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Abstract
Deficiencies in DNA repair due to inherited germ-line 
mutations in DNA repair genes cause increased risk of 
gastrointestinal (GI) cancer. In sporadic GI cancers, 
mutations in DNA repair genes are relatively rare. 
However, epigenetic alterations that reduce expression 
of DNA repair genes are frequent in sporadic GI cancers. 
These epigenetic reductions are also found in field 
defects that give rise to cancers. Reduced DNA repair 
likely allows excessive DNA damages to accumulate 
in somatic cells. Then either inaccurate translesion 
synthesis past the un-repaired DNA damages or error-

prone DNA repair can cause mutations. Erroneous 
DNA repair can also cause epigenetic alterations (i.e. , 
epimutations, transmitted through multiple replication 
cycles). Some of these mutations and epimutations may 
cause progression to cancer. Thus, deficient or absent 
DNA repair is likely an important underlying cause of 
cancer. Whole genome sequencing of GI cancers show 
that between thousands to hundreds of thousands of 
mutations occur in these cancers. Epimutations that 
reduce DNA repair gene expression and occur early in 
progression to GI cancers are a likely source of this high 
genomic instability. Cancer cells deficient in DNA repair 
are more vulnerable than normal cells to inactivation by 
DNA damaging agents. Thus, some of the most clinically 
effective chemotherapeutic agents in cancer treatment 
are DNA damaging agents, and their effectiveness 
often depends on deficient DNA repair in cancer cells. 
Recently, at least 18 DNA repair proteins, each active 
in one of six DNA repair pathways, were found to be 
subject to epigenetic reduction of expression in GI 
cancers. Different DNA repair pathways repair different 
types of DNA damage. Evaluation of which DNA repair 
pathway(s) are deficient in particular types of GI cancer 
and/or particular patients may prove useful in guiding 
choice of therapeutic agents in cancer therapy.
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Core tip: The primary cause of cancer is DNA damage. 
DNA damage leads to replication errors and erroneous 
repair, and can result in driver mutations and epimu-
tations. While germ-line mutations in DNA repair genes 
cause cancer-prone syndromes, mutations in DNA 
repair genes are infrequent in sporadic gastrointestinal 
cancers. However, reduction of DNA repair proteins 
due to epigenetic repression of DNA repair genes is 
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very frequent and can cause early steps in sporadic 
cancers. Evaluation of which DNA repair pathway(s) 
are deficient in particular types of GI cancer and/or 
particular patients may prove useful in guiding choice of 
therapeutic agents.

Bernstein C, Bernstein H. Epigenetic reduction of DNA repair 
in progression to gastrointestinal cancer. World J Gastrointest 
Oncol 2015; 7(5): 3046  Available from: URL: http://www.wjgnet.
com/19485204/full/v7/i5/30.htm  DOI: http://dx.doi.org/10.4251/
wjgo.v7.i5.30

REDUCED DNA REPAIR INCREASES 
CANCER RISK
Germ-line mutations in DNA repair genes cause 
increased risk of GI cancers. Examples are given in 
Table 1.

About 5% to 10% of all types of cancers are due 
to hereditary cancer syndromes[12]. Two reviews on 
hereditary cancer syndromes list 48 and 55 such 
syndromes[12,13]. Mutation in any of 37 DNA repair 
genes, including those listed in Table 1, can cause an 
hereditary cancer syndrome[14]. That hereditary cancer 
syndromes are frequently caused by mutations in DNA 
repair genes indicates that reduction in DNA repair gene 
expression can be a crucial early event in progression 
to cancer. If DNA repair gene expression is reduced 
in a somatic tissue by epigenetic repression, this is 
also likely to be a crucial early event in progression to 
cancer in that tissue.

Epimutations in DNA repair genes are frequent during 
progression to cancer
Vogelstein et al[15], reviewing evidence from sequencing 
3284 tumors and the 294881 mutations found in those 
cancers, noted that germ-line mutations that give 
rise to hereditary cancer syndromes are infrequent in 
sporadic tumors. 

More in depth studies of defects in DNA repair genes 
O-6-methylguanine-DNA methyltransferase (MGMT) 
and PMS2, important in progression to GI cancer, are 
consistent with the observations of Vogelstein et al[15]. 
In the case of MGMT, 113 sequential colorectal cancers 
were evaluated and only four had a missense mutation 
in the DNA repair gene MGMT, while most had reduced 
MGMT expression due to methylation of the MGMT 
promoter region[16]. Other laboratories, quantifying their 
results, reported that 40% to 90% of colorectal cancers 
have reduced MGMT expression due to methylation of 
the MGMT promoter region[17-21]. 

In the case of PMS2, when 119 colorectal cancers 
deficient in DNA mismatch repair gene PMS2 expression 
were examined, mutation in PMS2 was present in 6 
cases while in 103 cases the pairing partner of PMS2, 
MLH1 was repressed due to promoter methylation 

(PMS2 protein is unstable in the absence of MLH1)[22]. 
In the remaining 10 cases it was likely that epigenetic 
over-expression of the miRNA, miR-155, which down-
regulates MLH1 messenger RNA (mRNA), caused the 
loss of PMS2 expression[23].

These findings suggest that, if an early step in 
progression to sporadic GI cancer is reduction in function 
of a DNA repair gene, that reduction is likely due to an 
epigenetic alteration rather than to a mutation in that 
gene.

DNA DAMAGES ARE VERY FREQUENT 
AND AN IMPORTANT CAUSE OF 
CANCER
An average of more than 60000 endogenous DNA 
damages occur per cell per day in humans (Table 
2). These are largely caused by hydrolytic reactions, 
interactions with reactive metabolites such as lipid 
peroxidation products, endogenous alkylating agents 
and reactive carbonyl species, and exposure to reactive 
oxygen molecules[28].

However, more important still in causing cancer, 
are DNA damages caused by exogenous agents. Doll 
et al[29] compared cancer rates for 37 specific cancers in 
the United States to rates for these cancers in countries 
where there is low incidence for these cancers. The popu-
lations for comparison included Norwegians, Nigerians, 
Japanese, British and Israeli Jews. They concluded that 
75%-80% of the cases of cancer in the United States 
were likely avoidable. They indicated that the avoidable 
sources of cancer included tobacco, alcohol, diet 
(especially meat and fat), food additives, occupational 
exposures (including aromatic amines, benzene, heavy 
metals, vinyl chloride), pollution, industrial products, 
medicines and medical procedures, UV light from the 
sun, exposure to medical X-rays, and infection. Many of 
these sources of cancer are DNA damaging agents.

