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Murine models for the study of lung cancer have historically been the backbone of preliminary preclinical data to support early
human clinical trials. However, the availability of multiple experimental systems leads to debate concerning which model, if any,
is best suited for a particular therapeutic strategy. It is imperative that these models accurately predict clinical benefit of therapy.
This review provides an overview of the current murine models used to study lung cancer and the advantages and limitations of
each model, as well as a retrospective evaluation of the uses of each model with respect to accuracy in predicting clinical benefit of
therapy. A better understanding of murine models and their uses, as well as their limitations may aid future research concerning
the development and implementation of new targeted therapies and chemotherapeutic agents for lung cancer.

1. Introduction

Lung cancer is the leading cause of cancer mortality world-
wide [1]. It is estimated that approximately 228,190 people
were diagnosed with lung cancer in 2013, resulting in approxi-
mately 159,480 deaths in the United States [2]. Current chem-
otherapies prove to be only marginally effective in extending
overall survival as five-year survival for anyone diagnosed
with cancer of the lung or bronchus is about 16% [2]. The
development and implementation of new, targeted agents
may be aided by the availability of universally applicable
experimental murine models for testing novel therapeutics.
In order to generate and evaluate novel therapies for lung
cancer, advanced preclinical models ideally should accurately
mimic lung cancer progression, invasion, and metastasis as
well as predicting clinical benefit of therapy for all types of
lung cancer. A wide variety of murine model systems have
been developed with the aim of not only evaluating novel
therapeutics, but also examining the mechanisms underlying
transformation, invasion and metastasis in human tumours
with a view to better study prevention and screening as well
as diagnostic and treatment strategies. This review will intro-
duce the frequent mutations found in lung cancer patients
and how these mutations have been incorporated into pre-
clinical models to accurately evaluate novel therapies for lung

cancer. Characteristics of each model system as well as the
advantages and disadvantages will be described. Relevant
models will then be discussed with regard to how accurate
each murine model is in successfully predicting outcome of
therapy in clinical trials.

2. Mutations Associated with Lung
Cancer Development

A better understanding of the most frequent driving muta-
tions in lung cancer will aid in the progression towards
more personalized therapy. Molecular markers have been
identified that provide the basis for targeted therapies for
lung cancer. Current prognostic molecular pathways for lung
cancer include EGFR, K-Ras, p53, and EML4-ALK [3-9].

EGEFR regulates a myriad of cell functions such as prolif-
eration, angiogenesis, and apoptosis [6]. The most common
EGFR activating mutations are in-frame deletions in exon 19
or point mutations in codon 858 in exon 21 [10]. Targeted
therapies in the form of EGFR tyrosine kinase inhibitors, such
as erlotinib and gefitinib as well as monoclonal antibodies
against EGFR such as cetuximab, have been employed as
treatments for the disease. EGFR-targeted therapies have
proven to be effective in both first and second-line of treat-
ment for patients with EGFR mutations [11].
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Mutations in the K-Ras gene are present in approximately
30 percent of adenocarcinomas and are generally associated
with a poor prognosis [12]. The K-Ras oncogene encodes a
family of membrane-bound guanosine triphosphate- (GTP-)
binding proteins that are involved in cell proliferation, migra-
tion, and apoptosis. The most common K-Ras mutations are
in the form of point mutations on exons 12 and 13, typically
resulting in constitutive activation of RAS [13]. Interestingly,
cases of NSCLC exhibiting K-Ras mutations are predomi-
nately resistant to the EGFR inhibitors, erlotinib, and gefitinib
[14].

In addition to K-Ras, p53 is a well-established predictive
and prognostic marker for NSCLC. Loss of the tumour sup-
pressor gene, p53, leads to mitotic abnormalities during cel-
lular development resulting in highly proliferative cells [15].
Transversions along the p53 gene are found in almost all
human lung cancer tissues and have implicated p53 as a key
molecular marker for lung cancer [16]. A comprehensive
meta-analysis of the role of p53 as a prognostic factor for
lung cancer survival revealed that mutated or inactive p53 was
shown to be associated with a poor survival [17].

