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All living organisms must transmit genetic information through successive generations, and 

all six eukaryotic supergroups utilize a mitotic spindle to accomplish this task. The mitotic 

spindle is the cellular machinery responsible for chromosome segregation during mitosis, 

and it is comprised of hundreds of proteins. During evolution, eukaryotic cells have 

developed different mechanisms and different kinds of mitotic spindles to segregate the 

chromosomes (Drechsler and McAinsh, 2012). Regardless of the differences, the common 

characteristic of all these different mitotic spindles is the utilization of microtubules and 

kinesins, as all known eukaryotes studied to this date possess kinesins (Wickstead et al., 

2010).

The mitotic spindle is a bipolar array of microtubules of varied lengths that continuously 

grow and shrink. These highly dynamic microtubules are nucleated by centrosomes and 

contact the chromosomes in the centromeric region to facilitate chromosome attachment and 

segregation. Although chromosome movement is powered in part by changes in microtubule 

assembly (Shelden and Wadsworth, 1992), kinesins associated with microtubules and other 

spindle structures refine the movement of chromosomes in the spindle. Kinesins participate 

in chromosome attachment, influence microtubule dynamics and contribute to anaphase 

spindle elongation (reviewed in (Cross and McAinsh, 2014)). Thus, kinesins, in conjunction 

with dynamic microtubules, ensure the proper distribution of genetic material between the 

two daughter cells to avoid aneuploidy.

Kinesins are a class of molecular motors that use the energy from hydrolysis of ATP to 

translocate along the microtubule or control microtubule end dynamics (Vale et al., 1985, 

1996; Desai et al., 1999). They have been identified in members of all six eukaryotic 

supergroups including extremely deep-rooted members (Fig. 1). Processive kinesins are able 

to perform successive work-producing cycles of ATP hydrolysis without detaching from the 
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substrate microtubule whereas non-processive kinesins readily detach from microtubules but 

can be quite effective working in ensembles. There are 14 families of kinesins, and most 

members possess two distinct functional domains: an ATP-hydrolyzing motor domain and a 

tail domain that can associate with cellular structures or cargo (Lawrence et al., 2004; Miki 

et al., 2005). The motor domain is very well conserved among the different kinesins families 

while the tail domains are more divergent. Most kinesins translocate to the plus ends of the 

microtubule and possess an N-terminal motor domain. There are kinesins with the motor at 

the C-terminus that translocate to the minus end of the microtubule. Besides this hand over 

hand “walking” activity (Yildiz et al., 2004), there are some kinesins that are able to control 

microtubule dynamics through promoting polymerization, promoting depolymerization or 

pausing polymerization activity (Desai et al., 1999; Bringmann et al., 2004; Cui et al., 

2005).

In Opisthokont metazoans there appear to be Kinesins involved in every step of mitosis, 

belonging to the families 4, 5, 6, 7, 8, 10, 12, 13, 14 (reviewed in (Cross and McAinsh, 

2014)). Here we are going to review the kinesins involved in each phase of mitosis with an 

emphasis on the stages of mammalian cell division. Additionally, we will consider the role 

of kinesins in deep-rooted eukaryotes.

Kinesins in Mitosis

Prophase: Centrosome separation

During prophase, the two centrosomes close to the nuclear envelope separate and travel to 

opposites sides of the cell to form a bipolar spindle. At the same time the chromatin begins 

to condense to form chromosomes. The most important kinesin family involved in the 

formation of the bipolar spindle is the kinesin-5 family (Kashina et al., 1997). Kif11 (also 

known as Eg5) is the Kinesin-5 family member involved in the bipolar spindle formation in 

humans (Slangy et al., 1995). Kif11 acts as a tetramer with two kinesin heads contacting one 

microtubule and the other pair of heads contacting a parallel or antiparallel microtubule. 

Thus, Kif11 acts as a microtubule crosslinker that is able to force two microtubules to glide 

with respect to each other, and uses this activity to separate the centrosomes during the 

beginning of mitosis (Kapitein et al., 2005). A representative Kif11 member is present in 

many deep-rooted eukaryotes and lacking in others, even across those (such as T. brucei vs. 

