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Leptin and adiponectin are differentially expressed adipokines in obesity and cardiovascular diseases. Leptin levels are directly
associated with adipose tissue mass, while adiponectin levels are downregulated in obesity. Although significantly produced by
adipocytes, leptin is also produced by vascular smooth muscle cells and cardiomyocytes. Plasma leptin concentrations are elevated
in cases of cardiovascular diseases, such as hypertension, congestive heart failure, and myocardial infarction. As for the event of left
ventricular hypertrophy, researchers have been stirring controversy about the role of leptin in this form of cardiac remodeling.
In this review, we discuss how leptin has been shown to play an antihypertrophic role in the development of left ventricular
hypertrophy through in vitro experiments, population-based cross-sectional studies, and longitudinal cohort studies. Conversely,
we also examine how leptin may actually promote left ventricular hypertrophy using in vitro analysis and human-based univariate
and multiple linear stepwise regression analysis. On the other hand, as opposed to leptins generally detrimental effects on the
cardiovascular system, adiponectin is a cardioprotective hormone that reduces left ventricular and vascular hypertrophy, oxidative
stress, and inflammation. In this review, we also highlight adiponectin signaling and its protective actions on the cardiovascular

system.

1. Introduction

According to the Centers for Disease Control and Preven-
tion (CDC), more than one-third of U.S. adults are obese.
Generally, obesity is associated with high levels of the circu-
lating hormone leptin (hyperleptinemia) and low levels of
adiponectin [1-3]. Leptin and adiponectin are cytokines pro-
duced excessively by adipocytes, hence the name “adipoki-
nes.” Leptin is thought to be responsible for several cardiovas-
cular diseases associated with obesity, while adiponectin is
considered to be cardioprotective. This review covers the rela-
tionship between leptin, adiponectin, and the cardiovascular
system.

2. Leptin

Leptin is a16 kDa protein which functions as a satiety factor. It
is secreted by adipocytes and binds to the hypothalamic leptin

receptor (Ob-R) to enhance metabolism and reduce appetite
[4], thereby increasing energy expenditure and decreasing
energy intake. It is a product of the ob gene [5] and is asso-
ciated with obesity, since a higher adipose tissue mass results
in elevated leptin levels [6].

Leptin is also produced by other cells besides adipocytes,
such as cardiomyocytes and vascular smooth muscle cells
(VSMQ) [7, 8]. Several studies have shown that the functional
leptin receptor is also found in a variety of organs such as
the heart, liver, kidneys, and pancreas [9-13]. It is located
on cardiomyocytes [14], vascular smooth muscle cells [5],
endothelial cells [15], myometrium [16], and cerebral and
coronary vessels [17, 18]. Therefore, this hormone has a
wide range of pleiotropic effects, affecting the cardiovascular,
nervous, immune, and reproductive systems [19-21].

Leptin circulates in the blood at a level of 5 to 15 ng/mL
in lean individuals [22]. This level may reach up to 50 ng/mL
in obese individuals, due to their higher adipose tissue mass.
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Glucocorticoids and insulin act on adipocytes to increase lep-
tin expression, possibly explaining the reason for increased
leptin levels observed in obesity [23].0n the other hand,
fasting, testosterone, and thyroid hormone lead to a reduction
in leptin expression [23, 24].

2.1. Leptin Signaling

2.1.1. Leptin Receptor. Although well-known as a product of
adipocytes, leptin is also produced by a variety of different
tissues and has many functions other than being a satiety fac-
tor [8, 14, 25]. In the murine model, the leptin receptor Ob-R
has six isoforms, Ob-Ra to Ob-Rf, which are strongly related
to class I cytokine receptor family. They are alternatively
spliced but contain the same ligand-binding domain [26].
Ob-Re is a soluble receptor secreted in the blood that binds
to circulating leptin in order to maintain the concentration
of free leptin [17, 26, 27]. The other Ob-R receptors are
transmembrane proteins on the plasma membrane. Ob-Ra, c,
d, fare short isoforms. Ob-Rb is the long, functional isoform,
responsible for the intracellular signaling effects of leptin
[26]. Binding of leptin to the Ob-Rb receptor activates the
Janus-activated kinase (JAK) signal transduction pathway,
Signal Transducers and Activators of Transcription (STAT)
pathway, insulin receptor substrate, and Mitogen-Activated
Protein Kinase (MAPK) pathway [28].

