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Abstract
Diabetes mellitus is increasing at an alarming rate and 
has become a global challenge. Insulin resistance in 

target tissues and a relative deficiency of insulin secretion 
from pancreatic β-cells are the major features of type 2 
diabetes (T2D). Chronic low-grade inflammation in T2D 
has given an impetus to the field of immuno-metabolism 
linking inflammation to insulin resistance and β-cell 
dysfunction. Many factors advocate a causal link be
tween metabolic stress and inflammation. Numerous 
cellular factors trigger inflammatory signalling cascades, 
and as a result T2D is at the moment considered an 
inflammatory disorder triggered by disordered meta
bolism. Cellular mechanisms like activation of Toll-
like receptors, Endoplasmic Reticulum stress, and 
inflammasome activation are related to the nutrient 
excess linking pathogenesis and progression of T2D with 
inflammation. This paper aims to systematically review 
the metabolic profile and role of various inflammatory 
pathways in T2D by capturing relevant evidence from 
various sources. The perspectives include suggestions 
for the development of therapies involving the shift 
from metabolic stress to homeostasis that would favour 
insulin sensitivity and survival of pancreatic β-cells in 
T2D.
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Core tip: Immuno-metabolism, the confluence of meta
bolism and immune system has emerged as a chief 
breakthrough especially in the field of diabetes mellitus; 
a metabolic disorder of great magnitude. Activation 
of immune system by metabolic stress has opened 
new insights in the pathogenesis and progression of 
type 2 diabetes (T2D). The link between metabolic 
overload and activation of the immune system form 
the core tip of this review. Metabolic stress can cause 
pathologic activation of the immune system, thus 
metabolic disorders like T2D manifest and progress as 
an inflammatory disorder with severe consequences 
thereof.
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INTRODUCTION
Diabetes mellitus, a life style disease affecting 8.3% 
of the adult population of the world and increasing at 
an alarming rate, is one of the most common non-
communicable diseases of current era[1]. The burden of 
this disease is immense owing to transition in lifestyle 
and dietary habits, ageing of the population and 
urbanization in the setting of a genetically predisposed 
environment[2]. The fact that the number of subjects 
with diabetes mellitus has doubled over the past three 
decades has made this disease a global challenge[3]. 
The number of diabetes mellitus patients is projected 
to increase from 382 million in 2013 to 592 million by 
2035, denoting a net increase of 55%[1]. The predo
minant form is type 2 diabetes (T2D) which accounts 
for nearly 90% of all diabetes cases. 

Diabetes mellitus-not so sweet
T2D is a metabolic disorder characterized by insu
lin resistance and pancreatic β-cell dysfunction as a 
consequence of unsettled hyperglycemia[4,5]. In response 
to nutrient spill over in the setting of insulin resistance 
and eventual β-cell dysfunction, the general fuel 
homoeostasis of body is altered[2]. Insulin resistance 
in target tissues and a relative deficiency of insulin 
secretion from pancreatic β-cells are the major features 
of T2D. β-cell hyperplasia and hyperinsulinaemia in 
response to insulin resistance occur in the preclinical 
period of disease. Relative insulin deficiency as a 
consequence of failure of β-cells to compensate for 
insulin resistance, progresses into overt T2D[6].

Metabolic alterations associated with T2D are well 
characterised by epidemiological and research based 
studies. The pathogenesis and progression of T2D is 
ascribed to four mechanisms; increased advanced 
glycation end product (AGE) formation, increased pol
yol pathway flux, activation of protein kinase C (PKC) 
isoforms, and increased hexosamine pathway flux[7]. 
Till recently no common linking element was apparent 
for these mechanisms: however, recently production 
of superoxide emerged as a unifying mechanism for 
these four pathways. Downstream to oxidative stress, 
activation of inflammatory pathways has emerged as 
an imperative link between T2D and inflammation. 
Since, abundant data have elucidated the role of oxi­
dative stress in T2D pathogenesis. In this review, we 
will evaluate the inflammatory component of T2D and 
underscore the link between metabolic alterations in 
T2D and inflammation.

T2D AS AN INFLAMMATORY CONDITION
Studies investigating the relation between inflammation 
and T2D have coalesced sufficient data implicating the 
role of inflammation towards the development of insulin 
resistance and pathogenesis of T2D[8,9]. Metabolism 
and immune system were conventionally regarded as 
two distinctive mechanisms governing nutrient disposal 
and body defense, respectively. Typically, little was 
known about the coordination and interplay between 
these two systems. However, present research has 
led to combining these distinct entities as studies per
ceive pathological activation of the immune system 
as a regulatory mechanism associated with multiple 
disorders underlying the metabolic syndrome[10]. Po­
tency of steroid hormones as immune suppressors 
and hyperglycemic inductors, metabolic alterations 
associated with pyrexia, wasting syndrome initiated 
by chronic infections and of late, markers of acute-
phase response have been associated with insulin re
sistance, insulin secretion defects, T2D and vascular 
complications of T2D[8,11-15].