One example of diet-related DNA damaging agents 
likely important in human GI cancer are bile acids. 
Bernstein et al[30] summarized 14 published reports 
showing that the secondary bile acids deoxycholic acid 
and lithocholic acid, formed by bacterial action in the 
colon, cause DNA damage. Bile acids are increased 
in the colon after the gall bladder releases bile acids 
into the digestive tract in response to consumption of 
fatty foods to aid in their digestion. Bile acids in the 
colon were doubled in the colonic contents of humans 
in the United States who were on typical diets and 
then were experimentally fed a high fat diet[31]. Cancer 
rate comparisons can be made between two similar 
populations, one with low levels and one with high 
levels of colonic bile acids. For instance, deoxycholic 
acid (DOC) in the feces of Native Africans in South 
Africa is present at 7.30 nmol/g wet weight stool while 
for African Americans DOC is present at 37.51 nmol/g 
wet weight stool, a 5.14 fold higher concentration[32]. 
Native Africans in South Africa have a colon cancer rate 
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of < 1:100000[33] compared to the incidence rate for 
male African Americans of 72:100000[34], a more than 
72-fold difference in rates of colon cancer. 

The likely role of bile acids as causative agents in 
colon cancer is further illustrated by experiments with 
mice. When mice were fed a diet supplemented with 
the bile acid deoxycholate (DOC) for 10 mo, raising their 
colonic level of DOC to that of humans on a high fat diet, 
45% to 56% of these mice developed colon cancers, 
while mice fed the standard diet alone, with 1/10 the 
level of colonic DOC, developed no colon cancers[35,36]. 

Another indication that diet is important in colon 
cancer is observed in populations migrating from low-
incidence to high-incidence countries. Cancer rates 
change rapidly, and within one generation reach the 
rate in the high-incidence country. This has been 
observed, for instance, in the colon cancer incidence of 
migrants from Japan to Hawaii[37]. 

MANY GENES INVOLVED IN DNA REPAIR 
At least 169 enzymes are either directly employed 
in DNA repair or influence DNA repair processes[38]. 
Of these, 139 are directly employed in DNA repair 
processes including base excision repair (BER), nucleo-
tide excision repair (NER), homologous recombinational 
repair (HRR), non-homologous end joining (NHEJ), 
mismatch repair (MMR) and direct reversal of lesions 
(DR). The other 30 enzymes are employed in the 
DNA damage response (DDR) needed to initiate DNA 
repair; chromatin structure modification required for 
repair; reactions needed for the reversible, covalent 
attachment of ubiquitin and small ubiquitin-like modifier 

proteins to DDR factors that facilitate DNA repair; or 
modulation of nucleotide pools. 

When the incidence of endogenous and exogenous 
DNA damages is high, decreases in expression of 
DNA repair genes or DDR genes lead to a build-up of 
DNA damage within a cell. These excessive damages 
provide more opportunities for replication errors and 
erroneous repair to occur (see mechanisms below) and 
cause higher rates of mutation and epimutation. Higher 
numbers of mutations and epimutations increase the 
chance of including selectively advantageous driver 
mutations and epimutations that, in turn, promote pro-
gression to cancer.

DNA DAMAGES GIVE RISE TO 
MUTATIONS AND EPIGENETIC 
ALTERATIONS
Translesion synthesis (TLS) past a single-stranded DNA 
damage introduces mutations.

Single-strand DNA damages are the most frequent 
endogenous DNA damages (Table 2). TLS is a DNA 
damage tolerance process that allows the DNA repli-
cation machinery to replicate past single-strand DNA 
lesions in the template strand. This permits replication 
to be completed, rather than blocked (which may kill 
the cell or cause a translocation or other chromosomal 
aberration)[39]. 

Humans have four translesion polymerases in the 
Y family of polymerases [REV1, Pol κ (kappa), Pol 
η (eta), and Pol ι (iota)] and one in the B family of 
polymerases [Pol ζ (zeta)][39]. The temporary tolerance 
of DNA damage during chromosome replication may 
allow DNA repair processes to remove the damage 
later[40], and avoid immediate genome instability[41]. 
However, translesion synthesis is less accurate than the 
replicative polymerases δ (delta) and ε (epsilon) and 
tends to introduce mutations[39].

Deficiency in expression of a DNA repair gene can 
allow excessive DNA damages to accumulate. Some 
of the excess damages will likely be processed by 
translesion synthesis, causing increased mutation.

Kunz et al[42] summarized numerous experiments 
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  DNA repair gene(s) Repair pathway(s) affected Cancers with increased risk

  BLM HRR[1] Leukemia, lymphoma, colon, breast, skin, lung, auditory canal, tongue, 
esophagus, stomach, tonsil, larynx, uterus[2]

  WRN HRR, NHEJ, long patch BER[3] Soft tissue sarcoma, colorectal, skin, thyroid, pancreatic[4]

  Fanconi's anemia genes FANC 
  A, B, C, D1, D2, E, F, G, I, J, L, M, N

HRR and TLS[5] Leukemia, liver tumors, solid tumors in many areas including esophagus, 
stomach and colon[6]

  MSH2, MSH6, MLH1, PMS2 MMR[7] Colorectal, endometrial[7]

  MUTYH BER of A mispaired with 8-OHdG[8] Colon[8]

  P53 HRR, BER, NER, NHEJ, MMR[9] Sarcoma, breast, osteo-sarcoma, brain, adreno-cortical carcinomas[10] and 
colon and pancreas[11]

Table 1  Inherited mutations in DNA repair genes that increase the risk of gastrointestinal cancer

HRR: Homologous recombinational repair; NHEJ: Non-homologous end joining; BER: Base excision repair; TLS: Translesion synthesis; MMR: Mismatch 
repair; DDR: DNA damage response.

  DNA damages Reported rate of occurrence

  Oxidative damages 10000[24]

  Depurinations  9000[25]

  Depyrimidations 696[26]

  Single-strand breaks 55000[26]

  Double-strand breaks Approximately 50/cell cycle[27]

  O6-methylguanine  3120[26]

  Cytosine deamination 192[26]

Table 2  Endogenous DNA damages/cell/day for humans

Bernstein C et al . Epimutated DNA repair genes in cancer
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whereas the latter pathway, with or without the use 
of sequence microhomology for re-ligation, typically 
results in larger insertions or deletions. Mutagenic 
NHEJ repair is a robust process, yielding percentages 
of mutated sites at the position of a DSB ranging from 
20% to 60%. 