S. cerevisiae) with closed mitosis (Fig. 2).

Prometaphase and Metaphase: Organization of a bipolar spindle and chromosome 
congression

During prometaphase the centrosomes localize to opposites sides of the cell to form a 

bipolar spindle. There is evidence that Kif15 (a Kinesin-12 family member) functionally 

overlaps Kif11 in the separation of the centrosomes and in the formation of a bipolar spindle 

(Tanenbaum et al., 2009; Sturgill and Ohi, 2013). KifC1 (a kinesin-14 motor) is a minus-end 

directed motor that generates an inward force during the formation of the spindle. The 

outward force created by Kif11 and Kif15 compensates this inward force to help maintain 

the spindle length (Mountain et al., 1999). Interestingly, some organisms that lack Kif11, 

such as P. tetraurelia and T. brucei, do possess Kif15 (Wickstead et al., 2010).
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During this phase, microtubules contact the chromosomes in the kinetochores and move 

them to the middle of the spindle forming the metaphase plate. Several kinesin families are 

involved in the capture and congression of the chromosomes: Kinesin-4 (Kif4), Kinesin-7 

(Kif10), Kinesin-8 (Kif18A), Kinesin-10 (Kif22), Kinesin-13 (Kif2B, Kif2C) and 

Kinesin-14 (KifC1).

The first contact is usually a “lateral connection”, where the kinetochores contact the 

microtubule via the lattice rather than the microtubule tip. In these cases, the molecular 

motors Dynein and Kif10 (also known as CenpE, a Kinesin-7 member) are the players 

involved in the transport of the chromosomes to the plus-end tip of the microtubule to 

establish a stronger connection kinetochore-microtubule (Schaar et al., 1997; Wood et al., 

1997; Kapoor et al., 2006; Cai et al., 2009). Kinesin-7 is widely represented in deep-rooted 

organisms.

Members of the Kinesin-8 family are important for the correct chromosome alignment in 

metaphase. For example, the deletion of Kinesin-8 members Klp5 and Klp6 in S. pombe and 

Kip3 in S. cerevisiae, alters the alignment of chromosomes in metaphase (Garcia et al., 

2002; West et al., 2002; Wargacki et al., 2010). In human cells the depletion of Kif18A 

generates a congression defect with chromosomes dispersed through all the spindle (Mayr et 

al., 2007; Stumpff et al., 2008, 2012). Kinesin-13 member's role in chromosome alignment 

at the metaphase plate is not as well understood as Kinesin-8, but it is known that the lack of 

Kif2C (MCAK) affects attachment (Domnitz et al., 2012) and congression in human cells 

(Zhu et al., 2005) possibly by limiting microtubule length within the spindle.

Another activity influenced by kinesins is chromosome oscillation around the metaphase 

plate. Once two sister chromatids are attached to microtubule tips emerging from respective 

opposite poles, the chromosome is bi-oriented. Stable, bi-oriented attachment of the 

chromosomes to the mitotic spindle is a requirement to turn off the mitotic checkpoint. The 

checkpoint assures that both daughter cells receive the same amount of genetic material by 

inhibiting the initiation of anaphase chromosome segregation in the presence of improperly 

attached chromosomes. Bi-oriented chromosomes establish a meta-stable position at the 

metaphase plate by oscillating back and forth across the spindle midpoint. It is hypothesized 

that in addition to properly positioning chromosomes for anaphase, oscillations may 

facilitate the shedding of improper microtubule attachments during prometaphase and 

metaphase (Holt et al., 2005; Wordeman et al., 2007). These oscillations are possible thanks 

to forces derived from changes in microtubule polymerization rates that are controlled in 

part by kinesins. There are several kinesins implicated as participating in the oscillation 

movements: Kif2B, Kif2C, Kif4, Kif10, Kif18A and Kif22.

Polar ejection forces help to push chromosomes away from the spindle poles and relocate 

them to the metaphase plate if they have moved far away from it (Rieder et al., 1986). This 

is achieved thanks to a group of kinesins that interact with chromosomes called 

chromokinesins. Kif22 (also known as Kid, member of the Kinesin-10 family) is a 

chromokinesin that uses solely plus-end directed motility to facilitate chromosome 

congression (Stumpff et al., 2012). Kif4 (Kinesin-4 family) is a plus-end directed 

chromokinesin that can also regulate microtubule dynamics and microtubule length to 
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influence congression (Oh et al., 2000; Samejima et al., 2012; Stumpff et al., 2012; Wandke 

et al., 2012). This unusual kinesin family member can be detected in a number of deep-

rooted eukaryotes (Fig. 2).