It has recently been reported that echinoderm micro-
tubule-associated protein-like 4 (EML4) and anaplastic lym-
phoma kinase (ALK) gene fusions are present in approxi-
mately 3% of patients with NSCLC and that EML4 and ALK
amplifications may play a role in NSCLC transformation [9].
NSCLC and SCLC have also been associated with mutations
in the PI3K-Akt-mTOR pathway, LKBI, TITFI, beta-tubulin,
ERCCI, and RRM1 [18-22].

3. Xenograft, Ex Vivo, and Orthotopic Models

For the purpose of this review, murine models can be divided
into the following groups: xenograft, transgenic, syngeneic,
and spontaneous model systems. Xenograft models require
the injection of human cancer cells into immunocompro-
mised mice, either subcutaneously, orthotopically, or sys-
temically. Immunocompromised mice such as athymic nude
and severe-compromised immunodeficient (SCID) mice are
frequently utilized as implanted human cells are likely to be
rejected by the host immune system in an immunocompetent
system. Once implanted, cells require a growth period of one
to eight weeks depending on cell type and the number of cells
injected. Xenograft models are primarily used to examine
tumour response to therapy in vivo prior to translation into
clinical trials. Cell lines and current xenograft models for the
study of lung cancer are summarized in Table 1.

Cancer cell lines vary in optimal cell number required for
implantation, ranging from 1 x 10°~1x 10 cells/injection site.
Both the average number of tumours that engraft (tumour
take) and the average time to palpable tumours are dependent
on the number of cells implanted, growth characteristics of
each cell-line such as doubling time, cell-size, density, mor-
phology, and the use of growth factors such as matrigel. Cell
lines commonly used to model adenocarcinoma are A549,
H1975, HCC4006 and HCC827 [26, 28, 43], representing a
spectrum of K-Ras and EGFR mutations. Current xenograft
models for adenocarcinoma demonstrate an average tumour
take of 50-100%, with the A549 cell-line as the most likely to
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engraft [26, 28, 37, 38]. The tumour take as well as murine
strain used for implantation are given in Table 1. Typically,
these models require two to eight weeks following cell
implantation in order to observe tumour growth substantial
enough for evaluating drug efficacy.

Cell-lines that are commonly used to model carcinoma
[27, 29, 32], large-cell carcinoma [31, 33-36], and squamous-
cell carcinoma [36] in xenograft models include NCI-H1299,
NCI-H460 and NCI-H226, respectively. The NCI-H460 cell-
line has proven to be an advantageous model system as it
requires small implantation cell numbers and limited growth
time and has been shown to have a 100 percent tumour take
when injected into the hind flank of CD-1 athymic nude
mice [28, 36]. Both the NCI-HI1299 and the NCI-H226 cell-
lines are slightly more limited in their experimental uses as
they have only a 45-100 percent tumour take and require
at least four weeks to reach optimal tumour size in order
to begin treatment [27, 29, 36, 65]. Models for SCLC are
generally limited, however, the NCI-H69 and DMS-53 cell-
lines are the most widely used for xenograft studies but can
be problematic as they characteristically grow in suspension,
resulting in difficulty in obtaining an accurate cell count prior
to implantation [23-25]. These characteristics may contribute
to a highly variable tumour take and growth rates of these
models.

In addition to traditional xenograft models, ex vivo
models can be used in which tumours are surgically removed
from patients and tumour cells are grafted into the immuno-
compromised murine system either subcutaneously or ortho-
topically. These models are ideal for personalized therapy and
provide relatively quick data concerning the most beneficial
therapies for each patient [89-91]. In the study conducted
by Dong et al. [91], thirty-two untreated samples of NSCLC
were engrafted into the renal capsules of nonobese diabetic/
SCID mice. Tumour growth was evaluated in response to cis-
platin, docetaxel, and gemcitabine. Ex vivo tumour take was
90 percent and results were obtained over six to eight
weeks. As a result, therapy regimens for each patient were tai-
lored according to observed tumour response in the xenograft
models. A good correlation was found between recurrence
or metastasis in patients and the non-responsiveness of their
tumour xenografts in mice.