As pointed out by Vilenchik et al[27], about 1% of 
single-strand DNA damages escape repair and are 
not bypassed, and some of these become converted 
to double-strand breaks. This may contribute to the 
impact of double-strand breaks in causing mutations 
and carcinogenesis.

Epigenetic alterations occur due to DNA damage
Epigenetic alterations can arise due to incomplete repair 
of DNA double-strand breaks. As an example, O’Hagan 
et al[46] used a cell line stably transfected with a plasmid 
containing a consensus I-SceI cut site inserted into a 
copy of the E-cad promoter. This promoter contained a 
CpG island. O’Hagan et al[46] induced a defined double-
strand break in the E-cadherin CpG island, and the CpG 
island was not currently hypermethylated. As the repair 
of the break began, they observed that key proteins 
involved in establishing and maintaining transcriptional 
repression were recruited to the site of damage, to allow 
repair of the break. Most cells examined after the DNA 
break was repaired showed that DNA repair occurred 
faithfully, with the promoter not hypermethylated 
and the silencing factors removed. However, a small 
percentage of the cells retained heritable silencing. In 
these cells the chromatin around the break site was 
enriched for most of the silencing chromatin proteins 
and histone marks, and the region had increased DNA 
methylation in the CpG island of the promoter. Thus, 
repair of a DNA break can occasionally cause heritable 
silencing of a CpG island-containing promoter. Such 
CpG island methylation is frequently associated with 
tight gene silencing in cancer.

Morano et al[47] also showed that epigenetic altera-
tions can arise as a consequence of DNA damage. They 
studied a system in which recombination between 
partial duplications of a chromosomal green fluorescent 
protein (GFP) gene is initiated by a DSB in one copy. Two 
cell types were generated after recombination: clones 
expressing high levels of GFP and clones expressing low 
levels of GFP, referred to as H and L clones, respectively. 
Relative to the parental gene, the repaired GFP gene 
was hypomethylated in H clones and hypermethylated 
in L clones. The altered methylation pattern was largely 
restricted to a segment 3’ to the DSB. Although it is 
2000 base pairs distant from the strong cytomegalovirus 
promoter that drives GFP expression, hypermethylation 
of this tract significantly reduced transcription. The ratio 
of L (hypermethylated) to H (hypomethylated) clones 
was 1:2 or 1:4, depending on the insertion site of 
the GFP reporter. These experiments were performed 
in mouse embryonic (ES) or human cancer (Hela) 
cells. HRR-induced methylation depended on DNA 

in yeast, in which forward mutations were measured 
(by sequence analyses of a few selected genes) in 
cells carrying either wild-type alleles or one of 11 
inactivated DNA repair genes. Their results indicated 
that DNA repair deficient cells accumulate excess 
DNA damages that then give rise to mutations after 
error-prone translesion synthesis. The 11 inactivated 
DNA repair genes were distributed among MMR, 
NER, BER and HRR genes. Deficiencies in DNA repair 
increased mutation frequencies by factors between 
2- and 130-fold, but most often by double digit-fold 
increases. Overall, the authors concluded that 60% or 
more of spontaneous single base pair substitutions and 
deletions are likely caused by translesion synthesis.

Stuart et al[43] examined spontaneous mutation 
frequencies in a lacI transgene (in a Big Blue mutation 
assay[44]) in either replicating tissues or in largely non-
replicating tissues of mice. If most mutations occur 
during translesion synthesis, then non-replicating brain 
tissue, which has little or no synthesis once maturity 
is reached, would have little or no further mutation 
accumulation. In mouse brain, after 6 mo of age, 
there was no increase in mutation frequency, even 
at 25 mo of age. In bladders of mice, with replicating 
tissues, mutation frequency increased with age, almost 
tripling between ages of 1.5 mo and 12 mo of age. The 
authors concluded that the age related increases in 
spontaneous mutation frequencies reflect endogenous 
DNA damages that subsequently gave rise to mutations 
following DNA replication. This indicates that translesion 
synthesis is a major source of mutation in mouse 
replicating tissues.

Mutations are frequently caused by error-prone repair of 
double-strand breaks
While only a minority of endogenous DNA damages in 
the average cell are double-strand breaks (Table 2), 
this type of lesion appears to contribute substantially to 
the mutation rate as well. As indicated by Vilenchik and 
Knudson[27], the doubling dose for ionizing radiation (IR) 
induced double-strand breaks is similar to the doubling 
dose for mutation and induction of carcinomas by IR. 
Thus, double-strand breaks likely lead frequently to 
mutations.

As described by Bindra et al[45], non-homologous 
end-joining (NHEJ) and HRR comprise the two major 
pathways by which double-strand breaks (DSBs) 
are repaired in cells. NHEJ processes and re-ligates 
the exposed DNA termini of DSBs without the use 
of significant homology, whereas HRR uses homo-
logous DNA sequences as a template for repair. 
HRR predominates in S-phase cells, when a sister 
chromatid is available as a template for repair, and is 
a high-fidelity process. NHEJ is thought to be active 
throughout the cell cycle, and it is more error-prone 
than HRR. NHEJ repair comprises both canonical NHEJ 
and non-canonical pathways. The former pathway 
results in minimal processing of the DSB during repair, 
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methyltransferase I. These data, taken together, argue 
for a cause-effect relationship between double-strand 
DNA damage-repair and altered DNA methylation.

The main function of the proteins in the BER pathway 
is to repair DNA single-strand breaks and deamination, 
oxidation, and alkylation-induced DNA base damage. In 
addition, Li et al[48] reviewed studies indicating that one 
or more BER proteins also participate(s) in epigenetic 
alterations involving DNA methylation, demethylation 
or reactions coupled to histone modification. Franchini 
et al[49] also showed that DNA demethylation can be 
mediated by BER and other DNA repair pathways 
requiring processive DNA polymerases. Another form 
of epigenetic silencing also appears to occur during 
DNA repair. PARP1 [poly(ADP)-ribose polymerase 1] 
and its product poly(ADP)-ribose (PAR) accumulate at 
sites of DNA damage as intermediates of a DNA repair 
process[50]. This directs recruitment and activation of the 
chromatin remodeling protein ALC1, which can cause 
nucleosome remodeling[51]. Nucleosome remodeling, 
in one case, has been found to cause epigenetic 
silencing of DNA repair gene MLH1[52]. These reports, 
overall, indicate that DNA damages needing repair can 
cause epigenetic alterations by a number of different 
mechanisms.