T2D encompasses colossal cellular factors chara
cteristic of triggering inflammatory signalling cascades. 
A detailed analysis of these molecules cannot be 
underscored in this review, however their particular 
roles in T2D has been outlined in Table 1. Consequently, 
T2D at the moment is considered an inflammatory 
disorder triggered by disordered metabolism[16]. The 
probable history of diabetes involves a more or less 
latent prodromal period followed by progressive dete
rioration of glucose tolerance culminating into explicit 
disease. Progression of islet β-cell failure results in 
hypertrophy of pancreatic islets and proliferation of 
β-cells. This phase is associated with an inflammatory 
response precipitating into reduction of cells by apop
tosis and fibrosis of islets. In fact, an analogy of sequ­
ence of events involving an incipient inflammatory 
phase is associated with other T2D complications 
also[17]. Hyperglycemia is regarded as the major up
stream mechanism, and micro-inflammation is regard­
ed as the subsequent downstream driving force of 
diabetes related complications[17]. Epidemiological 
data advocate that markers of inflammation are 
predictive of T2D[18]. The role of inflammation in insulin 
resistance is traced by the integration of metabolism 
and innate immunity via nutrient-sensing pathways 
mutual to pathogen-sensing pathways. Components 
of nutrition (free fatty acids, glucose, and amino acids) 
signal through collective receptors and pathways in a 
similar way as pathogens and/or cytokines. Cells of 
the immune system (macrophages) and metabolism 
(adipocytes) also share many functions like secretion of 
cytokines, and trans-differentiation into macrophages. 
Nutrients can activate macrophages and adipocytes 
through common receptors, such as toll-like receptors 
(TLRs) that sense broad classes of molecular structures 
common to pathogen groups, and are central to innate 
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immunity and inflammation. 

ADIPOSE TISSUE AS A SITE OF 
INFLAMMATION
Clinical and experimental studies show that adipose 
tissue acts as a site of inflammation. The first insig
ht came from the study on adipose tissue of obese 
mice exhibiting elevated production of TNF-α[11]. Con­
sequently, increase in adiposity is associated with 
upregulation of genes encoding pro-inflammatory mole­
cules and associated with accumulation of immune 
cells[19-21]. Adipocytes hoard excessive nutrient load and 
become hypertrophic gradually. Events initiating a pro-
inflammatory response involve synergistic contributions 
of various mechanisms like an increase in nuclear 
factor κB (NF-κB) and c-Jun NH2-terminal kinase (JNK) 
activity by hypertrophied adipocytes, endoplasmic 
reticulum (ER) stress causing altered unfolded protein 
response (UPR), hypoxic stress in adipose tissue, 
activation of TLR by excess free fatty acids (FFAs), or 
increased chylomicron-mediated transport from the 
gut lumen into the circulation in a lipid-rich diet[16,22,23]. 

Stressed adipocytes produce various cytokines and 
chemokines promoting immune-cell activation and 
accumulation in adipose tissue[24]. A pro-inflammatory 
loop is formed by several macrophages by clustering 
around adipocytes, particularly with dead adipocytes 
forming crown-like structures[19,21,25]. Sustained accu
mulation of lipids in adipose tissues results in swi
tching of macrophages from an anti-inflammatory 
“M2” (alternatively activated) to a pro-inflammatory 
“M1” (classically activated) phenotype[19,21,26,27]. The 
skew in balance results in an increased secretion of 
inflammatory molecules that subsequently stimulate 
the hypertrophied adipocytes resulting into a pro-
inflammatory response[28]. The inflammatory response 
in macrophages is induced by adipocyte-derived FFAs 
via TLR or NOD-like receptor family, the pyrin domain 
containing 3 (NLRP3) dependent pathways[29,30].  
Local hypoxia as a result of vasculature insufficien­
cy in hypertrophied adipocytes has been proposed 
to stimulate expression of inflammatory genes in 
adipocytes as well as immune cells[31]. However, the 
hypothesis lacks confirmation in the situation of human 
obesity[32]. Instead, mechanisms like ER stress and 
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  Category Molecule Role

  Pro-inflammatory 
  cytokines and signaling 
  molecules

TNF-α Increased levels related to IR and T2D
Reduces insulin sensitivity by influencing the phosphorylation state of the insulin receptor

IL-6 Major pro-inflammatory cytokine  that induces inflammation and IR leading to T2D
CRP Elevated serum CRP associated with the incidence of T2D
IL-1 Associated with obesity and IR 

Affects insulin signaling directly through the induction of SOCS-3
IL-8 Leads to IR via the  inhibition of insulin-induced Akt phosphorylation in adipocytes

IL-1β Mediates auto-inflammatory process resulting in β-cell death
  Transcription factors NF-κB Increase the expression of genes encoding  cytokines, chemokines, transcription factors and 

various receptors involved in IR and pathogenesis of T2D 
JNK Promotes IR through phosphorylation of serine residues in IRS-1
IKKβ Leads to IR through transcriptional activation of NF-κB

  Adipokines Leptin  High leptin levels, reflecting leptin resistance predict increased risk of T2D
Adiponectin Low levels of this protective adipokine correlate with T2D. Adiponectin is downregulated by TNF-α

Resistin Promotes IR and decreases insulin-stimulated glucose transporters in adipose tissue
Adipsin Role in maintaining β cell function

Lower levels of adipsin found in T2D patient
Visfatin Visfatin binds to the insulin receptor at a site distinct from that of insulin and causes 

hypoglycaemia by reducing glucose release from liver cells and stimulating glucose utilization 
in adipocytes and myocytes 

  Chemokines MCP-1 MCP-1 expression in adipose tissue contributes to the macrophage infiltration into this tissue, 
IR and T2D

IP-10/CXCL10 Downstream effector of pro-inflammatory cytokines involved in T2D-related complications
CCR2 Imitates tissue inflammation and IR