There is ample evidence that growth properties of tumour
cells are altered by specific genes whose expression is depen-
dent on interactions within the tumour microenvironment.
Therefore, it is vital that tumour microenvironment be accu-
rately mirrored in murine models used to evaluate drug ther-
apies. Orthotopic models provide a reliable representation
of tumour environment as cells are implanted directly into
the organ in which the disease originates. Current orthotopic
models are reviewed in Table 1. The most practical orthotopic
model involves endobronchial inoculation of the A549 or
H460 cell-lines into athymic NCr-nu/nu mice [31]. The pro-
cedure results in a postsurgery mortality rate of less than 5
percent. The rate of tumour engraftment is 90 percent and
tumour growth is monitored through high-resolution chest
roentgenography or bioluminescence via transfection of
luciferase containing constructs [92].
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Xenograft models for lung cancer have advantages and
disadvantages in comparison with classic transgenic and
conditional murine models. Firstly, xenograft models utilize
human tumour tissue, perhaps accurately representing the
complexities of human tumours in vivo. Unlike their genet-
ically engineered counterparts, xenograft models can be used
to design individualized molecular therapy. In a study by
John et al. [93], the ability of tumour fragments from patients
undergoing curative surgery to engraft into primary tumour
xenografts was found to be predictive of risk of disease
recurrence. These findings, in conjunction with other ex
vivo xenograft findings show that xenograft models are a
useful evaluative tool for targeted molecular therapy and
predicting patient outcome [91]. Xenograft models are also
ideal for examining multitherapy approaches in vivo. Much
chemotherapy is approved on the basis of a combination ther-
apy regimen with other preexisting interventions, therefore,
pre-clinical xenograft models are used to evaluate efficacy of
these drug combinations prior to clinical trials [32, 76, 81,
94]. Orthotopic xenograft models provide the very valu-
able advantage of accurate representation of the tumour
microenvironment in evaluating drug therapies. This allows
for a reliable prediction of toxicity, and understanding of
microenvironment-dependent responses to selected thera-
pies.

Despite the advantages of using xenograft models in
preclinical studies, there are also many limitations to these
models that must be addressed. Immunocompromised mice
must be used for xenograft models in order to combat the
effects of the healthy immune system response against foreign
cells. Syngeneic models, which will be discussed shortly, are
alternative model systems used to combat this issue. Alter-
natively, orthotopic models combat the issue of inaccurate
representation of tumour microenvironment as cells are
implanted directly into the bronchi; however, once growth
commences, it is more difficult to quantify than in the tra-
ditional xenograft model. Current orthotopic models used to
study lung cancer are shown in Table 1. Despite the benefits
of orthotopic systems, they can also be quite time consuming
and challenging to replicate as cell inoculations are typically
conducted endobronchially, requiring skillful precision and
practice. These disadvantages may account for the lack of
robust orthotopic models for lung cancer, lending to the pref-
erence towards the traditional hind flank xenograft model.

4. Syngeneic Models

Syngeneic murine models entail the injection of immunolog-
ically compatible cancer cells into immunocompetent mice.
The availability of syngeneic models to study lung cancer is
very limited. The only reproducible syngeneic model for lung
cancer to date is the Lewis lung carcinoma (LLC) model. LLC
is a cell line established from the lung of a C57BL mouse
bearing a tumour resulting from the implantation of primary
Lewis lung carcinoma. The cell line is highly tumourigenic
and is primarily used to model metastasis as well as evaluate
the efficacy of chemotherapeutic agents in vivo [95]. For
example, the LLC model was a successful preclinical model
for Navelbine evaluation in vivo, prior to its implementation

in clinical trials [73, 74]. The LLC cell-line is typically injected
orthotopically into the peritoneal cavity of C57B6 mice at
1 x 107 cells per mouse and within two weeks of incubation,
tumours reach 2.2 + 0.4 mm [40, 73]. Preclinical models for
evaluation of chemotherapeutic agents are shown in Table 3.

The advantage of the LLC model is that implanted cells are
immunologically compatible with the murine system, unlike
the widely used xenograft models in which human cells are
implanted into mouse tissue. As a result, LLC models can
be created on an immunocompetent murine background,
such as C57BL, and true immune and toxicity responses can
be evaluated with respect to targeted therapies and tumour
growth. In addition, because the LLC model can be both
syngeneic and orthotopic, tumour microenvironment can be
accurately depicted in the animal model. Despite its supe-
riority as an animal model for lung cancer, the LLC model
is associated with several limitations. As a syngeneic model,
responses evaluated in a complete murine system may not be
transferable to human conditions. As an orthotopic model,
the LLC model can also result in difficulties in quantifying
tumour growth without advanced imaging equipment and as
such, it can be quite expensive, time-consuming, and difficult
to reproduce.