The Kinesin-8 family member, Kif18A, is able to control microtubule dynamics (Roostalu 

and Surrey, 2013; Su et al., 2013) and chromosome oscillations probably by pausing or 

reducing the polymerization rates of microtubules ends close to the kinetochores (Du et al., 

2010; Stumpff et al., 2012). Studies in human cells have shown that Kif18A localizes in the 

spindle with a higher concentration at the tip of the plus-end microtubule close to 

kinetochores (Mayr et al., 2007; Stumpff et al., 2008). Kinetochores closer to the metaphase 

plate have longer k-fibers, and therefore accumulate more Kif18A molecules. Growth 

suppression of these longer k-fibers would expected to be enhanced, preventing the 

chromosomes from moving farther from the metaphase plate. In contrast, the loss of Kif18A 

allows chromosomes to stray farther from the metaphase plate during each oscillation. This 

would explain why there are chromosomes dispersed through all the spindle in the Kif18A 

knockdown (Mayr et al., 2007; Stumpff et al., 2008, 2011, 2012). There are very few 

eukaryotes that do not possess either a kinesin-13 member, a kinesin-8 member or both, 

which suggests microtubule length modulation by kinesins is an essential activity. 

Curiously, one primitive eukaryote, Cyanidioschyzon merolae, that lacks kinesin-8 and -13 

family members accomplishes much of its G1 activities without utilizing assembled 

microtubules (Imoto et al., 2011). In this organism MTs are only present in the mitotic 

spindle, and the authors suggest the idea that MTs first evolved associated to mitosis, and 

that the cytoskeleton and transport functions evolved later.

Besides chromosome congression and positioning, another process regulated by kinesins is 

the turnover of the kinetochore microtubules. The kinesin-13 family members (Kif2A, 

Kif2B and Kif2C) are involved in this process likely because they are capable of using the 

energy of ATP to directly disassemble microtubules (Desai et al., 1999; Hunter et al., 2003; 

Cooper et al., 2010). During the first contacts of the microtubule with the kinetochores, 

erroneous connections are common (Cimini et al., 2003). Kinetochore-associated Kif2C is 

implicated in the correction of MT-KT attachments (Kline-Smith et al., 2004; Wordeman et 

al., 2007). Kif2C is found both on kinetochores and also as a complex with EB1 on 

microtubule plus-ends. It facilitates end-on attachment of kinetochores to microtubule tips 

by suppressing plus-end microtubule length within the spindle (Domnitz et al., 2012). Kif2A 

also controls spindle microtubule length but its centrosomal position suggests control of 

microtubule minus ends so its overarching role may be to set overall spindle length (Wilbur 

and Heald, 2013).

Anaphase, Telophase and Cytokinesis

During anaphase the separated sister chromosomes move from the center of the spindle in 

the metaphase plate toward opposite poles of the cell (anaphase A) and the mitotic spindle is 

elongated (anaphase B). Microtubule depolymerization is the principle driving force for 

anaphase chromosome segregation (Gorbsky et al., 1987; Shelden and Wadsworth, 1992). In 

Drosophila the Kinesin-13 members KLP59C and KLP10A may influence microtubule 

depolymerization to facilitate chromosome segregation as well (Rogers et al., 2004). Spindle 
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elongation is controlled by kinesin-5 members in flies and yeast (Straight et al., 1998; Brust-

Mascher et al., 2009). Interestingly, it is not well-understood what controls anaphase B 

spindle elongation in mammals.

The central spindle is a structure of antiparallel microtubules formed between the two sets of 

segregating chromosomes important for the regulation cytokinesis. Kif2A and Kif4 control 

the size of the central spindle through the control of microtubule dynamics (Bieling et al., 

2010; Hu et al., 2011; Uehara et al., 2013). There are other kinesins important for 

cytokinesis like Kif10, Kif14, Kif20A, Kif20B and Kif23 (reviewed in (Lee et al., 2012) and 

chapter xxx in this same number).