2.1.2. Leptin Signaling Pathways

Leptin and the JAK/STAT Pathway. The JAK/STAT path-
way is the best illustrated pathway in leptin signaling
[29]. When leptin binds to Ob-Rb, this receptor undergoes
homooligomerization [30, 31] and then binds to JAK2 [32].
This leads to autophosphorylation of JAK2 and the phospho-
rylation of Tyr985, Tyrl077, and Tyrl138 on Ob-Rb [30, 32-
35]. Phosphorylation of Tyrl138 residue on Ob-Rb recruits
STAT3 proteins to the Ob-Rb/JAK2 complex and leads to
tyrosine phosphorylation of STAT3 proteins, which form
dimers and translocate to the nucleus in order to activate
transcription of target genes. One of these genes is a member
of the suppressors of the cytokine signaling family (SOCS3)
[33, 36, 37].

SOCS3 binds to Tyr985 and other sites within the Ob-
Rb/JAK2 complex which inhibits leptin signaling [38, 39].
JAK2 phosphorylates Tyr985 and leads to the phosphory-
lation of the SH2 (src homology 2) domain of the tyrosine
phosphatase SHP-2 (sr¢ homology 2-containing tyrosine
phosphatase), which in turn activates the extracellular signal-
regulated kinase (ERK) signal transduction pathway [33].
Moreover, SHP-2 overexpression blunts SOCS3-mediated
inhibition, possibly through competitive binding to Tyr985
[38].

JAK2 autophosphorylation may also lead to phosphoryla-
tion of insulin receptor substrate proteins, which activate the
PI3K signaling pathway [40, 41]. In the heart, both the leptin-
activated ERK and PI3K pathways are crucial for proliferation
of cardiomyocytes and for the protection of cardiac tissue
from ischemia/reperfusion injury [42, 43].
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Leptin and the MAPK Pathway. Another major pathway
activated by leptin binding to its Ob-Rb receptor is the MAPK
pathway. After agonist binding, homooligomerization of the
receptor, JAK2 recruitment, and autophosphorylation, the
Tyr985 on Ob-Rb is phosphorylated. This recruits SHP-2
and Grb-2 (growth factor receptor-bound protein 2) to
phosphorylate and activate ERK1/2 of the MAPK family
[33]. ERK1/2 activation ultimately leads to the expression of
specific target genes, such as c-fos and egr-1, which promote
proliferation and differentiation [28, 38, 44].

Activation of ERK1/2 may also occur independently of
Tyr985. In this case, JAK2 binds to the SH2 domain of
SHP-2 [33, 45]. Thus, both the short leptin receptor isoform
Ob-Ra and the long receptor isoform Ob-Rb can activate
MAPK, but to a lesser extent by Ob-Ra [17, 33]. Another
protein that contains SH2 domain and associates with Grb-2
is SHC, which has been shown to phosphorylate tyrosine after
leptin agonist binding [46]. Leptin-induced phosphorylation
of STAT3 and ERKI1/2 has been studied in isolated adult
C57BL/6 mouse cardiomyocytes, with maximal activation
observed at 15 minutes after leptin treatment. Leptin-deficient
ob/ob mice treated with leptin for four weeks also exhibited
elevated STAT3 and ERK1/2 phosphorylation in their cardiac
tissue, but the same treatment in Ob-Rb-deficient db/db mice
did not lead to STAT3 and ERK1/2 phosphorylation [47].

Leptin has been shown to also lead to phosphorylation of
p38 MAPK. The « and S isoforms of p38 MAPK are widely
distributed and found at relatively high levels in the heart
[48]. Leptin-induced p38 MAPK activation is associated with
the onset of hypertrophy and programmed cell death in
cardiomyocytes and rat vascular smooth muscle cells [14, 42,
49].

Leptin and the Rho Pathway. Under the hypertension-
induced force of mechanical stretch, guanine nucleotide
exchange factors exchange GDP for GTP on the guanine
nucleotide (GTP) binding protein RhoA, thereby activating
it. RhoA then activates Rho kinases (ROCK), which activates
LIM kinase (LIMK) [50]. LIMK phosphorylates cofilin, inac-
tivating this actin depolymerizing protein and leading to the
accumulation of F-actin and depletion in G-actin [51]. When
present at normal physiological levels, G-actin attenuates
hypertrophy by inhibiting transcription factors like serum
response factor (SRF) which upregulate hypertrophic gene
expression [52, 53]. Thus, the activation of the RhoA/ROCK
pathway leads to a reduction in G-actin levels, promoting
vascular remodeling and hypertrophy.

2.2. Leptin and Cardiovascular Disease. Several studies have
revealed numerous effects of leptin on the cardiovascular
system [20, 54, 55]. In this review, we will discuss the effect
of leptin on the cardiac and vascular system (Figure 1),
focusing on cardiac hypertrophy, angiogenesis, the vasoactive
response, blood pressure, and atherosclerosis.