5. Transgenic and Conditional
Transgenic Models

Genetically engineered models (GEM) are used to induce
spontaneous neoplastic growth via transgenic, conditional, or
drug-induced mechanisms. Transgenic mice are created by
microinjection of DNA into the pronucleus of zygotes and
injection of embryonic stem cells into blastocysts to produce
the desired loss or gain of function mutations. Transgenic
mouse models for lung cancer may be general, where tumours
arise in lung and in organs other than the lung or specific,
where the lung alone is the target of the transgene. The latter
models are more useful, as the frequency of the development
of lung cancer is often higher and the pathology of the
disease is not complicated by tumours at other sites. The
DNA construct for the transgene is created by linking a lung-
specific promoter to the coding region of a target gene [96].
Transgenic mice are ideal for examining the role of genetic
abnormalities in tumour initiation and progression. The cur-
rent transgenic models that are used to study lung cancer are
shown in Table 2.

One of the first viral oncogenes to be targeted to the lung
was Simian virus T antigen (TAg). Tag binds to and inacti-
vates p53 and pRB, both of which have been reported to be
mutated or functionally altered in lung cancer [97]. Through
the use of the lung specific promoters Clara cell secretory
protein (CCSP), also known as uteroglobin promoter, and
alveolar type II surfactant protein C (SP-C), these transgenes
resulted in the development of adenocarcinoma in a murine
model [53, 54]. The mice developed multifocal bronchioalvi-
olar neoplasias very rapidly and often died before four
months of age, making investigation of the early events in
carcinogenesis difficult. An alternative model for pulmonary
adenocarcinoma in distal lung epithelium has been devel-
oped in which transcription of TAg is driven by a lung
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specific 1011 base-pair DNA fragment of the rat Calbindin-
D9K (CaBP9K) promoter [55]. In this model development of
lung tumours was slower, with animals living to nearly a year,
allowing analysis of early stages of tumour development.

In contrast to the TAg models which utilize lung pro-
moter-viral oncogene fusion, human achaete-scute homolog-
1 (hASHI) models have been developed that rely on the
human transcription factor’s fusion to the lung-specific clara
cell 10 kDa secretory protein (CC10). Achaete-scute is a helix-
loop-helix transcription factor involved in neural differentia-
tion during fetal development. Neuroendocrine features are
a hallmark of SCLC and some NSCLCs and the rationale
behind development of this transgenic model was to inves-
tigate the effect of constitutive expression of achaete-scute in
nonneuroendocrine airway epithelial cells that normally do
not express it. Interestingly, expression resulted in the devel-
opment of hyperplasia and bronchioloalveolar metaplasia.
hASHI-CCI0 was also generated in combination with the TAg
oncogene to promote the growth of adenocarcinoma with
neuroendocrine differentiation and increased tumourigene-
sis [52, 98]. These models typically resulted in tumour growth
in 100 percent of animals, but exhibited rapid and aggressive
growth which prevented the analysis of early transformation
events.

Transgenic mice have also been generated through the
fusion of oncogenes with lung-cell-specific promoters such
as calcitonin gene-related peptide (CGRP), SP-C or CCI10.
CGRP-Ha-Ras transgenic mice overexpress an activated form
of the GTPase, v-Ha-Ras, that induces pulmonary neuroen-
docrine cell differentiation [99]. The CGRP promoter limits
transgene expression to neuroendocrine and neural cells.
These transgenic mice surprisingly developed primary lung
tumours which were non-neuroendocrine in nature along
with hyperplasia of pulmonary neuroendocrine cells and
Clara cells. This suggested a common histogenesis of different
pulmonary cell types [56]. The Raf kinase protooncogene
transduces signals downstream of Ras. It has been shown
that mutations at the amino terminus of Raf that mediate
its interactions with Ras can constitutively activate the Raf
kinase activity such that it can transform cells in culture [100,
101]. Overexpression of wild-type Raf in tissue culture cells
sensitizes the cells to Ras transformation [102] and analysis
of human lung cancer cell lines and lung biopsy material
have revealed increased levels of Raf expression, suggesting
this might be related to development of lung cancer [103]. To
investigate this in a transgenic model, mice were engineered
to express c-Raf under the control of the SP-C promoter.
Approximately half of the transgenic mice developed lung
adenomas with delayed tumour development, suggesting that
secondary mutations needed to be acquired before tumours
could develop [104].