Kinesins and the control of Microtubule dynamics

The classical or conventional role of kinesins is the transport of cargo from one place in the 

cell to another, e.g. the transport of cargo down the axon of a neuron. But as described 

above, some kinesins are able to influence MT dynamics. Microtubules are dynamic 

biological polymers that constantly grow and shrink in an assembly/disassembly cycle 

known as dynamic instability (Mitchison and Kirschner, 1984).

Microtubule dynamics varies depending on the cell cycle, cell events and cellular structures 

encountered by the microtubule end. During interphase the half-life of MT is around 5 min, 

and in the mitotic spindle it is of around 5 seconds (Saxton et al., 1984). But even inside of 

the spindle there are differences between microtubule subpopulations. The connection of 

MT with the KT (K-fibers) is very, stable, resulting in higher half-life than in the rest of the 

mitotic spindle (around 5 minutes) (Gorbsky and Borisy, 1989; Zhai et al., 1995). The 

turnover of microtubules in the kinetochore fiber is an important contributor to error 

correction during cell division (Bakhoum et al., 2009; Ertych et al., 2014).

Microtubule dynamics is highly regulated by a complex of proteins like MAPs (microtubule 

associated proteins) and kinesins (Vaart et al., 2009). Based on existing studies, we can 

differentiate three classes of kinesins regulating MT dynamics:

1. Kinesins that promote or enhance the addition of subunit to the MT: kinesin-7 

(CenpE), Kinesin-10 (Nod)

2. Kinesins that enhance or promotes tubulin subunit loss: kinesin-8 (Kip3, Klp5/6, 

Kif19), Kinesin-13 (Kif2A, 2B and 2C/MCAK), Kinesin-14 (Kar3)

3. Kinesins that suppress the dynamics at the MT ends: Kinesin-4 (Kif4/Xklp-1), 

Kinesin-8 (Kif18A).

Kinesins proteins are the only cytoskeletal motors (kinesins, dyneins and myosins) that have 

been found in all eukaryotes studied to date (Richards and Cavalier-Smith, 2005; Wickstead 

and Gull, 2006, 2007; Wickstead et al., 2010). This would put the apparition of the first 

kinesins between 1.6 and 2.2 billion years ago, with the apparition of the first eukaryotic 

cells. But, when did kinesins acquire the ability to modulate microtubule dynamics? Is that 

function previous or subsequent to translocation along the microtubule lattice? It is possible 

that regulation of microtubule assembly is an ancient and perhaps the original function of 

the earliest kinesins, with the transport function evolving later. With this in mind, what 
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would be the set of kinesins possessed by the FECA (First Eukaryotic Common Ancestor) 

and the LECA (Last Eukaryotic Common Ancestor)? In a 2010 paper Wickstead et al. 

studied kinesin diversity through a wide range of eukaryotes organisms concluding that is 

probably the LECA had a whole set of kinesins comprising members of families 1, 2, 3, 4, 5, 

8, 9, 10, 13, 14, and 17 (the Kinesin-17 family is a new family only found in bikonts 

(Wickstead and Gull, 2006)). In addition, it appears that most eukaryotic organisms have 

kinesins controlling MT dynamics and most of them have some kind of MT-depolymerizing 

kinesin from families Kinesin-8, Kinesin-13 or Kinesin-14 (Wickstead and Gull, 2006; 

Wickstead et al., 2010). Even the primitive red alga C. merolae, which lacks kinesin-8 and 

-13 family members, possesses a kinesin-14. We have performed a simple manual BLAST 

analysis of kinesins in eukaryote protists from the groups Excavata, Alveolates, 

Opisthokonts and Amoebozoa (Fig. 1). Some of these organisms are pathogens, and some of 

them are known as deep-rooted eukaryotes because they are usually positioned close to the 

root of the eukaryotic tree of life. We have not found kinesins from families 6 and 11, and 

our results fit with the results from previous papers.