2.2.1. Cardiac Hypertrophy. The heart increases its mass as
a compensatory mechanism for a hemodynamic overload.
Since cardiomyocytes become terminally differentiated early
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FIGURE 1: Summary of molecular signaling responses to leptin and their cardiac and vascular effect. T or + represents activation of protein or

effect whereas | or — indicates inhibition. See text for more information.

in life, the increase in cardiac mass is due to hypertrophy of
the myocytes rather than hyperplasia. In situations of pres-
sure overload, such as conditions of hypertension or aortic
stenosis, myocyte width increases due to the parallel addition
of sarcomeres, which in turn increases wall thickness. This
kind of remodeling is concentric hypertrophy (increase in
wall thickness/chamber dimension ratio) [56].

Left ventricular hypertrophy (LVH) occurs when the
myocardium of the left ventricle of the heart enlarges. The left
ventricle is the chamber which pumps oxygenated blood into
the aorta, which in turn carries and delivers blood to the vari-
ous tissues and organs. Left ventricular hypertrophy generally
develops in response to factors like age, hypertension, aortic
valve stenosis, and obesity [57]. As the workload increases,
the walls of the ventricle grow thicker and lose elasticity. This
remodeling may lead to an increased risk of cardiovascular
diseases [58], such as heart failure, arrhythmia, ischemic
heart disease, or myocardial infarction [56, 59].

The functional leptin receptor Ob-Rb is found in the
myocardium [60], allowing leptin to exert its actions on the
heart. Studies have shown a direct link between leptin and
myocardial structure remodeling. The role of leptin in the
development LVH has been examined, with some researchers
believing that leptin promotes LVH, while others strongly
believing that leptin attenuates it [58].

Leptin as Antihypertrophic Factor. An interesting study by
Barouch et al. examined the role of leptin as an antihyper-
trophic hormone in the heart. They studied the development

of LVH in the leptin-lacking ob/ob and functional leptin
receptor-lacking db/db mice. These morbidly obese mice
exhibited a significant increase in left ventricular (LV) mass
and LV wall thickness by 6 months of age [61] as seen
by echocardiographic examination, indicating that they had
developed LVH. Since blood pressure can lead to LVH,
they measured the systolic blood pressure, LV end-diastolic
pressure, and heart rate in order to adjust for these factors
in case they were dissimilar between these mice and their
littermate controls; they observed that they were not different
[61]. Hence, hypertension was not the cause of the increase in
LV wall thickness and LV mass.

Histological examinations were also made on the car-
diomyocytes from ob/ob and db/db mice to visually evaluate
hypertrophy. Clear myocyte hypertrophy was seen in the
hearts of the ob/ob and db/db mice compared to the myocytes
of wild type mice, with larger cellular diameter and distorted
nuclear architecture [61]. However, no significant interstitial
fibrosis, metabolic inclusions of the cytoplasm, or myocardial
adipose infiltration were observed [61].

Since a lack of leptin or leptin signaling seemed to result
in LVH, Barouch et al. went on to replete these ob/ob mice
with leptin to study whether leptin had antihypertrophic abil-
ity. They had 3 groups of mice: leptin-infused mice, pair-fed
mice (on a diet to lose weight), and control mice. After almost
6 weeks, the pair-fed mice had lost a significant amount
of weight, as did the leptin-infused mice [61], attributable
to leptin’s neurohormonal ability to decrease appetite and
increase energy expenditure. Interestingly, there was a full



reversal of LVH in the leptin-infused mice as seen by both
echocardiographic evaluation and histological analysis [61].
Their LV wall thickness returned to normal, and the LV mass
significantly decreased [61]. Although the pair-fed mice lost
as much weight as the leptin-infused mice, they did not have
a reduction in LV wall thickness and LV mass, a similar
observation to the controls [61]. Hence, weight loss alone
(without leptin administration) did not reverse LVH. These
results indicated not only that the LVH seen in ob/ob mice
was simply due to their obesity, but also that leptin depletion
was a significant cause.

The study by Barouch et al. concluded that leptin has a
direct antihypertrophic role on the heart, independent of
weight loss [61]. However, their studies were done on mice.
The next step should be to measure LV mass, thickness,
and other indicators of LVH in humans, preferably those
born with a mutant gene for leptin, in which they cannot
produce this hormone. Few families have been found to
have this genetic abnormality in the leptin gene. They were
unable to produce the leptin hormone, and thus they were
hyperphagic and obese. After examination, they were treated
with leptin, thereby losing weight and significantly improving
in overall health [62, 63]. Perhaps their LV mass and thickness
before leptin administration should have been measured and
compared to these corresponding parameters after leptin
treatment. If LVH is reduced after leptin repletion, we can
conclude with further confidence that leptin directly reverses
LVH in the heart.