  Toll like receptor TLR2 and TLR4 TLR2 and TLR4 play a critical role in the pathogenesis of IR and T2D
  Adhesion molecules E-slectin/P-slectin Lead to leukocyte recruitment in local tissue and contributes to inflammation, IR and T2D

ICAM-1/VCAM-1 Alters endothelial and sub-endothelial structure leading to reduced vascular permeability, 
reduced insulin delivery to peripheral insulin sensitive tissues and ultimately T2D

  Nuclear receptors PPARα, PPARγ, and PPARβ/δ Mutations  in PPAR genes associated with IR and T2D
VDR Regulates expression of insulin receptor preferentially by binding as a heterodimer with the 

RXR to VDREs in the promoter regions of insulin receptor gene

Table 1  Role of various inflammatory molecules in type 2 diabetes

IR: Insulin resistance; CRP: C-reactive protein; T2D: Type 2 diabetes; SOCS-3: Suppressor of cytokine-3 signalling; NF-κB: Nuclear factor κB; JNK: c-Jun 
NH2-terminal kinase; IRS-1: Insulin receptor substrate; IKKβ: Inhibitor of nuclear factor κB kinase subunit β; MCP: Monocyte chemoattractant protein-1; 
IP-10: Interferon gamma-induced protein 10; CXCL10: Chemokine (C-X-C motif) ligand 10; CCR2: Chemokine (C-C) motif receptor 2; ICAM-1: Intracellular 
adhesion molecule 1; VCAM-1: Vascular cell adhesion molecule 1; PPAR: Peroxisome proliferator activated receptor; VDR: Vitamin D receptor; RXR: 
Retinoid X receptor; VDREs: Vitamin D response elements.
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insulin action, thereby promoting hyperglycemia[48].

ROLE OF INFLAMMATION IN INSULIN 
RESISTANCE
Insulin is a key endocrine hormone produced by β-cells 
of pancreatic islets. Insulin is regarded as “hormone of 
abundance” owing to the array of functions it performs, 
the effects of which extend from metabolic to mitogenic 
activity (Figure 2). It is likely that disruption of insulin-
mediated pathways will have pleiotropic effects that are 
not confined to carbohydrate metabolism only. Various 
mechanism working separately or in synergy have 
been linked to the development of insulin resistance 
among which chronic inflammation represents as a trig­
gering point[8]. 

Inflammation is an important component linking 
insulin resistance with nutrient overload and increased 
visceral adipocyte mass[42]. During an insulin-sensitive 
state, the signalling cascade of insulin upon binding 
to its receptor results in phosphorylation of tyrosine 
residues of the insulin receptor substrate 1 (IRS-1) 
ensuing in downstream insulin signalling[49]. However, in 
an insulin-resistance state, pro-inflammatory molecules 
activate various other serine kinases like JNK, inhibitor 
of NFκB kinase subunit β (IKK-β), extracellular-signal 
regulated kinase (ERK), ribosomal protein S6 kinase 
(S6K), mammalian target of rapamycin (mTOR), PKC 
and glycogen synthase kinase 3β[50]. The activation of 
these kinases inhibits insulin action by phosphorylating 
serine residues instead of tyrosine residues in the 
insulin signalling pathway[49].

The development of insulin resistance is linked to 
two prime transcription factor-sinalling pathways: JNK 
and IKKβ/NF-κB[51]. Activation of these two pathways 
involves a series of proinflammatory stimuli, many of 
which comprise of both activators and upregulators of 

autophagocytosis have been proposed as origin of 
local inflammatory signalling pathways in adipose 
tissue[22,33].  Recently, the role of the incretin hormone 
glucose-dependent insulinotropic peptide has also been 
implicated[34,35]. In addition to adipose tissue, a pro-
inflammatory state in liver and skeletal muscle result 
in disruption of systemic insulin sensitivity and glucose 
homeostasis that are characteristic of T2D[36-38].

Metabolic inflammation is regulated by critical 
orchestration of innate and adaptive immune cell 
interactions[39,40]. Studies investigating immuno-
metabolism have recognised that the inflammatory 
status of immune cells is dictated by their metabolic 
programming, mitigating the progression of T2D. 
T2D is preceded by an extensive period of disease 
development, and inflammation has been shown to be 
a precipitating factor underpinning insulin resistance, 
preceding T2D[41,42]. The progression of T2D involves an 
intricate interplay between metabolism and immunity. 
The progression of T2D has been causally linked to 
various types of immune cells but the primary sources 
of inflammatory effectors contributing to insulin 
resistance are macrophages[43-45].  Among various cell 
types, pre-adipocytes, adipocytes, T cells, dendritic 
cells and macrophages are major cell types involved in 
obesity-induced inflammation and insulin resistance[46]. 
Their prime functions are shown in Figure 1. The 
key inducers of cytokine release in metabolic organs 
leading to impaired insulin action are tissue-resident 
macrophages[47].