The protooncogene c-myc, normally involved in con-
trolling cell-cycle events, has been frequently found to be
over-expressed in human pulmonary carcinoids and adeno-
carcinomas [105,106]. SP-C-Myc transgenic mice overexpress
an activated form of the Myc protein that acts as a trans-
cription factor, resulting in the development of bronchi-
oloalveolar adenocarcinomas. Not all Myc transgenic mice
develop lung cancer, again suggesting changes in addition
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to overexpression of Myc need to occur before cancer can
develop [58]. SP-C-EML4-ALK transgenic mice possess
EML4-ALK gene fusion specifically within the lung epithelial
cells, resulting in rapid development of adenocarcinomas
(57].

Genes encoding growth factors and growth factor recep-
tors are also feasible targets for the generation of transgenic
mice. SP-C-RON transgenic mice present with constitutive
activation of the receptor tyrosine RON (recepteur dorigine
nantais), localized by the SP-C promoter to distal lung
epithelial cells, resulting in the development of adenoma
and adenocarcinomas [60]. SP-C-IgEGF and SP-C-IgEGF-
Myc transgenic lines express a secretable form of the epi-
dermal growth factor (IgEGF), a structural and functional
homologue of transforming growth factor a (TGFa). In
the case of SP-C-IgEGF-Myc, additional expression of the
murine oncogene, c-Myc, under the control of the SP-C
promoter is initiated [58]. These transgenic lines develop
alveolar hyperplasia and bronchioalveolar adenocarcinoma,
respectively. Both the SP-C-RON and SP-C-IgEGF/Myc lines
facilitate spatial expression of the transgene, but result in
nonuniform metastasis and a characteristically poor response
to therapy, confirming that these transgenic lines are ideal for
examining the role of specific oncogenes in tumour growth,
differentiation, and transformation but not in drug evaluation
studies [58].

In order to streamline preexisting murine models and
generate a more precise method of recapitulating true gene
expression patterns of lung cancer oncogenes in vivo, con-
ditional transgenic models have been created. Conditional
transgenic models are ligand-inducible transgenic systems
that result in regulated expression of the gene of interest
through the use of two transgene constructs, one which acts
as a target and one as the regulator. The regulator transgene
must first be activated by the addition of an exogenous
compound in order to turn on transcription of the target
transgene [48, 49, 107, 108]. Conditional transgenic models
allow for temporal and spatial regulation of oncogenes,
providing a more accurate representation of the events that
induce lung cancer.

There are three primary conditional bitransgenic indu-
cible systems in mice. The first is the reverse tetracycline
transactivator (rtTA) inducible system, in which a tissue spe-
cific promoter such as CCSP drives the expression of rtTA
in the tissue of interest. A second transgene is incorporated
containing the target gene, fused to the tetracycline-respon-
sive promoter (Tet-O,). Expression of the target gene is then
regulated by the addition of tetracycline or doxycycline [48,
51,107]. Conditional bitransgenic rtTA systems used to study
lung cancer are shown in Table 2. The majority of the rtTA
models, including those expressing transgenes for K-Ras,
EGFR, and FGF7, are valuable models in that a small number
of cells can be targeted and transgene expression can be
regulated both temporally and spatially. Interestingly, when
doxycycline is removed from the K-Ras models, lesions can
no longer be detected, indicating the importance of the K-
Ras oncogene in both initial tumour growth and maintenance
[108]. Despite these advantages, models expressing either K-
Ras and FGF7 transgenes exhibit limited metastasis, failing to
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accurately mimic human adenocarcinoma in vivo [51,108]. In
contrast, models utilizing EGFR transgenes have been shown
to metastasize early in development, resulting in early death
of the animal and limited evaluation of early developmental
events [48,107].