Polymerizing kinesins—There are several kinesins in different systems that promote MT 

polymerization or MT nucleation. Kif10 (also known as Cenp-E) is a plus-end directed 

kinesin from the Kinesin-7 family (Wood et al., 1997). It localizes to MT ends, is able to 

stabilize GTP-microtubules and promote the elongation of the stabilized MTs (Sardar et al., 

2010). The Drosophila Nod (Kinesin-10 family) is a non-motile kinesin that plays an 

important role in chromosome segregation during meiosis. It localizes to MT ends and 

promotes MT polymerization (Cui et al., 2005). Additionally, there is the special case of the 

S. pombe KLP5/6 (Kinesin-8) motors that promote both MT nucleation and catastrophe (Cui 

et al., 2005). In our analysis we have found proteins similar to Kif10 (CenpE, kinesin-7) in 

most of the eukaryotes analyzed (Fig. 2).

Depolymerizing Kinesins—The most studied group of kinesins controlling MT 

dynamics is the depolymerases, especially the Kinesin-8 and Kinesin-13 families.

Kinesin-13 family—Kinesins-13 members have the catalytic domain in the center of the 

protein, and do not walk over the MT, but use their ATPase activity to remove tubulin 

subunits from both ends of the MT (Desai et al., 1999; Walczak, 2003), arriving to the ends 

mainly by diffusion (Helenius et al., 2006). The first kinesins with depolymerization activity 

identified in mammals were Kif2A and Kif2C (MCAK) from the Kinesin-13 family (Noda 

et al., 1995; Wordeman and Mitchison, 1995). Kif2A and 2C have been studied in a lot of 

detail, but the first studies showing the depolymerization activity of MCAK came studying 

the orthologous in Xenopus: XKCM1. The depletion of XKCM1 in Xenopus egg extracts 

causes an excessive growth of the MT (spindle and astral MT) and the prevention of mitotic 

spindle formation (Walczak et al., 1996; Kline-Smith and Walczak, 2002). Cells 

overexpressing XKCM1 do not form a bipolar spindle because the MTs are too small and 

not able to grow (Ohi et al., 2007). In human cells overexpression of MCAK cause similar 

defects, which MCAK loss promoted kinetochore attachment errors and spindle positioning 

defects (Maney et al., 1998; Kline-Smith and Walczak, 2002; Wordeman et al., 2007; 

Rankin and Wordeman, 2010; Domnitz et al., 2012). S. cerevisiae doesn't possess members 
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of the Kinesin-13 family (Wickstead et al., 2010). However, both Kar3 (a Kinesin-14) and 

Kip3 (a kinesin-8) have the ability to destabilize MT ends (Sproul et al., 2005), so it is 

possible that they may have acquired the depolymerization activity to compensate for the 

lack of Kinesin-13. Alternatively, the kinesin-14, Kar3, may supply depolymerizing activity 

to functionally subsidize activities controlled by kinesin-13 in other organisms (Saunders et 

al., 1997).

Kinesin-13 members are present in many deep-rooted eukaryotes. In Giardia intestinalis 

Kinesin-13 localizes to the median body and flagellum, affecting flagellum length, median 

body behavior and mitotic MT dynamics (Dawson et al., 2007). Kinesin-13 in Leishmania 

major is involved in flagellar length control (Blaineau et al., 2007). Trypanosoma brucei 

Kinesin-13 localizes to the flagellar tip but it seems that its role in regulating flagellar length 

is very modest (Chan and Ersfeld, 2010). And in the single cell green alga Chlamydomonas 

reinhardtii Kinesin-13 is involved in flagellum assembly/disassembly cycle (Piao et al., 

2009; Wang et al., 2013).

Kinesin-8 family—Kinesin-8 proteins possess an N-terminal motor domain and use highly 

processive motility to reach the plus-end of the MT where they can influence MT dynamics 

(Gupta et al., 2006; Varga et al., 2006; Su et al., 2012). Kinesin-8 has two MT interacting 

sites, one of them in the C-terminal of the protein, that allows the kinesin to keep attached to 

the MT and exhibit high processivity (Mayr et al., 2011; Stumpff et al., 2011; Su et al., 

2011; Weaver et al., 2011). Thanks to this high processivity Kinesin-8 motors can 

accumulate at the end of the plus-side of the long MT creating a gradient of kinesin motors 

along the length of the MT that is more pronounced in longer MT fibers. In other words, 

greater numbers of motors can accumulate at the ends of longer MTs imparting more 

kinesin-8 activity at the ends of longer microtubules (Varga et al., 2006, 2009).