Nutrient overload corresponds to increased infil
tration of macrophages in metabolic tissues promo
ting a pro-inflammatory environment characterised 
by augmented TNF-α, IL-1β and inducible nitric oxide 
synthase (iNOS) levels. The accrual of these pro-
inflammatory macrophages in metabolic organs like 
liver, adipose tissue and muscle directly supresses 
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Pre-Adipocytes Adipocyte precursor
Secrete pro-inflammatory mediators (IL-6, MCP-1)

Adipocytes Predominant cells of adipose tissue
Secrete adipokines (IL-6, Leptin, Adiponectin)

T cells
Influence macrophage switching
Increase in cytotoxic and TH1 cells
Decrease in Treg cells

Dendritic cells
Secrete cytokines in response to extracellular signals 
Initiates T cell response 

Macrophages
Domination of M1 phenotype
Formation of crown-like structures
Release of IL-6, TNF-α and IL-1β 

Figure 1  Functions of various immune cell types in pathogenesis of type 2 diabetes. IL: Interleukin; MCP-1: Monocyte chemoattractant protein-1; TNF-α: 
Tumor necrosis factor α.
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NF-κB. In addition, these pathways are also activated 
by pattern recognition receptors like TLRs and receptors 
for advanced glycation end products (RAGE). Elevated 
levels of FFAs result in an increase in diacylglycerol 
(DAG) that activates PKC isoforms leading to con­
comitant activation of JNK and NF-κB pathways[52]. 
Further stimuli involve production of reactive oxygen 
species (ROS), ER stress and changes in adiposity[53-55].

The mechanisms in development of inflammation-
induced insulin resistance are different for JNK and 
IKKβ. Unlike JNK that phosphorylates the serine 
residues of IRS-1, IKKB induces insulin resistance 
by transcriptional activation of NF-κB[56-59]. The phy
siological substrates of IKKβ are IκB protein inhibitors 
of NF-κB. IKKβ phosphorylation promotes proteosomal 
degradation of IκBα liberating NF-κB for nuclear 
translocation where it stimulates the expression of 
several target genes (Figure 3)[9]. The products of these 
target genes of NF-κB induce insulin resistance. The 
production of inflammatory molecules further activates 
JNK and NF-κB pathways promoting a vicious loop of 
insulin resistance by feed-forward mechanism.

PANCREATIC ISLET INFLAMMATION IN 
T2D
Increasing evidence suggests the presence of an 
inflammatory milieu in pancreatic islets in T2D, such 
as increased cytokine levels, chemokine levels and 
immune cell infiltration. Evidence of islet inflammation 
was initially observed in hyperglycemia induced 
β-cell apoptosis[60]. Recent studies on human islets 

and monocytes have shown that the combination 
of hyperglycemia and elevated FFAs induces a more 
efficient pro-inflammatory phenotype[61,62]. Various 
T2D experimental animal models like db/db mice 
and Goto-Kakisaki rats showed increased infiltration 
by immune cells in the pancreatic islets[63]. Studies 
on experimental animal models elucidated islet infla­
mmation and macrophage infiltration as an event 
occurring as early as eight weeks before the onset 
of frank diabetes[63]. Recruitment of macrophages is 
a consequence of phagocytic clearance owing to the 
death of islet β-cells[64]. Alternately, in a diabetic milieu 
endocrine cell-derived inflammatory molecules like 
IL-6 and IL-8 produced in islets are also attributed to 
increased macrophage infiltration[63]. Production of pro-
inflammatory cytokines and secretion of chemokines 
by β-cells results in a vicious cycle speeding up islet 
inflammation. In humans, IL-1β secreted by infiltrating 
immune cells is related to the pathogenic process of 
T2D, as blockade of IL-1 has been associated with 
reduced hyperglycemia, improved β-cell function 
and reduced expression of inflammatory markers[65]. 
However, recent studies involving human islets have 
shown that induction of IL-1β plays a role in preci
pitating the clinical features of diabetes and is unlikely 
involved in initial pathogenesis[66-68]. The first study 
demonstrating the hyperglycemia-induced IL-1β se
cretion documented a pro-inflammatory response 
induced by a non-autoimmune mechanism in β-cells[12]. 
Ex vivo experiments on isolated human islets exposed 
to high glucose levels showed increased IL-1β 
production preceding activation of NF-κB, upregula
tion of Fas, fragmentation of DNA, and reduction 
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Figure 2  Various hormone functions of insulin. 
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of insulin secretion[69]. Upregulation of IL-1β plays 
a predominant role as a major cytokine regulating 
other chemokines and cytokines in islets of T2D pa­
tients[12,66,70,71]. This master cytokine elicits a broader 
response by recruitment of various immune cells and 
also by induction of IL-1β in β-cells, provoking a vicious 
inflammatory cycle[66]. The critical role of IL-1β in islet 
inflammation was recently confirmed by analysing 
global gene expression in pancreatic islets of humans 
that showed an association of a group of co-expressed 
modules enriched for IL-1 related genes with T2D and 
insulin resistance[72]. SFRP4 gene encoding the secreted 
frizzled-related protein 4 was one of the interesting 
genes that were overexpressed, likely mediating the 
effect of IL-1β on islets[72]. In islets of both T2D subjects 
as well as in animal models, an eminent number of 
immune cells along with cytokines and chemokines 
has been observed[63,66,73]. In fact, T2D animal models 
invariably exhibit islet immune cell infiltration[63,71].