An alternative to the rtTA system is the Cre/loxP
recombination system, which facilitates the incorporation
of somatic mutations in a select population of cells. The
Cre/loxP system is ideal for examining both the conditional
deletion of genes that cannot be examined in traditional
knockout systems due to embryonic lethality, as well as the
introduction of foreign genes in a tissue-specific manner. Cre
is a 38 kDa recombinase protein that induces intramolecular
and intermolecular recombination between loxP sites. A loxP
site identifies the region for recombination, consisting of
two 13bp inverted repeats that are separated by an 8bp
asymmetric spacer region. Targeted mutations are “Floxed”
(flagged by loxP sites) and through the addition of Cre
recombinase, an endogenous gene or transgene is eliminated
or activated by deletion of floxed sites [44-46, 50]. Current
murine strains created using the Cre/loxP system are shown
in Table 2. Cre transgenic strains can also be generated with
Tet-inducible promoters [48]. The advantages of the Cre/loxP
models are the ability to spatially regulate gene expression and
evaluate events in lung cancer development [44-46].

Conditional transgenic strains resulting in conditional
deletion of Trp53 alone and Trp53 in combination with pRb
have proven to be one of the most valuable systems in
modeling SCLC. Metastasis to select organs in these models
has been shown to closely approximate metastatic events
in humans as well as exhibit neuroendocrine features that
are characteristic of human SCLC. Despite these advantages,
these mice present with a very invasive phenotype, preventing
examination of early transformation events [50].

Using the traditional Cre/loxP system, it is also possible
to create a transcription block by floxing two sites in the
region preceding an exon. The resulting null allele is dormant
until Adeno-Cre is administered and the transcription stop
is subsequently removed to allow for oncogenic mutation to
occur. The lox-stop-lox (LSL) system is primarily used for
K-RasG12D mutation in combination with other conditional
knock-outs [47]. One of the most favored LSL models for
lung cancer is the Lkbl:LSLK-RasG12D system which results
in the development of adenocarcinoma and squamous cell
carcinoma with metastasis that accurately reflects human
metastatic events [47]. However, these strains often result in
early death of the animal, and thus the system is not ideal for
examining early transformation events.

6. Carcinogen-Inducible Models

In contrast to both transgenic and conditional transgenic
systems, drug-induced models require the addition of a
carcinogen to induce specific mutations leading to trans-
formation events. The current carcinogen-inducible mod-
els for lung cancer are described in Table 2. Carcinogen-
inducible models are typically generated in strains of inbred
mice such as A/] or SWR which are most susceptible
to spontaneous tumourigenesis [109]. Of these models,

the urethane-induced lung tumourigenesis model has sev-
eral advantages. Intraperitoneal administration of urethane
has been shown to be reliably reproducible and subse-
quent tumourigenesis develops in a time-dependent manner.
Tumourigenesis progresses from hyperplasia to adenoma and
eventual adenocarcinoma in response to sequential genetic
changes that are characteristic of human lung cancer [61].
Of these genetic changes, K-Ras and p53 are the most
prominent mutations associated with the urethane-induced
model [61, 110]. The benzo(a)pyrene-induced system also
models adenoma in mice, however, it has been shown to
result in extremely variable growth patterns in independent
experiments [63]. N-Nitrosobis-(2-chloroethyl) ureas such
as N-nitroso-methyl-bischloroethylurea (NMBCU) and N-
nitroso-trischloroethylurea (NTCU) have been shown to
induce the growth of hyperplasia, dysplasia and metaplasia
following topical administration in Cr:NIH(S) mice [64].
3-Methylcholanthrene, diethylnitrosamine, ethylnitrosourea,
and dimethylhydrazine have all been shown to induce repro-
ducible growth of adenoma in A/] mice [62]. Although these
models provide the distinct advantage of investigator control
of tumourigenesis through carcinogen administration, there
are also multiple disadvantages associated with these models
such as variability in administration technique leading to
discrepancies in results.

7. Future Directions

To date, Xenograft models have been most commonly used to
analyze the behavior of human tumours and their response
to therapeutics in a mouse model. The use of genetically
modified mice is perhaps a more powerful tool for studying
lung cancer development and treatment but establishment
of these models can be very laborious, expensive and time-
consuming. A number of initiatives, both publicly and pri-
vately funded, have now been developed to create repositories
of gene-targeting vectors, genetically modified mouse strains
and predeveloped embryonic stem cells carrying specific
mutations. Several of these sources are reviewed in Dow
and Lowe [111]. The availability of these resources should
significantly reduce the time required to generate new mouse
models of lung cancer.