Another confusing insight in the suggestion that leptin
contributes to the reversal of LVH is that hypertension is
known to lead to LVH, but hypertension is associated with
increased levels of leptin [64]. This implies that leptin levels
are perhaps directly associated with LVH. Also, treating
leptin deficient ob/ob mice with leptin should elevate their
blood pressure, which in turn would be a mechanical cause
for the development of LVH. Barouch et al. examined LV
mass, thickness, and cardiomyocyte hypertrophy after 6
weeks of leptin repletion and observed that these factors
were diminished as a result of leptin treatment. However,
continuous leptin administration for a period longer than
only 6 weeks could possibly lead to actions of leptin besides
those of being an antihypertrophic factor, but rather perhaps
a hypertrophic factor.

A population-based cross-sectional study in support of
the antihypertrophic effect of leptin was done by Pladevall
et al. in rural Spain. They studied 410 overweight adults
and focused on the correlations between plasma leptin levels
and LV mass index (LVMI) and sum of wall thicknesses
(SWT), both parameters of LVH. They adjusted for several
factors like systolic blood pressure, body mass index, gender,
insulin resistance, and age and used a multivariate linear
regression model that showed that fasting leptin was inversely
and significantly related to LVMI [65]. Leptin levels were
also inversely associated with SWT, but not significantly.
Among the participants, there was a subgroup of hypertensive
patients. Within this subgroup, there was also a negative
association of fasting leptin with both LVMI and SWT [65].
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Similar to Barouch et al., this study suggests an inverse asso-
ciation between leptin levels and LVH, using the parameters
of LVMI and SW'T.

This study showed a negative correlation between leptin
levels and SWT and LVMI in all body mass index strata,
with the effect being most prominent in nonobese individuals
[65]. This implies that the higher leptin levels seen in obese
individuals should result in lower SWT and LVMI, but
obesity is associated with LVH [57]. The only explanation is
leptin resistance, but this would mean a positive association
between leptin levels and SWT and LVMI in the group of
obese individuals. However, a negative correlation was seen.
The researchers of this study were unable to establish a tem-
poral relationship between leptin levels and LVH due to the
cross-sectional nature of this study [65], and so prospective
cohort studies are required to portray the temporal sequence
of this inverse relationship. Moreover, leptin levels, LVMI,
and SWT were not measured at the same time [65].

The latest study examining the protective role of lep-
tin against LVH was based on a Multi-Ethnic Study of
Atherosclerosis (MESA). This longitudinal cohort study of
multiethnic groups used data collected from 1,464 partici-
pants who had baseline MRI scans of the heart and leptin con-
centration data [66]. After adjusting for age, weight, height,
race, and gender, Allison et al. performed multivariate linear
regression modeling which revealed that a 1-SD increment in
leptin was significantly inversely associated with LV mass, LV
volume, and odds ratio for LVH incidence [66]. Thus, this
recent cross-sectional study of a multiethnic group revealed
that leptin was significantly associated with reduced LV mass,
LV volume, and odds for the occurrence of LVH.

This interesting study is strengthened by the large size
of the sample and multiethnic nature of the group. Allison
et al. attributed the antihypertrophic effects of leptin to
leptin-induced minimization of triglyceride deposition in
the myocardium [66]. They believe that leptin resistance in
obesity would prevent the high levels of leptin from inhibiting
deposition of triglycerides in the heart. However, this study
was a cross-sectional study design and only few subjects
belonging to the highest levels of obesity were recruited [66].
Moreover, the researchers used a novel method for measuring
LV mass and volume by MRI, which resulted in more artifact
and signal-to-noise issues than other protocols [63]. This
could possibly influence measurements of LV volume [66].

Leptin as a Prohypertrophic Factor. Since obesity is associated
with LVH [57] and leptin levels are significantly increased
in obesity, many researchers believe that leptin actually
contributes to LVH. In vitro studies done on neonatal rat
ventricular myocytes exposed to 3.1 nmol/L of leptin for 24
hours significantly increased cell surface area by 42% [14].
This concentration of leptin corresponds to the average leptin
concentration seen in obese individuals [67]. The leptin-
induced hypertrophic response was mediated by phosphory-
lation and subsequent activation of the MAP kinases p38 and
ERK1/2, with acute responses of peak stimulation after 5-10
minutes of leptin administration [14].
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In order to rule out the possibility of osmosis-induced
hypertrophy, the researchers tested for protein synthesis
by leucine incorporation. Leptin treatment was found to
increase protein synthesis by 32% [14]. Leptin also signifi-
cantly increased expression of a-skeletal actin and myosin
light chain-2 (MLC-2), both upregulated in cardiac hyper-
trophy. This study underscores leptin’s ability to induce ven-
tricular hypertrophy at concentrations well within those of
obese individuals, proposing a potential direct link between
obesity-associated hyperleptinemia and increased risk of
cardiovascular diseases, particularly those associated with
hypertrophy.