Other causes of epigenetic alterations
Heavy metals and other environmental chemicals cause 
many epigenetic alterations, including DNA methylation, 
histone modifications and miRNA alterations[53]. DNA 
damage itself causes programmed changes in non-
coding RNAs, and a large number of miRNAs are trans-
criptionally induced upon DNA damage[54]. However, 
it is not clear what proportion of these alterations are 
reversed or are retained as epimutations after the 
external sources of damage are removed upon repair 
of the DNA damages[55]. 

Mutations in isocitrate dehydrogenase 1 (IDH1) and 
2 (IDH2) are frequent in several types of cancer and 
they can cause epigenetic alterations. As reviewed by 
Wang et al[56], IDH1 and IDH2 mutations represent the 
most frequently mutated metabolic genes in human 
cancer. These mutations occur in more than 75% 
of low grade gliomas and secondary glioblastoma 
multiforme, 20% of acute myeloid leukemias, 56% 
of chondrosarcomas, over 80% of Ollier disease and 
Maffucci syndrome, and 10% of melanomas. IDH1 is 
also mutated in 13% of inflammatory bowel disease-
associated intestinal adenocarcinoma with low-grade 
tubuloglandular histology but not in sporadic intestinal 
adenocarcinoma[57]. The IDH1 and IDH2 mutations that 
give rise to epimutations usually occur in the hotspot 
codons Arg132 of IDH1, or the analogous codon 
Arg172 of IDH2. These mutations allow accumulation of 
the metabolic intermediate 2-hydroxyglutarate (2-HG), 
and 2-HG inhibits the activity of alpha ketoglutarate 
(α-KG) dependent dioxygenases, including α-KG-
dependent histone demethylases and the TET family of 
5-methylcytosine hydroxylases. 

Wang et al[56] found that histone H3K79 dime-
thylation levels were significantly elevated in cholan-
giocarcinoma samples that harbored IDH1 or IDH2 
mutations (80.8%) compared to tumors with wild-type 
IDH1 and IDH2 (45.0%).

In addition, they surveyed over 462000 CpG sites 
in CpG islands, CpG shores and intragenic regions, 
and found that 2309 genes had significantly increased 
methylation in the presence of IDH1 or IDH2 mutations. 
In particular, Sanson et al[58] found that methylation of 
the DNA repair gene MGMT was associated with IDH1 
mutation, since 81.3% of IDH1-mutated gliomas were 
MGMT methylated compared with 58.3% methylated in 
IDH1 non-mutated tumors.

DNA REPAIR GENES WITH 
EPIGENETICALLY REDUCED EXPRESSION 
ARE LIKELY PASSENGERS IN A 
SPREADING FIELD DEFECT
A DNA repair gene that is epigenetically silenced or 
whose expression is reduced would not likely confer 
any selective advantage upon a stem cell. However, 
reduced or absent expression of a DNA repair gene 
would cause increased rates of mutation, and one or 
more of the mutated genes may cause the cell to have 
a strong selective advantage. The expression-deficient 
DNA repair gene could then be carried along as a 
selectively neutral or only slightly deleterious passenger 
(hitch-hiker) gene when there is selective expansion 
of the mutated stem cell. The continued presence of a 
DNA repair gene that is epigenetically silenced or has 
reduced expression would continue to generate further 
mutations and epigenetic alterations. 

The spread of a clone of cells with a selective 
advantage, but carrying along a gene with epigene-
tically reduced expression of a DNA repair protein would 
be expected to generate a field defect, from which 
smaller clones with still further selective advantages 
would arise. This is consistent with the finding of field 
defects in colonic resections, that have both a cancer 
and multiple small polyps, such as the one shown in 
Figure 1.

For any particular type of GI cancer, an epigenetic 
reduction in expression of a specific DNA repair gene 
may be common. In cases where a specific epigenetic 
reduction of expression of a DNA repair gene occurs 
in a cancer, it is also likely to be evident in the field 
defect surrounding the cancer (Table 3). The lower 
frequency in the surrounding field defect that is usually 
found (Table 3) likely reflects the process whereby the 
expanding clone laterally displaces the more normal 
epithelium. This displacement may be only partial. 
Thus, areas with the DNA repair deficiency would be 
present at a lower frequency in the field defect than 
in the cancer. In the cancer, the cells carrying the DNA 
repair deficiency are members of a founding clone. 
Thus, in the cancer, the DNA repair defect, along 
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with other accumulated mutations and epigenetic 
alterations, would be seen at a relatively higher 
frequency than in the surrounding field defect.

DECREASED EXPRESSION OF MULTIPLE 
DNA REPAIR GENES IN GI CANCERS
The protein expressions of three DNA repair genes 
within a 20 cm colon resection were evaluated at six 
different locations within the resection (Figure 2)[62]. 
One of the DNA repair proteins, KU86, was only 
deficient infrequently, with the deficiencies occurring in 
small patches (up to three crypts). These KU86 defects 
are not likely important in progression to colon cancer. 
However, two of the evaluated DNA repair proteins, 
ERCC1 and PMS2, were often deficient in patches of 
tens to hundreds of adjacent crypts at each of the 
locations evaluated (see Nguyen et al[68] at minutes 18 
to 24 of a 28 min video of crypts immunostained for 
ERCC1 or PMS2). 