It is now evident that RNA interference can be used
in mice to reduce or shut down specific gene expression,
offering an alternative to traditional knockout models, which
generally only affect one copy of a gene. Short hairpin
RNAs (shRNAs) expressed transgenically act without inte-
gration into genomic material and operate in trans to affect
expression of both copies of a gene. Depending on how the
transgenic model is created, the silencing effects of shRNAs
can be reversible, allowing disruption of gene expression in a
temporal manner for investigation of effects at specific times
during development. A fast and scalable method for develop-
ing shRNA transgenic mice has been recently used to validate
p19*** as a therapeutic target for lung adenocarcinoma [112].

Embryonic stem cells (ESCs) have become another tool
for rapid development of multiallelic mouse models. Mul-
tiple rounds of targeting disease-associated alleles in ESCs,
followed by blastocysts injection and implantation, result in
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chimeric animals where tumours develop from the engi-
neered cells in the context of a normal microenvironment.
Chimeric animals may be cross-bred, generating wholly ESC
derived mice. This methodology has been used to develop
two different models of lung adenocarcinoma to analyze
activation of pathways downstream of specific mutations and
to assess the potential of therapeutic targeting strategies [112,
113].

A major criticism of using mouse models to model
human cancer is inherent in the biological differences
between the two organisms. In some cases, drugs that look
promising for cancer therapy in a mouse model fail in clinical
trials due to differences in activity between the mouse gene
product being targeted and its human counterpart [114-116].
The effect of the human gene in transgenic mouse models can
in some cases be most effectively addressed using humanized
mice, in which a copy of the human gene replaces the mouse
gene. Transgenic expression of the human cytochrome P450
2A13 was achieved using a cloned bacterial artificial chro-
mosome in a background null for the mouse homologue.
The results of this study indicated that the human gene was
more highly effective at activating a carcinogenic compound
present in cigarette smoke than its mouse homologue and in
contributing to lung tumourigenesis [117]. There is a great
deal of interest in finding useful predictive and prognostic
serum or blood biomarkers for lung cancer patients as these
fluids are easier and less painful to obtain than lung biopsies.
Recently, Taguchi et al. found they could identify thirteen
proteins overexpressed specifically in the plasma of mice
bearing EGFR or Ras mutations that developed lung ade-
nocarcinomas [118]. A subset of these proteins was mea-
sured in the serum of NSCLC patients and a significant
concordance with the mouse data was found. Mice bearing
the EGFR mutation and treated with the EGFR inhibitor
erlotinib showed reduced levels of the markers associated
with EGFR expression, similar to the human patients. This
shows promise for the use of mouse models as a tool to
identify new biomarkers.

8. Discussion

Taking into consideration each of the distinct preclinical
models to study lung cancer in vivo, it is reasonable to
conclude that each model is well-suited for a specific mode
of study. For example, xenograft models are well-suited for
the timely evaluation of response to therapy in vivo. However,
transgenic and conditional transgenic model systems that
accurately mimic tumour histology, genetic abnormalities
and tumour microenvironment of human lung cancer, such
as the LSL K-Ras G12D model for adenocarcinoma, and the
Trp53 AdenoCre model for SCLC, may provide more reliable
results concerning response to therapy and toxicity. To date,
the majority of preclinical models used to evaluate efficacy
of targeted chemotherapeutics are xenografts models, pre-
sumably due in part to the four to eight week growth period
required to obtain results. Conversely, the use of xenograft
models in preclinical study can lead to disappointing results
in clinical trials. Current chemotherapies and the preclinical
models used to evaluate them are summarized in Table 3.
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Of the seventeen therapies summarized in Table 3, only
three therapies were evaluated in transgenic or conditional
transgenic murine models prior to progressing to clinical
trial. In addition, only two of the therapies listed in Table 3
were assessed in a syngeneic, orthotopic model system.
Both EGEFR inhibitors, erlotinib and BIBW2992, were tested
preclinically using the CCSP-rtTA; Tet-O,-EGFR™**® model
[26, 37, 49, 68, 70]. In vivo, both therapies resulted in
dramatic tumour regression, however, phase I clinical trials
for BIBW2992 resulted in no significant partial or complete
responses in patients [70]. On the other hand, clinical trials
for erlotinib were successful in extending median survival
to 8.4 months compared to a maximum of 8.0 months with
gefitinib. One-year survival was increased to 40% compared
to 37% with doxetaxel [68], suggesting that the model system
was successful in predicting clinical benefit in the case
of erlotinib, but not BIBW2992. Interestingly, the EGFR
inhibitor vandetinib was evaluated in vivo using a H1975
xenograft model as opposed to the CCSP-rtTA; Tet-O,-
EGFR™*®! model [119]. Vandetinib was found to significantly
reduce tumour growth in the xenograft model, but resulted
in limited response rates in clinical trials, which may be due
in part to the fact that xenograft models cannot accurately
recapitulate tumour microenvironment or predict immune
response (Table 3). Thus, even the most complex murine
models may predict clinical benefit of therapy in one case
and not in another. Therefore, it is imperative that multiple
models be used to evaluate efficacy of each therapy.