Leptin is thought to induce cardiomyocyte hypertrophy
through its signaling via the PI3K-AKT and MAP kinases
such as ERK1/2 and p38 [14, 43, 68, 69]. Transgenic mice with
dominant-negative mutants of PI3K in their myocardia had
smaller hearts than controls [68], while those expressing con-
stitutively active forms of PI3K or AKT had larger hearts than
controls [68, 69]. Also, rapamycin, which interferes with PI3K
signaling, has been shown to attenuate cardiac hypertrophy
[70]. Inhibitors of ERK 1/2 and p38 activation have also been
shown to reduce leptin-induced cardiomyocyte hypertrophy
(14, 43].

A human study was done by Perego et al. to examine
leptin’s role in developing LVH by calculating LV mass in
obese individuals undergoing bariatric surgery of laparo-
scopic adjustable gastric banding (LAGB) [71]. LAGB is a
safe, minimally invasive surgery that reduces the size of the
stomach in order to induce weight loss. The patients they
chose for this study were morbidly obese and normotensive,
to rule out the possibility of hypertension-induced LVH. The
controls were healthy, lean, normotensive people.

As expected, both leptin levels and LV mass were signifi-
cantly higher in the obese individuals as compared to the lean
controls. Univariate regression analysis showed a significant
association between LV mass and BMI, leptin concentration,
insulin, and HOMA index [71]. In addition, LV mass cor-
related with blood glucose and blood pressure as evaluated
by electrocardiogram and electrocardiography, respectively.
However, when each of these factors’ contribution to LVH
was individually studied, only leptin was found to be a
significant determinant of LV mass increase, independent of
age, gender, BMI, HOMA index, insulin, and glucose [71].

Obese patients who underwent the LAGB were reevalu-
ated a year later, after their BMI had decreased by an average
of around 20%. The LV mass of these patients decreased by
about 12%, leptin by almost 47%, insulin by around 49%, and
HOMA index by 56% [71]. However, the reduction in LV mass
only correlated with the decrease in leptin levels at simple
regression analysis [71]. At multiple regression analysis, LV
mass only correlated with leptin levels. This underscores
leptin’s role in the development of LVH.

The study by Perego et al. was done using normoten-
sive obese patients in order to rule out the possibility of
hypertension-mediated LVH and to focus on an excess
amount of leptin in developing LVH. Another study by
Paolisso et al. was directed at examining the role of leptin in
LVH development in insulin-resistant hypertensive patients

who were not necessarily obese [72]. Chronic leptin admin-
istration increases blood pressure and heart rate through
sympathetic nervous system stimulation [73, 74], which
is involved in the pathogenesis of LVH [75]. They found
that fasting plasma leptin levels were significantly higher in
hypertensive subjects than in normotensive controls, with no
change in these results after adjustment for BMI [72]. The
LV mass was greater in hypertensive patients according to
echocardiographic evaluation. Using multiple linear stepwise
regression analysis, plasma leptin concentration was signifi-
cantly and independently associated with the increase LV wall
thickness in hypertensive patients [72].

LV wall thickness has been positively correlated with
insulin resistance in hypertension [76], and leptin has been
associated with insulin resistance [77]. Although the cor-
relation between plasma leptin levels and LV wall thick-
ness might be driven by insulin resistance, leptin remained
independently associated with LV wall thickness in the
multivariate model even after adjusting for insulin action
[72]. This suggests that leptin’s role in promoting LVH is at
least partially independent of insulin action. Paolisso et al.
attributed leptin’s hypertrophic actions to its ability to activate
the sympathetic nervous system, which in turn can lead to
LVH in hypertensive patients [75, 78].

2.2.2. Vascular Action of Leptin. Leptin exerts several actions
on the vascular system. It contributes to vascular remodeling,
hypertrophy, and angiogenesis. It also plays an important
role in hypertension. The involvement of leptin in promoting
atherosclerosis is still controversial, with many researchers
supporting leptin’s role as an atherogenic factor, while others
studying its antiatherogenic properties.

Vascular Wall. Zeidan et al. have shown that leptin is secreted
as a result of the hypertension-mimicking mechanical stretch
of the rat portal vein [8], suggesting that leptin expression
is increased in hypertension. They also observed that leptin
directly leads to hypertrophy of the rat portal vein wall [8].
With respect to the molecular mechanisms underlying the
leptin-induced vascular remodeling, different pathways and
signaling cascades are involved, such as the RhoA/ROCK
pathway, PI3K/AKT pathway, and the MAP Kinases [8, 51].

