoromethylation 

reaction in which a ligand controls the regiochemical outcome. More specifically, we demonstrate 

the ability of bipyridyl-derived ligands to control the regioselectivity of the Cu-catalyzed 

nucleophilic trifluoromethylation reactions of propargyl electrophiles to generate 

trifluoromethylallenes. This method provides a variety of di-, tri- and tetra-substituted 

trifluoromethylallenes, which can be further modified to generate complex fluorinated 

substructures.

Graphical Abstract

Copper-mediated and -catalyzed nucleophilic trifluoromethylation is a popular strategy for 

accessing CF3-based products.1 While the fundamental reactivity of Cu–CF3 with sp2- and 

activated sp3-electrophiles has long been established,2 recent advances have greatly 

improved the practical utility and economic viability of these methods.3–5 One important 

advancement involves the use of ligands to stabilize the reactive Cu–CF3 species, and to 

accelerate reactions with electrophiles.3,5,6 These two features allow reactions to proceed 

under milder conditions that tolerate a broad array of functional groups and 

heterocycles.3,5,6 While many of these new Cu-mediated and -catalyzed trifluoromethylation 
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reactions display excellent chemoselectivity, ligands have not previously influenced 

regiochemical outcomes of reactions. Herein, we report the first example of a regioselective 

trifluoromethylation reaction in which a ligand overrides the intrinsic reactivity of unligated 

“Cu–CF3” with electrophiles. Further, we show that the products can serve as useful 

synthetic building blocks by providing access to 2° trifluoromethanes that are otherwise 

difficult to synthesize.

Propargyl electrophiles, including –Br,7–9 –Cl,8–11 –OMs,12 –OTs,10 –OAc,13 and –

O2CCF2X (X = F, Cl, Br), 8,14,15c react using either catalytic11,15c or 

stoichiometric7–10,12–14 “Cu–CF3” to generate propargyl and/or allenyl products with 

minimal control of regiochemistry. Unsubstituted propargyl electrophiles provide 

trifluoromethylallene;9,10,14 however, reactions of substituted substrates display distinct 

selectivities. In most cases, the product distribution is dictated by the substitution pattern of 

the substrate with 1° electrophiles providing propargyl products, and with 2° and 3° 

electrophiles providing allenyl products (eq 1–2).7,10–14 In contrast, using a Cu/PPh3-based 

system, modulation of the reaction temperature can control the regioisomeric ratio of 

branched and linear products (eq 3–4).8 However, for many cases, the intrinsic reactivity of 

the substrate overrides the control by temperature, and thus, many allenyl products are not 

accessible.8

In our own work aimed at developing decarboxylative strategies for fluoroalkylation,15 we 

reported a CuI/N,N’-dimethylethylenediamine catalyzed trifluoromethylation reaction of 

propargyl bromodifluoroacetates to generate propargyl trifluoromethanes preferentially.15c 

For this reaction, a wide variety of N-, O- and P-based ligands provided propargyl products 

with modest regioselectivity (Figure 1A). However, the use of 1,10-phenanthroline-based 

and 2,2’-bipyridine-based ligands reversed the regioselectivity of the transformation, and 

afforded trifluoromethylallene 3 with high regioselectivity (Figure 1B). For these 

bipyridines and phenanthrolines, the use of ligands bearing electron-donating aliphatic and 

methoxy groups did not significantly modulate the selectivity of reactions. Thus, the 

geometric influence of the bipyridyl substructure presumably controlled the regioselectivity 

of the transformation. However, these electron-donating groups decreased the activity of the 

catalysts. Thus, 1,10-phenanthroline (phen) and terpyridine (terpy) were identified as the 

optimal ligands for the current transformation.

Employing phen as a ligand, various 1° propargyl bromodifluoroacetates were converted to 

1,1-disubstituted trifluoromethylallenes with good to excellent selectivity (Figure 2). Initial 

efforts focused on the synthesis of 1-aryl-1-trifluoromethylallenes, which cannot be 

selectively accessed via other Cu-mediated or -catalyzed processes,7–14 and otherwise 

requires multi-step sequences that afford low yields of product.16 Propargyl electrophiles 

conjugated with electron-rich, -neutral, and -deficient aromatic moieties all formed allene 

products in excellent selectivity (5a–d, 5g–j).17 When the reaction was conducted on a 

gram-scale, good yield and excellent selectivity were maintained (5l). In contrast to 

substrates bearing m- and p-substituted aryl moieties, substrates bearing o-substituted aryl 

systems afforded products in lower selectivity (ca. 10:1; 5e–f). Using phen as a ligand, a 1° 

aliphatic-substituted substrate was not effectively converted to product; however, the use of 

terpy as a ligand provided trifluoromethylallene 5k in synthetically useful yield and 
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selectivity. The reaction tolerated many important functional groups, including carbonyl 

groups (5a, 5b, 5h, 5j), nitro groups (5d, 5e), nitriles (5f), and ethers (5i). The carbonyl-

containing groups are particularly interesting, because they are prone to react with free CF3
− 

to provide β,β,β-trifluoroethyl alcohols.1d,4,18 Since products of 1,2-addition were not 

observed in these reactions, free −CF3 must not have existed in solution. Therefore, 

generation of the reactive (phen)Cu-CF3 species likely involved an inner-sphere process that 

does not generate free −CF3.