Overall, ERCC1 (NER) was deficient in 100% of 49 
colon cancers evaluated, and in an average of 40% of 
the crypts within 10 cm on either side of the cancer. 
PMS2 (MMR) was deficient in 88% of the 49 cancers 
and in an average of 50% of the crypts within 10 cm of 
the cancer. As reported by Facista et al[62], the pattern 

of expression of ERCC1 in the crypts within 10 cm of 
a colon cancer indicated that when the ERCC1 protein 
was deficient, this deficiency was due to an epigenetic 
reduction in expression of the ERCC1 gene. When 
the PMS2 protein is deficient, it is usually due to the 
epigenetic repression of its pairing partner, MLH1, and 
the instabilty of PMS2 in the absence of MLH1[22]. In the 
study of Facista et al[62], ERCC1 and PMS2 were also 
deficient in all 10 tubulovillous adenomas evaluated 
(precursors to colonic adenocarcinomas). Thus ERCC1 
and PMS2 are deficient at early times (in the field 
defect), at intermediate times (in tubulovillus polyps), 
and at late times (within the cancer) during progression 
to colon cancer. Another DNA repair protein, XPF, was 
deficient in 55% of the cancers, as well[62]. The majority 
of cancers were simultaneously deficient for ERCC1, 
PMS2 and XPF. 

Deficiencies in multiple DNA repair genes were also 
observed in gastric cancers. Kitajima et al[69] evaluated 
MGMT (direct reversal repair), MLH1 (MMR) and MSH2 
(MMR) and found that synchronous losses of MGMT 
and MLH1 increase during progression and stage of 
differentiated-type cancers. In un-differentiated-type 
gastric cancers, the frequency of MGMT deficiency 
increased from early to late stages of the cancer, while 
frequencies of MLH1 and MSH2 deficiencies were 
between 48% and 74% at both early and late stages. 
Thus, in un-differentiated-type gastric cancers, MLH1 or 
MSH2 deficiency, if it is present, is an early step, while 
MGMT deficiency is often a later step in progression of 
this cancer.

Farkas et al[70] evaluated 160 genes in 12 paired 
colorectal tumors and adjacent histologically normal 
mucosal tissues for differential promoter methylation. 
They found aberrant methylation in 23 genes, including 
six DNA repair genes. These DNA repair genes (with 
DNA repair pathways indicated) were NEIL1 (BER), 
NEIL3 (BER), DCLRE1C (NHEJ), NHEJ1 (NHEJ), GTF2H5 
(NER), and CCNH (NER).

Lynam-Lennon et al[71] found that miR-31 is over-
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  Cancer Gene Frequency in 
cancer

Frequency in 
adjacent 

field defect

  Colorectal[17] MGMT   46% 34%
  Colorectal[19] MGMT   47% 11%
  Colorectal[60] MGMT with MSI   70% 60%
  Colorectal[19] MSH2   13%   5%
  Colorectal[61] MBD4 Frequent Frequent
  Colorectal[62] ERCC1 100% 40%
  Colorectal[62] PMS2   88% 50%
  Colorectal[62] XPF   55% 40%
  Colorectal[63] WRN   29% 13%
  Stomach[64] MGMT   88% 78%
  Stomach[65] MLH1   73% 20%
  Esophagus[66] MLH1 77%-100% 23%-79%

Table 3  Epigenetic deficiency of DNA repair genes in 
gastrointestinal cancers and field defects

MSI: Microsatellite instability.

Small
intestine

Fat

6 mm polyp

Cancer

5 mm polyp

3 mm polyps

Appendix
Cecal area
of colon

Proximal
colon

Diagram of cut-open colon resection
(above) showing cancer (red), polyps
(4 small tan circles) within possible

large field defect (yellow) with internal
sub-clones and sub-sub-clones (other

colors)

Figure 1  Cut open gross specimen of proximal human colon showing 
multiple tumors[59].
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expressed in 47% of esophageal cancers and examined 
the consequences of over-expression of miR-31 in 
these cancers. Using a cell line, they first tested the 
effect of over-expression of miR-31 on the expression 
of 84 DNA repair genes. They found that 11 DNA repair 
genes were repressed by over-expression of miR-31. 
They then evaluated the expression of the five most 
altered DNA repair genes in 10 esophageal cancers 
that had high expression of miR-31 and low resistance 
to radiation treatment (likely low levels of DNA repair). 
These 10 cancers showed significantly reduced mRNA 
levels of DNA repair genes PARP1, SMUG1, MLH1 and 
MMS19. Asangani et al[72] showed that miR-31 is an 
epigenetically regulated microRNA. This microRNA is 
encoded in an intron of MIR31HG (miR-31 host gene). 
The transcriptional regulatory region of MIR31HG is 
enriched for histone 3 that could be acetylated on lysine 
(K) 27 (this is designated H3K27Ac), and H3K27Ac 
causes an epigentic “mark” that is associated with 
transcriptionally active genes. If, instead, this histone 
3 has triple methylation on lysine 27 (H3K27me3), 
this causes gene silencing. The regulatory region of 
MIR31HG also has 77 CpG islands surrounding the 
transcription start site. These observations indicate 
that miR-31 transcription could be up-regulated by 
H3K27Ac or silenced by CpG island methylation or by 
histone H3K27me3. It appears that DNA repair genes 
PARP1 (BER and HRR), SMUG1 (BER), MLH1 (MMR) 
and MMS19 (NER) are epigenetically repressed by 
over-expressed miR-31 in esophageal cancers.

Based on the examples above, decreased expre-
ssion of multiple DNA repair genes likely occurs often in 
GI neoplasia. 

EFFECTS LIKELY DUE TO DNA REPAIR 
DEFECTS
Regression of early lesions
If DNA repair defects are present early in progression 
to cancer, this should result in increased mutation 

frequency in those neoplastic lesions. Most new 
mutations are expected to be deleterious to the cells 
in which they arise, and thus would cause negative 
selection of those cells. This expectation is consistent 
with the observations of Hofstad et al[73] who showed 
that when colonic polyps were identified during a 
colonoscopy and followed but not removed, between 
11% and 46% of polyps smaller than 5 mm diameter 
were not detectable in the succeeding one to three 
years. For polyps between 5 and 9 mm in diameter, 
between 4% and 24% became undetectable in the 
succeeding one to three years. Of the remaining 
68 polyps that were followed for three years, 35% 
decreased in diameter, 25% remained the same size 
and 40% increased in diameter. Similarly, Stryker et 
al[74] followed 226 patients with colonic polyps that 
were ≥ 1 cm in size for an average of 5.7 years (though 
some patients were followed for as long as 19 years). 
Stryker et al[74] found that 37% of polyps ≥ 1 cm 
enlarged (at least doubled in volume) during the study 
while 4% of the polyps that had been observed at least 
twice, previously, were later not found. The risk of 
these polyps ≥ 1 cm producing an invasive carcinoma 
within 20 years was 24%. The data of Hofstad et al[73] 
and Stryker et al[74] are also consistent with statistics 
showing more frequent occurrence of adenomas during 
colonoscopy and autopsy compared to the frequency 
of colon cancer, indicating there must be a significant 
regression rate for adenomas[75]. 