Blood Pressure. Not only are leptin concentrations directly
increased as a result of hypertension [8], leptin itself contri-
butes to the development of hypertension. Rodents exposed
to intravenous infusion and intracerebroventricular leptin
administration demonstrated increased arterial pressure and
heart rate [74, 79], while blocking the adrenergic system
diminished leptin-induced hypertension [80]. Other mecha-
nisms, besides increased sympathetic activity associated with
hyperleptinemia, may also be responsible for the develop-
ment of obesity-related hypertension. For instance, leptin
leads to the secretion of proinflammatory cytokines, such as
TNF-« and IL-6, and to the generation of reactive oxygen
species (ROS) in endothelial cells [81, 82], both promoters of
hypertension [83]. Leptin has also been shown to augment the
release of the vasoconstrictor endothelin-1 (ET-1) primarily



in endothelial cells, but also in cardiomyocytes, fibroblasts,
and macrophages [84], also leading to an elevation in blood
pressure.

During hypertension, ROS production is increased. This
in turn leads to oxidative stress and the growth, migration,
and hypertrophy of VSMC [85]. Leptin is secreted in high
concentrations as a result of the mechanical stretch associated
with hypertension [8], and leptin alone is able to increase ROS
generation [81, 86]. Hence, under conditions of hypertension
and obesity, leptin concentrations are augmented, leading to
an increase in ROS production and oxidative stress, which
in turn lead to dysfunction and vascular remodeling through
oxidative damage [87].

Angiogenesis. Another vascular effect of leptin is its ability to
promote angiogenesis. For angiogenesis to occur, endothelial
and vascular smooth muscle cells must migrate and prolif-
erate. Leptin promotes this process in endothelial cells by
upregulating expression of vascular endothelial growth factor
(VEGF) [88] and inducing actin cytoskeleton reorganization
[89]. Leptin also contributes to vascular smooth muscle
cell proliferation and migration [90] through upregulating
the serine/threonine kinase Akt [91], activating ERK1/2 [92,
93], and promoting reorganization of the actin cytoskeleton
through the RhoA/ROCK pathway [51]. Leptin also increases
the expression of matrix metalloproteinases (MMPs), thereby
inducing vascular basement membrane degradation and
modification of the extracellular matrix, both key events in
angiogenesis [94, 95]. MMPs further lead to angiogenesis
by releasing growth factors which also cause cell prolifer-
ation [96]. Moreover, leptin-induced ROS generation also
contributes to angiogenesis through the ability of ROS to
promote lipoprotein lipase expression from macrophages
[86] and VEGEF secretion by endothelial cells [97] and VSMC
[98].

Atherosclerosis. Over the years, leptin has been implicated
in the development of atherosclerosis due to the presence
ofleptin receptor in the different compartments of atheroscle-
rotic lesions. These include endothelial cells [99], vascular
smooth muscle cells [90], macrophages, and foam cells [94].
Atherosclerosis occurs with neointimal formation, which
is the thickened layer of cells that have proliferated and
migrated. Leptin is believed to cause atherosclerosis by pro-
moting the proliferation and migration of vascular smooth
muscle and endothelial cells, thus inducing neointimal
growth [90, 100, 101].

Leptin induces proliferation of vascular smooth muscle
cells by a mechanism involving stimulation of phosphatidyli-
nositol 3-kinase (PI3K) activity [90], activation of mitogen-
activated protein (MAP) kinases, and progression to S and
G2/M phases [102]. It promotes the migration of vascular
smooth muscle cells by activating the Rho/ROCK pathway
which promotes reorganization of the actin cytoskeleton
[103]. Leptin further leads to neointimal growth by stimu-
lating platelet aggregation [104], activating monocytes [105],
and regulating the immune response [106, 107]. Moreover,
leptin promotes oxidative stress [81, 86], which in turn leads
to vascular smooth muscle and endothelial damage [108].
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This leads to the deposition of lipids within blood vessel and
adhesion of macrophages and lymphocytes [108-110].

The atherogenic effect of leptin was shown by Schafer
et al. [100] using leptin deficient ob/ob mice. Following
atherogenic high fat diet, wild type mice exhibited significant
neointimal thickening after carotid artery injury [100]. On the
other hand, ob/ob mice, although obese and hyperlipidemic,
did not have a significant increase in neointimal thickness
even after feeding on a high fat diet and being exposed to
vascular injury [100]. The wild type and ob/ob mice were then
treated with leptin daily for 3 weeks, which lead to a dramatic
increase in lesion size and the severity of luminal stenosis
after arterial injury, regardless of whether the diet was normal
chow or a high fat diet [100]. Also, the vascular lesions formed
in response to injury showed strong expression for the leptin
receptor mRNA in the endothelial cells, vascular smooth
muscle cells, and macrophages [100], indicating that leptin
indeed was mediating its effect on these different components
of the neointima.