Members of this family can regulate MT dynamics by removing tubulin subunits or by 

blocking the addition of new tubulin. The mammalian Kinesin-8 Kif18A appears to suppress 

microtubule assembly at microtubule plus ends (Du et al., 2010; Stumpff et al., 2011, 2012). 

A pause in tubulin addition could allow GTP hydrolysis to reach the microtubule plus-end 

and increase catastrophes, but this mechanism has yet to be proven. Thus, these motors 

could induce MT depolymerization without actually removing tubulin subunits. S. cerevisiae 

Kip3p, in contrast, promotes the loss of tubulin subunits from the microtubule plus end 

(Varga et al., 2006; Su et al., 2011). To remove tubulin subunits, Kip3p accumulates on the 

plus-side of the MT and when new Kip3p arrives to the plus-end it pushes the previous 

molecules removing the motor and tubulin from the MT fiber (Varga et al., 2009). In 

keeping with the controversial nature of kinesin-8 activity, it is not clear if Klp5/6 from S. 

pombe has depolymerizing activity or not, as there are studies showing depolymerizing 

activity (Erent et al., 2012), and others showing the opposite (Grissom et al., 2009). While 

yeast do not have a Kinesin-13 member, Giardia and some other deep eukaryotes have 

Kinesin-13, so it is possible that yeast has lost Kinesin-13 during evolution. However they 

have members of the Kinesin-8 family, so they still have kinesins with depolymerizing 

function. It is possible that organisms with simpler genomes and fewer kinesins have 

combined the depolymerizing functions in just one family.
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Evolution of Kinesins

From our analysis we have reached similar conclusions to those in Wickstead. et al. There 

are organisms like Crithidia, Eimeria, Leishmania, Neospora, Trypanosoma or Naegleria 

that possess kinesins from 10 different families (Fig. 2). This would support the idea that the 

LECA was fully equipped with a complete set of kinesins for different cellular functions. 

However there are some other organisms like Babesia (Kinesin-8 and 13), Enterocytozoon 

(Kinesin-8 and 14) and Theileria (Kinesin-8 and 13) that have just two kinesins in their 

genomes (also previously reported by (Wickstead and Gull, 2006)). Plasmodium has just 

three kinesins (Kinesin-5, 8 and 13). And there are several other organisms with just three or 

four kinesins (Fig. 2). Importantly, in all the cases of organisms with just two, three or four 

kinesins, all of them possess representatives from kinesin families implicated in controlling 

MT dynamics, i.e. Kinesin-4, 7, 8, 13 and 14. So it is possible that the earliest eukaryotic 

cells (not the LECA) were equipped principally with a set of kinesins in charge of 

controlling MT dynamics and that kinesins specific for transport functions did not appear 

until later in evolution through gene duplication and specialization. It is possible that the 

organisms with only 2-3 kinesins have lost some kinesins members during evolution and 

would, therefore, not exemplify the most ancient eukaryotes. However, it is also possible 

that organisms with more than four kinesins have gained kinesins during evolution. Most of 

these deep-rooted eukaryotes possessing a broad range of kinesins are pathogens, so it is 

possible that horizontal gene transfer occurred between the host and the pathogen, or even 

between different pathogens. There are some reported cases of gene transfer between 

eukaryotic pathogens, and between the pathogen and a host (Andersson, 2005, 2009; 

Keeling and Palmer, 2008; Alsmark et al., 2009; Bar, 2011; Selman et al., 2011). For these 

reasons, the protist that epitomizes this putative ancient eukaryote remains to be 

unambiguously identified.

One characteristic common to most of these deep-rooted eukaryotes is the existence of 

flagella, and also a cytoskeleton composed of unusually complex MT structures (e.g. 