Subclones in cancers
When infrequent positively selected mutations arise 
in a cell, this can provide the cell with a competitive 
advantage that promotes its preferential clonal 
proliferation, leading to cancer. The continued presence 
of epigenetically repressed DNA repair genes, carried 
along as passengers in the development of cancers, 
also predicts that cancers will contain heterogeneous 
genotypes (multiple subclones). For instance, as a 
test for the presence of subclones, in one primary 
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Figure 2  Expression of three DNA repair proteins, KU86, ERCC1 and PMS2, at locations sampled along the 20 cm length of a colon resection that had a 
cancer at the indicated location[67].
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renal carcinoma with multiple metastases, 101 non-
synonymous point mutations and 32 indels (insertions 
and deletions) were identified[76]. Five mutations were 
not validated and excluded from the study. Of the 
remaining 128 mutations, 40 were “ubiquitous” and 
present in each region of the tumor sampled. There 
were 59 “shared” mutations, present in several but 
not all regions, and 29 “private” mutations, unique to 
a specific region evaluated. The authors constructed a 
phylogenetic tree and concluded that the evolution in 
the tumor and its metastases was branching, and not 
linear. 

A deficiency of DNA repair would likely produce 
genetic clonal diversity, through generation and 
selection for new mutational variants. In a study by 
Maley et al[77], 268 patients with Barrett’s esophagus 
were followed for an average of 4.4 years during which 
37 esophageal adenocarcinomas (EACs) developed. 
Genetic clonal diversity within Barrett’s esophagus 
proved to be a better predictor of EAC than the 
presence of specific mutations in genes associated with 
EAC, such as mutation in P53. This finding suggests 
that DNA repair deficiency is of primary importance in 
progression to cancer.

EPIGENETIC REPRESSION OF DNA 
REPAIR GENES, DUE TO ALTERATIONS 
IN CPG ISLAND METHYLATION IN GI 
CANCERS
Table 4 gives examples of reports of DNA repair genes 
repressed by CpG island hypermethylation (or with 
increased expression due to CpG hypomethylation, 
which may cause unbalanced repair processes) in GI 
cancers (this is only a partial list). Nine different DNA 
repair genes (all listed among the 169 DNA repair 
and DDR genes previously identified[38]) were often 
hyper- (or sometimes hypo-) methylated in one or 
more GI cancer. Such alterations in methylation of 
promoter regions of DNA repair genes can cause 
deficient repair of DNA damages. Thus, hyper- (or 
hypo-) methylations of DNA repair genes are frequently 
important factors responsible for lack of appropriate 
repair of DNA damages. Faulty DNA repair leads to 
increased mutation and epigenetic alteration, central to 
progression to cancer. 

DNA REPAIR GENE EXPRESSION MAY BE 
REPRESSED BY MULTIPLE PROCESSES
A number of the DNA repair genes with reduced expre-
ssion due to CpG island hypermethylation are also 
epigenetically repressed by other means. Many protein 
coding genes are repressed by microRNAs. MicroRNAs 
(miRNAs) are small noncoding endogenously produced 
RNAs that play key roles in controlling the expression 

of many cellular proteins. Once they are recruited and 
incorporated into a ribonucleoprotein complex, they can 
target specific messenger RNAs (mRNAs) in a miRNA 
sequence-dependent process and interfere with the 
translation into proteins of the targeted mRNAs via 
several mechanisms (see detailed review by Lages et 
al[88]). 

As discussed above, when mismatch DNA repair 
protein PMS2 is deficient in colorectal cancer, this may 
be due to hypermethylation of its pairing partner MLH1, 
or due to over-expression of the miRNA miR-155 which 
targets the MLH1 gene for repression.

While only 38% of cancers have CpG island methyla-
tion of the ERCC1 promoter (Table 4), Facista et al[62] 
found that 100% of colon cancers have significantly 
reduced levels of ERRC1 protein expression. In the 
49 cancers examined, ERCC1 protein expression 
varied from 0% to 45% (with a median value of 28%) 
of the level of ERCC1 expression of neoplasm-free 
individuals. It is likely that ERCC1 can be repressed 
by more than one mechanism. A second mechanism 
of repression of ERCC1 may be due to the combined 
effects of epigenetically deficient miRNA let-7a and 
resulting over-expression of HMGA2 protein, which 
then represses ERCC1, as discussed below. 

As indicated by Motoyama et al[89], the let-7a 
miRNA normally represses the HMGA2 gene, and in 
normal adult tissues, almost no HMGA2 protein is 
present. In breast cancers, for instance, the promoter 
region controlling let-7a-3/let-7b miRNA is frequently 
repressed by hypermethylation[90]. Reduction or 
absence of let-7a miRNA allows high expression of 
the HMGA2 protein. Regulation of gene expression by 
HMGA2 is achieved by binding to AT-rich regions in the 
DNA and/or direct interaction with several transcription 
factors[91]. 

HMGA2 targets and modifies the chromatin archi-
tecture at the ERCC1 gene, reducing its expression[92]. 
As shown by Mayr et al[93], using an artificial construct, 
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Table 4  CpG island hyper- (and hypo-) methylation of DNA 
repair genes in cancers

  Cancer Gene Frequency of promoter hyper- 
(or hypo-) methylation in cancer 

  Colorectal LIG4 82%[78]

MGMT 40%-90%[17-21]

ERCC1 38%[79]

WRN 29%-38%[63,80]

MLH1 9%-10%[22,81]

FEN1 Frequent (hypo-)[82]

MBD4 Frequent (hyper-)[61]

  Esophageal MGMT 23%-79%[65,83,84] 
MLH1 43%[82], 64%[85]

MSH2 29%[83], 75%[84]

  Stomach MGMT 88%[60]

MLH1 73%[64]

WRN 24%-25%[80,86]

FEN1 Frequent (hypo-)[82]

  Gastric lymphoma ATM 11%[87]
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the lack of let-7a miRNA repression of HMGA2 could 
occur through translocation of HMGA2, disrupting the 3’
UTR of HMGA2 which is the target of let-7a miRNA, and 
this can lead to an oncogenic transformation. However, 
the promoter controlling let-7a miRNA also can be 
strongly regulated by hypermethylation in intact cells. 
When human lung cells are exposed to cigarette smoke 
condensation, the promoter region controlling let-7a 
becomes highly hypermethylated[94]. It is likely that 
hypermethylation of the promoter for let-7a miRNA 
reduces its expression. This allows hyperexpression 
of HMGA2. Hyperexpression of HMGA2 can then 
reduce expression of ERCC1. The combined effects of 
reduced let-7a miRNA and hyperexpressed HMGA2 or 
other possible epigenetic mechanism(s) may cause 
the reduced protein expression of ERCC1 in colorectal 
cancers in addition to the 38% of colorectal cancers in 
which the ERCC1 gene is directly hypermethylated. 