ISLET INFLAMMATION AND b-CELL 
DEATH
Islet tissue sections of T2D subjects show well-defined 
fibrosis which is a hallmark of the late stage of a chronic 
inflammatory process. In clinically overt T2D subjects 

a decreased β-cell mass has been reported indicating a 
probable role in its pathogenesis[4,74]. Decreased β-cell 
mass in T2D has been attributed to pancreatic β-cell 
apoptosis and to β-cell dedifferentiation[75]. In slowly 
progressing T2D, the probability of detecting β-cell 
damage in pancreatic sections is low, thus very few 
studies on this aspect have been reported[4,76]. Several 
mechanisms like amyloid deposition in islets, presence 
of long-chain FFAs[77], and chronic hyperglycemia[60] 
has been implicated in β-cell apoptosis. Sustained 
gluco-lipotoxic conditions amplifies the β-cell stress 
responses by potentiating effects of elevated levels 
of FFAs, glucose causing ER stress and mTORC1 ac­
tivation[78,79,54]. The underlying mechanism for hyper
glycemia-induced β-cell apoptosis is attributed to the 
glucose-induced IL-1β production that upregulates 
the Fas receptor[80,81,12]. FFAs act as important effector 
molecules causing β-cell dysfunction by lipoapoptosis 
(a metabolic cause of programmed cell death). The 
most abundant saturated FFA in blood is palmitate that 
has direct lipotoxic effects on β-cells by inducing ER 
stress and ROS[82-85]. Ceramide, an effector molecule 
responsible for inducing lipoapoptosis of β-cells, is a 
metabolic product of FFAs that activates JNK[86-88]. 
Likewise, incomplete β-cell oxidation of fatty acids 
resulting in metabolites like DAG and triglycerides (TGs) 
also elicits final effector molecules contributing to FFA-
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Figure 3  Target genes activated by NF-κB. TNF-α: Tumor necrosis factor-alpha; IFN-g: Interferon-gamma; IL: Interleukin; TGF-β: Tumor growth factor-beta; 
MCP-1: Monocyte chemoattractant protein-1; MIP: Major intrinsic protein;  TNFR: Tumor necrosis factor receptor; INFR:  Interferon receptor; IL-R: Interleukin receptor; 
CD: Cluster of differentiation; ICAM: Intracellular cell adhesion molecule; VCAM: Vascular cell adhesion molecule; CCR: Chemokine CC receptor; TLR: Toll-like 
receptor; Lox: Lysyl oxidase; RAGE: Receptor advanced glycation end product; PAI: Plasminogen inhibitor activator; SAA: Serum amyloid; CRP: C-reactive protein; 
COX: Cyclo-oxygenase; iNOS: Inducible nitric oxide synthase; VEGF: Vascular endothelial growth factor; IGFBPs: Insulin-like growth factor binding protein; MnSOD: 
Manganese superoxide dismutase; RelA: Reticuloendotheliosis viral oncogene homolog A; NF-κB: Nuclear factor-kappa B; IKK: Inhibitor Kappa B kinase; IκBα: 
Inhibitor of NF-κB; TNFAIP3: TNF-α induced protein 3.

Cytokines and
chemokines

(TNF-a, IFN-g, IL-1b, 
IL-6, IL-8, IL-10, IL-12, 
IL-18, TGF-b, MCP-1, 

MIP-1a, MIP-1, MIP-1b, 
MIP-2, MIP-3a)

Other 

PAI-1, SAA, CRP, COX2, iNOS,
VEGF, IGFBPs, MnSOD

Receptors and surface
proteins

p65 (RelA), NF-kB p50
IKKa, IKKb, IkBa, TNFAIP3

Transcription factors 

TNFR p55, TNFR p75, IFNR
subunits, IL-1R, IL-6R,

DC40, E-selectin, P-selectin, 
ICAM-1, VCAM-1,

CCR2, TLR2, TLR-4, Lox-1,
RAGE

NF-kB

Hameed I et al . Inflammation in T2D



induced lipotoxicity as well as insulin resistance[89-91]. 
In addition to this, FFA-induced activation of JNK by 
Src has also been reported in a recent study[92]. These 
studies show that islet inflammation contributes to β-cell 
dysfunction. 

TRIGGERING OF THE INNATE IMMUNE 
SYSTEM IN T2D
Nutrient excess in metabolic tissues resulting in meta­
bolic inflammation, i.e., a low-level pro-inflammatory 
milieu, has emerged as an important factor underlying 
the development of T2D[11-15,93,94]. Activation of innate 
immunity in T2D is linked to the activation of TLRs. 
These receptors have been implicated in diabetes-
induced inflammation and vascular complications[95]. 
TLRs comprise the pattern-recognition receptors 
characteristic of the innate immune system. Various 
pathogen-associated molecular patterns (PAMPs) 
encompassing carbohydrates, proteins, nucleic 
acids and lipids, are recognised by TLRs followed by 
initiation of an immune response. TLR2, a receptor 
for pathogen lipoproteins and TLR4, a receptor of 
lipopolysaccharides, are activated by FFAs[96,29]. Binding 
of FFAs to TLRs has been postulated to directly induce 
a pro-inflammatory response[97,98]. Also, various indirect 
ways of TLR activation by FFAs has been postulated 
recently[99]. In vitro studies have demonstrated that, 
unlike the short chain FFAs, the long chain palmitate 
and oleate that comprise 80% of circulating FFAs are 
pro-inflammatory in various cell types[29,96,98,100,101]. 
Contemporary studies report the activation of TLR 
signalling by FFA-induced formation of lipid rafts that 
favour TLR dimerization in cell membranes[92,102].  
Recently, fatty acid transporter CD36 binding to TLR2 
and liver-derived glycoprotein fetuin-A binding to TLR4 
were identified as endogenous ligands linking FFAs 
to TLRs, eliciting inflammation and prompting insulin 
resistance[103,104]. In addition, damage-associated 
molecular patterns (DAMPs) like high-mobility group 
box 1 (HMGB1) and AGEs also act as endogenous 
ligands which are recognised by TLRs, thereby acti
vating pro-inflammatory pathways[105]. TLR2 is res
ponsible for upregulation of inflammatory molecules 
like NF-κB, myeloid differentiating factor 88 (MyD88) 
and chemokine (C-C motif) ligand 2 (CCL2)[106]. TLR4 
knockout mice have been shown to be protected 
from insulin resistance as well as from fat-induced 
inflammation[106]. TLR4 silencing by siRNA technology 
has been shown to attenuate the hyperglycemia-
induced activation of IκB/NF-κB[107]. TLR5 is a receptor 
for bacterial flagellin that controls metabolic pathways 
through sensing gut microbiota. TLR5 knockout mice 
have been reported to exhibit increased adiposity 
along with hyperphagia, hypertension, hyperlipidemia 
and insulin resistance[108]. Activation of inflammatory 
pathways in a TLR-independent mechanism by meta
bolic stress involves generation of ROS that induce 
stress kinases and NLRP3 inflammasome (multiprotein 
complexes responsible for production of bioactive IL-