Giardia, Trypanosoma, Plasmodium, etc) (Wickstead and Gull, 2011; Dawson and Paredez, 

2013). In some cases their life cycle depends strongly on the proper assembly and function 

of these flagella, for which they need to tightly control MT length and dynamics. It is 

difficult to separate the existence of a flagellum from transport. The IFT (IntraFlagellar 

Transport) is a system to build and maintain the eukaryotic flagellum that relies on the 

kinesins' transport activity. As the LECA is likely to have possessed a full 9+2 flagellar 

apparatus, which would presumably require transport activity, it is probable that it had 

several kinesins in charge of the transport of cargo from the cytoplasm to the end of the 

flagellum (Yubuki and Leander, 2013). The origin of the flagellum is not yet clear 

(Carvalho-Santos et al., 2011; Yubuki and Leander, 2013), but one hypothesis proposes an 

autogenous origin of the flagellum from an MTOC organizing the mitotic spindle (Pickett-

Heaps, 1974). C. merolae presents assembled MTs only during the formation of a mitotic 

spindle, suggesting that MTs first evolved to facilitate mitosis (Imoto et al., 2011). If the 

first eukaryotic cells with a flagellum did organize this structure from a mitotic spindle, it is 

possible that they were able to do it without the transport-kinesins required for IFT. For 

example, the pathogen Plasmodium doesn't have an IFT system and it is able to build a 
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flagellum (Briggs et al., 2004). Moreover, the flagellar machinery is often co-opted to build 

the mitotic spindle during cell division in some of these deep-rooted eukaryotes.

It is possible that the very earliest eukaryotic cells, not the LECA, had just a minimum 

number of two or three kinesins in charge of MT dynamics to control mitotic spindle, 

cytoskeleton and an ancient flagellum. Other kinesins dedicated to transport may have 

appeared later in evolution as cells became larger and more specialized. More evolutionary 

cell biology research and more studies centering on these deep-rooted eukaryotes will be 

necessary to understand the nature and evolution of the kinesins controlling MT dynamics.
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Figure 1. 
Six eukaryotic supergroups including, in each case, a few members in which kinesins have 

been unambiguously identified. Organisms thought to be more deeply rooted are indicated 

(*).
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Figure 2. 
Distribution of kinesins in deep-rooted eukaryotes. We manually analyzed the genome of 

several protists from the groups Excavata, Alveolates, Opisthokonts and Amoebozoa 

searching for kinesins. Presence of a kinesin member in the genome is indicated with a 

green filled circle. The number in parenthesis after the name indicates the number of kinesin 

families for each organism.

We have checked the genomes of the next eukaryotes: Acanthamoeba (A castellanii), 

Angomonas (A deanei), Anncaliia (A algerae), Babesia (B. bovis, B. microti), Blastocystis 
(B. hominis), Crithidia (C. fasciculate), Cryptosporidium (C. hominis, C. muris, C. 

parvum), Edhazardia (E. aedis), Eimeria (E. acervulina, E. brunetti, E. falciformis, E. 

maxima, E. mitis, E. necatrix, E. praecox, E. tenella), Encephalitozoon (E. cuniculi, E. 

hellem, E. intestinalis, E. romaleae), Entamoeba (E. dispar, E. histolytica, E. invadens, E. 

moshkovskii, E. nuttalli), Enterocytozoon (E. bieneusi), Giardia (G. intestinalis), 
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Gregarina (G. niphandrodes), Hammondia (H. hammondi), Leishmania (L braziliensis, L 

donovani, L infantum, L major, L mexicana, L tarentolae), Naegleria (N. gruberi), 

Nannochloropsis (N. gaditana), Nematocida (N. parisii), Neospora (N. caninum), Nosema 
(N. bombycis, N. ceranae), Phytomonas spp (different isolates), Plasmodium (P. berghei, 

P. chabaudi, P. cynomolgi, P. falciparum, P. gallinaceum, P. knowlesi, P. reichenowi, P. 

vivax, P. yoelii), Spironucleus (S. salmonicida), Spraguea (S. lophii), Strigomonas (S. 

culicis), Tetrahymena (T. thermophila), Theileria (T. annulata, T. equi, T. orientalis, T. 

parva), Toxoplasma (T. gondii), Trachipleistophora (T. hominis), Trichomonas (T. 

vaginalis), Trypanosoma (T. brucei, T. congolense, T. cruzi, T. evansi, T. grayi, T. rangeli, 

T. vivax), Vavraia (V. culicis), and Vittaforma (V. corneae).
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