Paradoxically, some researchers believe that leptin redu-
cesatherosclerosis. Ina study that involved Ins2*/AM%:apoE /-
mice which developed type 1 diabetes, hypercholesteremia,
and atherosclerosis spontaneously, severe leptin deficiency
was seen compared to nondiabetic Ins2*/*:apoE™/~ mice
[111]. At 13 weeks of age, the Ins2*/ Akita:apoEf/ ~ mice were
treated with leptin for 3 months. Leptin therapy significantly
decreased plasma cholesterol concentrations by around 41%,
mainly in LDL fractions [111]. It also substantially reduced
aortic atherosclerotic lesion area in the Ins2"/AM%:apoE ™"
mice by almost 62% [111]. This study proposed that leptin
treatment could improve dyslipidemia and thus attenuate
atherosclerosis in cases of type 1 diabetes. However, it does
not directly prove that leptin could attenuate atherosclerosis,
in nondiabetics per se.

3. Adiponectin

Adiponectin, also termed adipocyte complement-related
protein of 30 kDa (Acrp30), AdipoQ, apM1, or GBP28, is an
adipokine produced and secreted exclusively by both white
adipose tissue (WAT) and brown adipose tissue. It accounts
for around 0.01% of the total plasma protein in humans
[112]. In healthy lean individuals, the adiponectin serum
levels range between 5 and 30 ug/mL [112]. Adiponectin
level negatively correlates with cardiovascular and metabolic
disorders [112-116], indicating adiponectin’s important role
in the cardiovascular system. In contrast to other adipokines
such as leptin, the levels of adiponectin in the plasma
correlate inversely with adiposity and directly with insulin
sensitivity [112, 113, 117, 118]. As such, high adiponectin
concentrations in the plasma are needed to perform normal
physiological actions in the cardiovascular system.

3.1. Adiponectin Signaling. Adiponectin possesses an oligo-
meric form [119, 120] which correlates with its physiological
activities and consequently attracts further characterization
and elaboration of its structure [119]. The gene that encodes
for human adiponectin is present on chromosome 3q27 [121],
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a locus that is associated with diabetes and other CVDs
(120, 122].

Adiponectin can form a wide range of multimer com-
plexes and exists in three oligomeric forms: a low molecular
weight (LMW) trimer, a middle molecular weight (MMW)
hexamer, and a high molecular weight (HMW) multimer of
12-18 monomers [123-125]. The HMW complex is the func-
tional unit and induces anti-inflammatory, antiatherogenic,
and antidiabetic effects that protect against cardiovascular
and metabolic disorders [120]. Adiponectin binds to a num-
ber of receptors, most importantly the adiponectin receptors
(AdipoR1 and AdipoR2) and T-cadherin.

Different mice models with targeted deletion of AdipoRI
or AdipoR2 genes are defective in exhibiting adiponectin
actions, indicating the important role of AdipoRl and
AdipoR2 in mediating adiponectin signaling. AdipoR1 is
ubiquitously expressed, including the cardiovascular system,
whereas AdipoR2 expression is high in the liver [126]. Adi-
poR1 is expressed highly in the heart compared to AdipoR2
[126]. Upon binding to its receptors, adiponectin activates
several signaling pathways, such as AMPK and PPAR-«,
and modulates gluconeogenesis and fatty acid oxidation
[127, 128]. Indeed, several preclinical studies demonstrated
the important role of AdipoRs in enabling adiponectin to
carry out its physiological and metabolic functions [129-
131]. Deletion of AdipoR1 blocked the adiponectin-mediated
phosphorylation of AMPK, while AdipoR2 gene deletion

increased adiposity and glucose intolerance, presumably
due to increased gluconeogenesis [129]. AdipoR2-null mice
demonstrated a hindered adiponectin-mediated PPAR-«
activation and unlike AdipoR1-deficient mice showed resis-
tance to diet-induced glucose intolerance [130]. However,
deleting both receptors led to insulin resistance and glucose
intolerance [129].

T-cadherin has also been recognized as an adiponectin
receptor [132]. T-cadherin is present in adiponectin-targeted
sites including the heart, VSMC, and endothelial cells [133].
It has been hypothesized that both AdipoRs and T-cadherin
can act together to regulate adiponectin signaling in certain
cells and tissues [120]. T-cadherin has been found as a crucial
factor for adiponectin mediated cardioprotection in preclini-
cal mice studies. Indeed, it was found that the expression of T-
cadherin was abundant in the myocardium where it provided
protection from pathological cardiac remodeling induced
by stress [134]. T-cadherin-null mice showed an increased
adiponectin level in the blood due to the diminished binding
of adiponectin to its receptor sites on the heart.

3.2. Adiponectin and the Cardiovascular System. Data
obtained from different studies using both animal models
and in vitro studies have demonstrated the multiple beneficial
effects of adiponectin on the cardiovascular system, through
direct and indirect actions on both cardiac and vascular cells
(Figure 2).