1β) formation[109].
Both TLR-dependent and TLR-independent me

chanisms function in concert. This finding is demon
strated by animal models of diabetes in which there 
is partly protection of pro-inflammatory cytokine 
production in case of deficiency of TLR2 or TLR4, 
whereas deficiency of a universal intracellular dock­
ing protein MyD88 required for TLR signalling, 
exerted total protection[61]. Apart from FFAs, systemic 
inflammatory responses are also elicited by elevated 
glucose levels[110]. Sustained hyperglycemia results 
in non-enzymatic glycation of lipids and proteins 
resulting in the formation of AGEs. AGEs stimulate 
the pattern recognition receptor RAGE. Numerous 
cell types, like macrophages, T cells, smooth muscle 
cells, neuronal cells, podocytes and cardiomyocytes, 
express RAGE[111]. RAGE activates the pleiotropic pro-
inflammatory transcription factor NF-κB along with 
stress kinases ERK1 and ERK2[112]. Excessive glucose 
metabolized by oxidative phosphorylation to ATP results 
in ROS generation that tends to activate the NLRP3 
inflammasome concomitantly with FFAs[67].  This results 
in release of active IL-1β along with IL-1-dependent 
cytokine and chemokine production[61].

FROM INNATE TO ADAPTIVE IMMUNITY 
IN T2DM
The role of specific or adaptive immunity comes from 
the recent clinical overlap between type 1 diabetes 
(T1D) and T2D such as younger age of onset in T2D 
and increasing body mass index (BMI) coinciding with 
increased incidence in T1D. Moreover, progressive 
decrease in β-cell mass observed in T2D and evi
dence of insulin resistance in T1D has blurred the 
etiology[113]. The argument supporting the involvement 
of autoimmunity in islets of T2D patients is evident 
from the presence of β-cell specific antibodies in nearly 
10% of T2D patients and presence T cells reactive to 
β cell antigens in some patients[114]. The number of 
autoantigen-responsive T lymphocytes in islets from 
T2D patients has been reported to correlate with 
disease progression[114], however the exact role of 
islet autoimmunity in T2D requires further studies. A 
monogenic form of diabetes characterised by typical 
features of T1D like lean body mass, young age of 
onset, autoantibodies to β-cells, rapid disappearance 
of C-peptide and insulin requirement concomitantly 
with T2D-associated insulin resistance provides genetic 
support for the overlap between T1D and T2D[115]. 
The genetic alteration is attributed to an autosomal-
dominant mutation in the SIRT1 gene, and the patho
genesis involves β-cell impairment and death, paralleling 
a state of activation of immune system[115]. As a con
sequence of insulin resistance, stress induced β-cell 
death results in the release of autoantigens along with 
alarmins (endogenous molecules released by necrotic 
cells causing activation of immune system). Alarmins 
have potentiating effects of promoting pathologic self-
antigen presentation, resulting in enhanced adaptive 
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immune response[116]. In light of these observations, 
sirtuins are recognised as novel regulators of immuno-
metabolism in humans. Apart from SIRT1, SIRT2 has 
been recently linked to cytoskeleton remodeling and 
activation of NLRP3 in intracellular pathways[117]. Apart 
from the activation of innate immunity, the contribution 
of adaptive immune cells in inducing inflammation is 
now established in T2D at the cellular level. 

Experimental animal models of insulin resistance 
have demonstrated a Th2/Th1 shift in favour of Th1, 
shifting the Treg/Th17 shift towards Th17 and shifting the 
CD8/CD4 ratio in favour of CD8 and finally reduction 
of T-cell receptor (TCR) diversity[118-121]. These studies 
have recently been extrapolated to human subjects[122] 
and confirm the observation that an increase pro-
inflammatory stimuli (IFN-g) causing M1 phenotype 
switching of adipose tissue macrophages result in the 
activation of a Th1 type response[121].  IFN-g and IL-17 
produced by these T cell populations interact directly 
with adipocytes in addition to contributing to a pro-
inflammatory loop in cells of innate immunity. IFN-g 
inhibits the JAK-STAT pathway, and IL-17 induces 
the secretion of IL-6 from adipocytes[123]. β-cells 
isolated from T2D patients exhibit increased IL-8 and 
decreased IL-10 secretion[124]. Recent studies regard 
the contribution of B-cell humoral immunity in adipose 
tissue inflammation. A study on experimental mice 
models involving B-cell knockout mice and anti-CD20 
therapy showed a significantly improved metabolic 
phenotype and adipose tissue inflammation[120].