Utilizing similar reaction conditions to those used for 1° bromodifluoroacetates, 2° and 3° 

propargyl electrophiles were also regioselectively converted to di- and tri-substituted 

trifluoromethylallenes in high regioisomeric ratios (Figure 3). Generally, 2° 1-aryl propargyl 

substrates provided 1,3-disubstituted trifluoromethylallenes in synthetically useful yields 

and excellent selectivities (7a–e). In addition, the standard conditions converted a 2° 

substrate to a trisubstituted allene product (7e); however, the standard conditions did not 

effectively transform several challenging substrates. For example, substrates bearing 

aliphatic groups at the α position reacted sluggishly, and provided low yields of allene 

products (7f–j). For these less reactive 2° and 3° alkyl-substituted bromodifluoroacetates, 

the use of terpyridine as a ligand and/or more forcing conditions (60 °C, 24 h) facilitated the 

formation of trisubstituted (7f–g, i) and tetrasubstituted (7h) allenes. Notably, the 

decarboxylative trifluoromethylation reaction tolerated aryl bromides (7b–c, 7e), which can 

undergo Cu-catalyzed nucleophilic trifluoromethylation under similar conditions.3a 

Although substrates bearing free amines decomposed under the reaction conditions, 

protection of these groups as amides, carbamates, and sulfonamides permitted catalyst 

turnover (5h, 5j, 7g–h). Finally, the catalyst system tolerated several important heterocycles, 

including indole (5j), pyrazole (7d), and furan (7d), which may be useful for the design of 

biological probes and agrochemicals.

Allenes can serve as a useful building block for accessing complex substructures,19 and in 

recent years, considerable attention has focused on both the synthesis of allenes,20 and 

transformations of allene-based building blocks.21 Given the synthetic potential of allenes, 

trifluoromethylallenes should be useful synthetic precursors for various fluorinated motifs. 

However, few modern transformations of trifluoromethylallenes have been disclosed,16c, 22 

which restricts the use of these fluorinated substructures as intermediates in synthetic 

sequences. To showcase the potential synthetic utility of trifluoromethylallenes, 5l was 

subjected to metal-catalyzed hydrofunctionalization reactions to generate C–B,23 C–O,24 C–

N,25 and C–C16c bonds (Scheme 2). In all cases, the reactions of 5l provided products (8–
11) in good yields and excellent regioselectivity,26 with minimal optimization of previously 

reported systems.27 In most cases, the regioselectivities of the transformations matched 

those of previous reports;23–24 however, the product of the hydroamination reaction did not 

match the predicted regiochemical outcome,25 indicating that some reactions of 

trifluoromethylallenes may generate unique products (Scheme 2, d). Nonetheless, all 

functionalization reactions provide trifluoromethyl-containing products that might otherwise 

be challenging to prepare.

In conclusion, the use of bipyridyl-derived ligands overrode the intrinsic regioselectivity of 

Cu-catalyzed trifluoromethylation reactions of propargyl electrophiles, and provided di-, tri-, 
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and tetra-substituted trifluoromethylallenes bearing synthetically important functional 

groups. More broadly, this transformation serves as the first example of a Cu-catalyzed 

trifluoromethylation reaction in which a ligand controls the regiochemical outcome. 

Ongoing work in our laboratory aims to understand the basis by which the ligands control 

the regiochemistry of the reaction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Ligand-controlled Regioselective Trifluoromethylation
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Figure 2. 
Reactions of Primary Propargyl Bromodifluoroacetates Generate 1,1-Disubstituted 

Trifluoromethylallenesa
aConditions: 4a–l (1 equiv), CuI (10 mol %), phen (10 mol %), NaO2CCF2Br (25 mol %), 

KF (2 equiv), DMF (1.0 M), 50 °C, 14 h. The numbers in parentheses represent the ratios of 

allene:alkyne in purified product as determined by 1H NMR spectroscopy. b 12:1 Mixture of 

allene:alkyne prior to chromatographic purification as determined by 19F NMR 
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spectroscopy. c Terpy (10 mol %) employed as a ligand. d Reaction conducted on a 7 mmol 

scale.
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Figure 3. 
Reactions of Substituted Propargyl Bromodifluoroacetates Provide Di- and Tri-Substituted 

Trifluoromethylallenes
a Conditions: 6a–i (1 equiv), CuI (10 mol %), phen (10 mol %), NaO2CCF2Br (25 mol %), 

KF (2 equiv) DMF (1.0 M), 50 °C, 14 h. The numbers in parentheses represent the ratios of 

allene:alkyne in purified product as determined by 1H NMR spectroscopy. b 60 °C, 24 h. c 

Terpy (10 mol %) employed as a ligand. d Estimated by 19F NMR spectroscopy.
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Scheme 1. 
Substrate and Temperature-controlled Regioselective Trifluoromethylation
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Scheme 2. 
Direct Conversion of Trifluoromethylallenes to Functionalized Trifluoromethylated Motifs
a B2(pin)2 (1.1 equiv), CuCl (5 mol %), IPr•HCl (5 mol %), NaOtBu (40 mol %), MeOH (6 

equiv), THF, 23 °C. b 2-phenylethanol (1.1 equiv), AuIPrCl (10 mol %), AgOTf (10 mol %), 

PhMe, 23 °C. c (CH2O)n (2 equiv), RuHCl(CO)(PPh3)3 (5 mol %), dppm (5 mol %), iPrOH 

(4 equiv), PhMe, 105 °C. d Imidazole (1.2 equiv), [PdCl(C3H5)]2 (2.5 mol %), dppf (5 mol 

%), THF, 80 °C.
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