DNA REPAIR PROTEINS AND MIRNAS
A review by Wouters et al[95] lists 74 DNA repair genes 
that are potentially targeted by miRNAs, and two 
additional reviews[96,97] list, combined, 30 miRNAs 
known to target DNA repair genes. The review by 
Wouters et al[95] used “in silico” computer programs 
(Targetscan and Mirbase) to identify likely miRNAs 
that could target their 74 DNA repair genes of interest, 
and, for each of these genes, indicated between 1 
and 19 “conserved” miRNAs that were predicted to 
repress those genes. They define “conserved” miRNAs 
as miRNAs found in at least five mammalian species. 
However, about half of the miRNAs they found “in 
silico” were inducible by UV irradiation, and may have 
been controlled by transcriptional regulation and not 
by an epigenetic mechanism. Tessitore et al[96] and 
Vincent et al[97] each list about 20 miRNAs that are 
altered in cancers and which control expression of DNA 
repair genes. However, they did not indicate how these 
miRNAs are deregulated.

Deregulation of miRNA expression in cancers has 
been found to occur by epigenetic as well as non-
epigenetic mechanisms[88,98]. One non-epigenetic me-
chanism includes alterations in genomic miRNA copy 
numbers and location. Some of these are deletions 
that include the miRNA clusters 15a/16-1 or let-7g/
mir-135-1, or else amplification or translocation of 
the mir-17-92 cluster. In some cancers miRNAs were 
deregulated because of defects in the biogenesis 
mechanism (the process of creating miRNAs, which has 
a number of steps). Some cancers have deregulated 
miRNAs due to single nucleotide polymorphisms (SNPs) 
in the genes coding for the miRNAs, or SNPs in the 
target gene area to which the miRNA is targeted. Some 
miRNAs, that target DNA repair genes, are regulated 
by oncogenes. For instance ATM is down-regulated by 
miR-421, but miR-421 is regulated by N-Myc[99]. Thus, 
not all instances of deregulation of DNA repair genes or 

DDR genes by miRNAs are due to epigenetic alterations 
affecting expression of the miRNAs.

EPIGENETIC REPRESSION OF DNA 
REPAIR GENES DUE TO ALTERATIONS 
OF METHYLATION OF PROMOTERS OF 
MIRNAS IN VARIOUS CANCERS 
Table 5 lists nine miRNAs that have three charac-
teristics: (1) their expression is epigenetically controlled 
by the methylation level of the promoter regions 
coding for the miRNAs; (2) they control expression of 
DNA repair genes; and (3) their level of expression 
was frequently epigenetically altered in one or more 
types of GI cancer. This list is not exhaustive. Many 
of the 30 miRNAs listed by Tessitore et al[96] or 
Vincent et al[97] might also meet these criteria upon 
further examination. Four of the miRNAs on this list 
are not noted by Tessitore et al[96] or Vincent et al[97]. 
Most of the studies of these epigenetically controlled 
miRNAs have not noted the frequencies with which 
their alterations occur in cancers. Thus, these studies 
are somewhat less systematic than those detailing 
methylation of DNA repair genes in Table 4. However, 
the nine epigenetically controlled miRNAs listed in Table 
5 can repress the 16 DNA repair genes listed in Table 5 
and these genes are repressed in various GI cancers.

WHOLE GENOME SEQUENCING 
INDICATES A HIGH LEVEL OF 
MUTAGENESIS IN GI CANCERS
Almost 3000 pairs of tumor/normal tissues were 
analyzed for mutations by whole exome sequencing 
(sequencing the protein coding parts of whole 
genomes) and more than a hundred pairs of tumor/
normal tissues were analyzed for mutations by whole 
genome sequencing by Lawrence et al[120]. Median 
mutation frequencies for 27 different types of cancer 
were found to vary by 1000-fold. When there was a 
particular median mutation frequency for a type of 
cancer, the scatter of values (in individual cancers) 
for that type of cancer, above and below that median 
value, sometimes also varied by as much as 1000-fold. 
Some mutation frequencies in GI cancers, given as 
numerical values of median numbers of mutations per 
megabase in a review of the literature by Tuna et al[121], 
and recent values for esophageal cancers by Weaver 
et al[122], are shown in Table 6. The values were also 
converted to mutation frequency per whole diploid 
genome.

The mutation frequency in the whole genome [not 
just the exome (protein coding regions)] between 
generations for humans (parent to child) is about 
30-70 new mutations per generation[123-125]. For protein 
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coding regions of the genome in individuals without 
cancer, Keightley[126] estimated there would be 0.35 
mutations per parent to child generation. Whole 
genome sequencing was also performed in blood cells 
for a pair of monozygotic (identical twin) 100 years old 
centenarians[127]. Only 8 somatic differences were found 
between the twins, though somatic variation occurring 
in less than 20% of blood cells would be undetected. 
These findings, as well as the data summarized in 
Table 6, indicate that cancer cell lineages experience 
substantially higher mutation rates than non-cancer cell 
lineages.

EPIGENETICALLY REDUCED EXPRESSION 
OF DNA REPAIR GENES IN GI CANCERS 
OCCUR IN DIFFERENT REPAIR 
PATHWAYS
Figure 3[128] indicates some types of DNA damaging 
agents that may be encountered by cells in the GI tract, 
some of the DNA lesions they cause and the pathways 
used to repair these lesions. Many of the genes active 
in these pathways are included in Figure 3 and are 
indicated by their acronyms. The acronyms listed in 
red represent genes whose expression is frequently 
reduced due to epigenetic alterations in various types 
of GI cancers, as discussed above. Such reduced 
expression could be a substantial source of the genomic 
instability that is characteristic of these cancers.