LINK BETWEEN ER STRESS AND 
INFLAMMATION IN T2D
Activation of ER stress and the UPR forms a convincing 
hypothesis for the induction of inflammatory pathways 

in T2D. ER stress in T2D occurs by virtue of nutrient 
overload, hypoxia and accumulation of unfolded pro­
teins in metabolic organs[22]. Under normal conditions, 
the flux of proteins through ER is high, and in the 
setting of insulin resistance or glucotoxicity, a prolonged 
state of insulin need generates ER stress[125].  

Three ER localized sensors control the activation of 
ER stress and UPR (Figure 4): (1) the double-stranded 
RNA-activated protein kinase (PKR)-like ER kinase 
(PERK); (2) inositol-requiring kinase 1 (IRE1); and (3) 
activating transcription factor 6 (ATF6). ER stress by 
protein overload or accumulation of unfolded proteins 
causes dissociation of GRP78, and the subsequent 
binding to unfolded proteins in ER prevents their trans
port to cis Golgi.

Prominently, UPR activation stimulates inflammatory 
stress kinases like JNK and IKK and their critical 
downstream transcriptional targets; activator protein 1 
(AP-1) and NF-κB, respectively[126,127].

These transcription factors control the induction 
of inflammatory cytokines and chemoattractants that 
are known to have a direct link with the development 
of insulin resistance[128,129]. ER stress can also impair 
insulin signalling by activation of stress kinases (JNK, 
IKK) that can inhibit insulin receptor substrates by 
direct phosphorylation. Recently, death protein 5 
(DP5) and p53-upregulated modulator of apoptosis 
(PUMA) have been reported as inducers of β-cell 
apoptosis by mediating ER stress[130]. ER stress can 
also cause induction of lipogenic genes that promote 
lipid accumulation and thereby contributes to the 
development of lipid-induced insulin resistance[131].

ER stress and UPR pathways 
Triggering of inflammatory signals by three pathways 
of UPR is initiated by activation of JNKs and NF-κB in B 
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Figure 4  Mechanism of endoplasmic reticulum stress. ER: Endoplasmic-reticulum; ATF6: Activating transcription factor 6; PERK: Double-stranded RNA-activated 
protein kinase (PKR)-like ER kinase; IRE1: Inositol-requiring kinase 1; IL: Interleukin; MCP: Monocyte chemoattractant protein; TNF-α: Tumor necrosis factor α; JNK: 
c-Jun NH2-terminal kinase; NF-κB: Nuclear factor κB.
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cells. This activation acts as the linkage point between 
metabolic and immune pathways since the activation 
of these very kinases is analogous to that elicited by an 
immune response[94,132]. JNKs play an important role in 
T2D, as increased activity has been shown to promote 
insulin resistance [56,133].

The first responses for opposing ER stress involve 
decreasing the translation of proteins. This involves 
phosphorylation of α subunit of eIF2 by PERK. In 
humans and mice, loss of PERK expression is linked 
to dysregulation of the UPR response which is funda­
mental to ER stress, resulting in increased cell death 
and T2D[134]. A permanent form of neonatal diabetes 
in humans is related to elevated ER stress markers 
as a result of a mutation in PERK, confirming the pivo­
tal role of PERK in regulating ER stress during fetal 
development[135-137].

A factor in the second pathway of UPR, IRE1, is a 
prime regulator of ER stress and is highly expressed 
in the pancreas. An in vitro knockdown study on 
IRE1 signalling showed a decreased synthesis of 
insulin[138,139]. Upon activation, IRE1 initiates activation 
of X-box binding protein 1 (XBP1) that leads to 
upregulation of ER expansion and biogenesis[140]. The 
critical role of XBP1 in achieving an optimal insulin 
secretion and glucose control was demonstrated in 
β-cell-specific XBP1-deficient mice that exhibited 
impaired pro-insulin processing and secretion, reduced 
β-cell proliferation and hyperactivation of IRE1[141].

The third pathway of UPR involves the activation 
of ATF6, the basic leucine zipper domain protein, that 
upregulates PERK1 and IRE1 pathways by suppressing 
the apoptotic UPR signalling cascade under chronic ER 
stress. The role of ATF6 activation in β-cell dysfunction 
has been concluded in studies that showed decreased 
expression of insulin gene by ER stress-induced ATF6 

activation and a decrease in ER chaperones along with 
induction of apoptosis in ATF6 knockdown insulinoma 
cells[142,143]. 