Syngeneic murine models prove to be reasonably suc-
cessful in predicting clinical benefit of therapy in preclinical
experiments (Table 3). The effects of navelbine and carbo-
platin were assessed in C57BL mice with LLC hind flank
tumours. In vivo, IV navelbine administration resulted in 72.7
percent tumour regression [74]. Alternatively, IV carboplatin
administration in combination with paclitaxel resulted in
prolonged survival in 30-50 percent of the experimental
population. Preclinical navelbine findings were shown to be
translatable to clinical trials as median survival was extended
to 34 weeks in patients [73]. Carboplatin-paclitaxel combina-
tion therapy was also shown to be effective in clinical trials
as median survival was extended to 10.3 months in patients,
further suggesting that the LLC model is a valuable tool for
predicting clinical benefit of select therapies [81]. Interest-
ingly, preclinical evaluation of monoclonal antibody therapy
with bevacizumab and/or cetuximab has not been conducted
in a syngeneic model system, but rather in xenograft systems
[28, 85]. Both bevacizumab and cetuximab were shown to be
effective in reducing tumour burden and extending survival
both in preclinical and clinical trials [28, 84, 85, 88]. These
studies raise several important questions concerning the
translatability of preclinical study characteristics such as:
clinically relevant dose, survival quantification and treatment
regiment, to clinical trials.

It is important to note that preclinical and clinical
dosages as well as treatment regimens vary widely between
preclinical and clinical trials and even with the use of complex
conditional transgenic models in preclinical studies, it is
difficult to predict clinically relevant dose and appropriate
treatment regimen for the patient population. There are
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several essential criteria for evaluating preclinical trial results
prior to progression to clinical trials. Firstly, tumour growth
inhibition of less than 50 percent in preclinical models does
not typically translate into clinical benefit [69, 119]. Secondly,
it is imperative that preclinical trial results show a survival
benefit in response to therapy as this is one of the most
telling criteria concerning drug efficacy in vivo [36, 79, 81].
Response to therapy cessation is also a valuable prognostic
factor in preclinical studies. If therapy is discontinued and
tumour growth resumes, relapse-free survival can be affected
in patients and the likelihood of success in clinical trials may
be limited [69, 119].

In summary, there are several valuable murine models
available for the study of lung cancer; however, no one model
can truthfully recapitulate all features of human lung cancer
in vivo. Each model has both advantages and limitations and
it is vital that these be taken into consideration prior to use in
preclinical trials. Prior to choosing a model for experimenta-
tion, thought should be given to relevance of cell type, genetic
abnormalities, temporal-spatial regulation of expression of
target genes, tumour microenvironment, and the metastatic
potential of each model. Despite recent advances, future
research is needed, particularly with regards to developing
models for SCLC and SCC as these are currently limited.
Results obtained through the use of murine models as well
as advancements in the development of new mouse models
for lung cancer have provided much insight in the biology of
lung cancer and lung cancer therapies. Ultimately, the use of
these models in preclinical studies provides a vital framework
from which to continue to evaluate therapies and identify
predictive and prognostic markers in vivo.
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