THE CENTRAL ROLE OF DNA DAMAGE 
AND EPIGENETIC DEFECTS IN DNA 
REPAIR DURING PROGRESSION TO GI 
CANCER
The central role of DNA damage and epigenetic defects 
in DNA repair are illustrated in Figure 4[129]. When DNA 
damage results in epigenetic reduction in expression 
of one or more DNA repair genes, the resulting DNA 
repair deficiency can allow DNA damage to accumulate 
at a much increased rate. As indicated in Figure 3, 
at least 18 DNA repair genes that are frequently 
epigenetically deficient in one or more GI cancers 
have been identified. These epigenetic defects in DNA 
repair are often found to be present in field defects 
from which the cancers arose, so that such epigenetic 
reductions in DNA repair are likely early events in 
progression to cancer. A large increase in unrepaired 
DNA damage, due to an epigenetic reduction in DNA 
repair, can then lead to the large increase in mutation 
frequencies found in GI cancers (Table 6). 

An epigenetic reduction of DNA repair may be the 
key early event that accelerates progression to cancer. 

SELECTIVE TUMOR KILLING 
DNA-damaging agents have a long history of use in 
cancer chemotherapy. As pointed out by Cheung-Ong 
et al[130], and indicated in the text earlier in this article, 
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Table 5  Epigenetic ↑ or ↓ miRNAs, altered in cancers, targeting DNA repair genes

  Specific miRNA DNA 
repair gene 

targets

Cancers affected (frequency if measured) References indicating 
epigenetic control of 

miRNA

References 
indicating target 

gene(s) of miRNAs

References 
indicating cancer 
type(s) affected

  miR-103
  miR-107

RAD51, 
RAD51D

Osteosarcoma, lung, endometrial, stomach [100] [101] [101]

  miR-34c UNG Gastric (70%)
field defect gastric (27%)

colon (98%)
field defect colon (60%)

chronic lymphocytic leukemia (18%)
small-cell lung cancer (67%)

NSCLC (26%)

[102,104] [103] [102,105,106]

  miR-31 PARP1
MLH1

SMUG1
MMS19

Esophagus (47%)
colon

[72] [21] [71,107,108]

  miR-124 KU70 Colon [109] [110] [109]
  miR-155 RAD51

MLH1
MSH2
MSH6

Breast
Colon

[90,111] [23,112] [23,90]

  let-7a repression increases HMGA2; 
  HMGA2 alters chromatin architecture 
  of  and represses ERCC1)

ERCC1 (Colon)
Anaplastic astrocytoma

[90] [92,113] [113]

  Let-7b repression increases HMGA1; 
  HMGA1 targets P53

P53 Prostate
Colon

[90] [114,115] [114,115]

  miR-182 BRCA1
NBN

RAD17

Breast
Colon

[116] [117,118] [107,117,119]
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cancer cells are typically deficient in DNA damage-
sensing/repair capabilities. That makes them more 
susceptible to DNA damage than normal cells. As 
Cheung-Ong et al[130] describe, both the earliest as well 
as the most frequent current cancer chemotherapeutic 
agents are DNA damaging agents.

A recently developing strategy for more effective 
and selective treatment of cancer is to inhibit one of 
the tumor’s remaining DDR or DNA repair pathways. 
This can hyper-sensitize a tumor to radiation or chemo-
therapeutic agents, compared to the sensitivity of a 
tumor treated with a DNA damaging agent alone. This 

strategy is called synthetic lethality.
An early effort to implement synthetic lethality 

was the successful trial of Fong et al[131], in which a 
PARP inhibitor was given to germ-line mutated BRCA 
carriers. In this case, 12 of 19 (63%) of these patients 
in a Phase I trial had a clinical benefit from treatment 
with the PARP inhibitor olaparib alone, with no other 
chemotherapy. The patients in this Phase I trial had 
tumors that had been refractory to the 1 - ≥ 4 
therapies that had been tried previously. As noted by 
O’Sullivan et al[132], the BRCA proteins are active in the 
HRR pathway, and PARP is largely active in BER, though 
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genes in each of the pathways. Acronyms in red represent genes indicated in the text that have altered (usually reduced) expression due to an epigenetic alteration 
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it is also important in HRR. O’Sullivan et al[132] indicated 
that PARP inhibition appears to have synthetic lethality 
for both BRCA mutation-associated and “BRCA-like” 
solid tumors. As reviewed by O’Sullivan et al[132], PARP 
inhibitors are currently being evaluated in Phase I and 
Phase II trials of many different cancers, including GI 
cancers in pancreas, liver, colorectum, stomach and 
esophagus. They summarize some early quantitative 
results (in the range of 14% to 23% tumor regression 
or delayed progression) in pancreatic and colorectal 
cancers. McLornan et al[133] summarize positive results 
(tumor regression or delayed progression), often in the 
range of about 40% to 50%, with PARP inhibitors used 
in treatment of advanced solid tumors in other Phase 
I and II trials, including one on recurrent or metastatic 

gastric cancer.
Hosoya et al[134] listed a large number of synthetic 

lethality Phase I and Phase II trials that included 
not only PARP inhibitors but also inhibitors of DDR 
elements CHK1 and CHK2 and inhibitors of DNA repair 
elements DNA-PK and APE1. In addition they discuss 
interesting pre-clinical, potentially useful, synthetic 
lethal experiments with inhibitors of ATM/ATR and the 
MRN complex, DNA ligases, RAD51, RAD52 and histone 
deactylases. 

Clinical applications of synthetic lethality are just 
beginning, as Phase I and II trials, but appear to be a 
new and potentially effective avenue for cancer therapy. 
How synthetic lethality may relate to epigenetically 
repressed DNA repair genes is currently unclear. The 
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epigenetic repression of DNA repair genes appears to 
be important for progression for many types of cancer, 
for cancer susceptibility to DNA damaging agents, and 
for increased cancer susceptibility to synthetic lethality. 
When Phase III trials indicate which efforts at synthetic 
lethality are beneficial therapeutically, synthetically 
lethal down regulation of DNA repair pathways should 
be incorporated into standard medical treatments of 
cancers. 

Evaluation of which DNA repair pathway(s) are 
epigenetically deficient in particular types of GI cancer 
and/or particular patients may prove useful in guiding 
choice of radiation, chemotherapeutic and/or synthetic 
lethality agent. 
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