ACTIVATION OF INFLAMMASOME IN 
T2D
Inflammasomes are multiprotein complexes in the 
intracellular machinery responsible for production 
of bioactive IL-1β in response to multiple stimuli[144]. 
NLRP is a subfamily of Nod-like receptors containing a 
central nucleotide binding and oligomerization (NACHT) 
domain with flanking C-terminal leucine-rich repeats 
(LRRs) and N-terminal caspase recruitment (CARD) or 
pyrin (PYD) domains[145]. The NOD-like receptor family, 
the pyrin domain containing 3 (NLRP3) inflammasome 
is in a pathway that controls the production of IL-1β 
and IL-18[146-148]. Unlike TLR, a potential role of NLR 
in metabolic abnormalities has not been extensively 
investigated. NLRP forms a constituent of the inflam­
masomes responsible for maturation and release of 
IL-1β, and thus is a relevant candidate for metabolic 
disorders and T2D[149]. NLRP3-dependent activation of 
inflammaosomes in diabetes was proposed by studies 
implicating the release of IL-1β as a consequence 
of elevated levels of glucose, FFAs and human islet 
amylopeptide (hIAPP)[16,150,151]. However, the effective 
metabolites involved in activation of inflammasomes 
are not clearly elucidated yet (Figure 5).

The NLRP3 inflammasome is a general metabolic 
alarmin stimulated by different endogenous and exo­
genous stimuli[152]. NLRP3 inflammasome activation 
is augmented in T2D patients[153]. Dysregulation of 
lipid metabolism, paving the way to aberrant lipid 
accumulation, as well as formation of oxidized LDL and 
cholesterol, triggers NLRP3 activation[30,153,154] similar 
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Figure 5  Activation of inflammasomes in type 2 diabetes (metabolic stress activates multiprotein complex, inflammasome in β-cells that induce caspase-1 
to cleave pro-interleukin-1β (pro-IL-1β) into active IL-1β. β-cell-derived IL-1β promote the release of chemokines and recruitment of macrophages that are 
activated by human islet amyloid polypeptide, leading to deleterious concentrations of IL-1β. FFA: Free fatty acid; IL: Interleukin.
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to ER stress that acts as one of the important factors 
triggering NLRP3 activation[155,156]. In T2D subjects, 
increased oxidative stress also contributes to NLRP3 
inflammasome activation[157,158].

Studies on obesity-induced inflammation and insulin 
resistance are also indicative of the role of NLRP3. 
In experimental models of calorie-restricted mice, a 
positive correlation has been observed between IL-1β/ 
NLRP3 mRNA and body weight[30] whereas disruption 
of NLRP3 gene in obese mice has revealed changes in 
metabolic profiles. Insulin resistance as a consequence 
of inflammasome activation is directly related to FFAs 
and LPS[109]. Apart from Insulin resistance, activation 
of inflammasomes is related to β-cell dysfunction, 
as NLRP3-knockout mice exhibit improved glycemic 
profiles after consumption of a high-fat diet, likely 
due to attenuation of IL-1β[67]. In response to hyper
glycemia-induced increased production of ROS, 
NLRP3 activation occurs as a result of dissociation of 
thioredoxin interacting protein (TXNIP) from thioredoxin 
and its subsequent binding to  NLRP3[67]. Nevertheless, 
shortage of TXNIP has shown effects on glucose 
metabolism in addition to the NLRP3 activation[159]. A 
substantial role of inflammasome activation in β-cell 
dysfunction was recently reported by ablation of 
NLRP3 that conferred protection to β-cell function and 
structure from injury inflicted by metabolic stress[160]. 

Secretion of IL-1β requires two induction stimuli; 
the first stimulus induces pro-IL-1β expression and 
the second inflammasome activation. Inflammasome 
activation triggers caspase-1 resulting in cleavage of 
pro-IL-1β and release of mature IL-1β. In T2D, the first 
stimulus comes from minimally-modified LDL in islets 
which prime the macrophages for processing of IL-1β 
by activation of TLR4 signalling. Recently, the second 
stimulus was recognized to regard islet hIAPP, secreted 
by β-cells in response to high glucose levels[151]. hIAPP 
was shown to direct NLRP3 activation by inducing β-cell 
injury. In islets, interaction of macrophages and β-cells 
is essential for the activation of inflammasomes.  hIAPP, 
a soluble oligomer induces activation of NLRP3 and 
subsequent release of IL-1β from macrophages and 
dendritic cells which are primed with TLR4 agonists like 
LPS or modified LDL molecules[151]. The macrophages 
are attracted to islets by hIAPP-induced synthesis of 
chemokines (CCL2 and CXCL1). It has been reported 
that overexpression of hIAPP in islet grafts increases 
the recruitment of macrophages by 50%[161]. Recently 
the activation of inflammasomes in myeloid cells in 
T2D patients was elucidated. A study on untreated 
T2D subjects showed upregulation of IL-1β production 
and maturation in macrophages[153]. Treatment of 
macrophages with various alarmins like FFA, hIAPP, 
HMGB1and ATP resulted in release of inflammasome 
products. Studies have shown that T2D subjects exhibit 
elevated levels of circulating alarmin molecules thereby 
advocating a possible role of these molecules in NLRP3 
inflammasome activation in myeloid cells[162].

PERSPECTIVES
The concept of chronic low-level inflammation in T2D 
has given an impetus to the field of immune-meta
bolism. Elucidation of various cellular mechanisms 
linking inflammation to insulin resistance and β-cell 
dysfunction has revolutionized insights in the molecular 
pathogenesis of diabetes. Insights into intricate 
pathways provide a platform to tackle the distinct 
pathway without compromising immuno-surveillance. 
Nutritional and therapeutic interventions aimed at 
controlling/inhibiting the escalating pro-inflammatory 
response can help in attenuating the pathogenesis 
and progression of T2D. Well-designed studies should 
offer the development of novel targeted therapeutics to 
deal with the disease burden of T2D and its associated 
complications.
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