3.2.1. Cardiac Actions of Adiponectin. Left ventricular hyper-
trophy and its progression result from structural and func-
tional cardiac disorders impairing the heart’s ability to fill
up with blood easily or to pump blood out efficiently; in
both cases the body does not receive enough blood to
meet its demands, hence interfering with its function. Sev-
eral signaling pathways influence the cardiac hypertrophy
manifestation including ROS formation, MAPK, and AMPK
pathway activation [135,136]. Adiponectin plays an important
role in protection against cardiac remodeling by atten-
uating myocardial hypertrophy [137]. However, extensive
knowledge about the mechanisms involving the relation-
ship between low adiponectin levels and the development
and progression of cardiac hypertrophy is still lacking and
requires further examination.

Myocardial infarction (MI) is one of the primary causes
of heart failure [138]. The heart usually responds to MI
through “cardiac remodeling” by changing the shape, size,
and function of the heart at the infarct site [139]. Treat-
ment with exogenous adiponectin significantly reduced the
MI size in mice hearts subjected to ischaemia/reperfusion.
T-cadherin was shown to mediate the protective role of
adiponectin against ischaemia/reperfusion cardiac injury
[134]. This protective action was linked to the attenuation of
ROS levels and TNF-« and the activation of AMPK and COX-
2 [140]. Studies revealed that, under physiological condition,
adiponectin exerts its beneficial effects via increased NO
production from eNOS. However, under pathological states,
adiponectin inhibits iNOS and thus decreases NO release and
promotes cardiac injury [141].

3.2.2. Vascular Actions of Adiponectin. In addition to its
effects on cardiomyocytes, many studies demonstrated that
adiponectin acts directly on vascular system and has pro-
tective effects against different vascular disorders, such as
endothelial dysfunction [142], atherosclerosis [143], and
hypertension [144].

Adiponectin initiates AMPK-mediated eNOS activation
leading to NO production [116]. This action showed impor-
tant physiological implications in the vasculature hemostasis
[145-149]. Indeed, through NO, adiponectin was shown to
exert many physiological actions on the vascular system,
such as prevention of atherosclerosis, inhibition of VSMC
proliferation, and regulation of vascular contraction and
blood pressure [143].

Moreover, adiponectin selectively binds to different
growth factors, such as heparin-binding epidermal growth
factor-like growth factor and platelet-derived growth factor
BB, thus attenuating their binding to their receptors [150,
151]. AdipoRs are expressed in platelets, and in vitro studies
performed on human platelets showed that adiponectin
inhibits platelet aggregation following collagen induction
[143].

Another important function of adiponectin is its anti-
inflammatory effect which is attributed to its ability to activate
AMPK and other non-AMPK mechanisms. This leads to the
inhibition of NFkf and consequently reduces the expression
of adhesion molecules and the release of IL-8 following TNF-
« stimulation [116, 152, 153].
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4. Summary

Leptin is associated with obesity and is a potential contributor
to many of the cardiovascular risks linked to obesity. It pro-
motes hypertension, vascular remodeling, ROS generation,
angiogenesis, atherosclerosis, and sympathetic nervous sys-
tem stimulation (see Figure 1). Studies have shown that this
hormone can predict myocardial infarction independently
of conventional risk factors [154], and it is an independent
predictor of myocardial infarction in patients with arterial
hypertension [155]. On the other hand, leptin has been shown
to have protective actions on the cardiovascular, renal, and
gastric systems in ischemia/reperfusion injury, so labeling
leptin as a strictly harmful hormone is not quite fair. Obese
individuals are resistant to leptin, so some might argue that
the leptin-associated harm on the cardiovascular system is
due to leptin’s inability to elicit its effects appropriately. Hence,
further studies need to be done on leptin and specifically lep-
tin resistance, in order to better understand leptins function
in obesity and promotion of cardiovascular diseases.

Leptin’s role in developing LVH has been under scrutiny
and controversy. While some researchers studied and demon-
strated that leptin could possibly attenuate and reverse LVH,
most studies have shown that leptin actually contributes to
LVH progression. Several factors of LVH have been attributed
to leptin, such as activation of the PI3K-AKT pathway and
the MAP kinases ERK 1/2 and p38. Leptin’s action on the
sympathetic nervous system could also contribute to the
development of LVH. Further studies need to be done on
leptin’s role in LVH in order to fully explain the pathophys-
iology of this form of myocardial remodeling. It is enticing
to study whether leptin could play a therapeutic role in the
myocardium in cases of heart failure and ischemia.

Studies have revealed that adiponectin preserves the nor-
mal physiology of the heart by protecting the heart and blood
vessels against atherosclerosis, inflammatory, and oxidative
stress. With further studies focusing on adiponectin’s bene-
ficial actions, this protein holds potential as new pharmaco-
logical therapy in cardiovascular disease.
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