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ABSTRACT: Drug development has a high attrition rate, with poor
pharmacokinetic and safety properties a significant hurdle. Computational
approaches may help minimize these risks. We have developed a novel approach
(pkCSM) which uses graph-based signatures to develop predictive models of
central ADMET properties for drug development. pkCSM performs as well or
better than current methods. A freely accessible web server (http://structure.
bioc.cam.ac.uk/pkcsm), which retains no information submitted to it, provides
an integrated platform to rapidly evaluate pharmacokinetic and toxicity
properties.

■ INTRODUCTION

Developing new drugs has become an increasingly challenging,
costly, and risky endeavor with a low success rate. The vast
majority of drugs evaluated in clinical trials do not reach the
market due to either a lack of efficacy or unacceptable side
effects.1 Drug development is a fine balance of optimizing drug
like properties to maximize efficacy, safety, and pharmacoki-
netics. Many early stage drug discovery programs focus on
identifying molecules that bind to a target of interest. While
potency is a driving factor in these early stages, ultimately the
pharmacokinetic and toxicity properties dictate whether it will
ever advance its effectiveness and success therapeutically.
The interaction between pharmacokinetics, toxicity, and

potency is crucial for effective drugs. The pharmacokinetic
profile of a compound defines its absorption, distribution,
metabolism, and excretion (ADME) properties. While optimal
binding properties of a new drug to the therapeutic target are
crucial, ensuring that it can reach the target site in sufficient
concentrations to produce the physiological effect safely is
essential for the introduction into the clinic. Appreciation of the
importance of ADMET properties has led to their consid-
eration in early stage drug development, leading to a significant
reduction in the number of compounds that failed in clinical
trials due to poor ADMET properties.2−6

One strategy that has been widely employed is the
introduction of physicochemical filters, such as Lipinski’s
“Rule of 5”7 or the PAINs filters8 as guidelines for what may
constitute a successful drug. These try to identify broad
chemical properties that may increase a molecules chances to
reach the market, however, presenting the converse effect of
limiting potential unexplored chemical space, from which

successful drugs have been originated from.9 Even using the
extensive data available within pharmaceutical companies can
lead to conflicting rules,10,11 highlighting the difficulty
associated with applying these filters. Ultimately, irrespective
of filters, the early ADMET profiling of drug candidates is a
crucial component in determining the potential success of a
new compound and when integrated into the drug develop-
ment process can hopefully mitigate the risk of attrition.
Experimental evaluation of small-molecule ADMET proper-

ties is both time-consuming and expensive and does not always
scale between animal models and humans. The evolution of
computational approaches to optimize pharmacokinetic and
toxicity properties may enable the progression of discovery
leads effectively and swiftly to drug candidates. The prediction
of ADMET-associated properties of new chemicals, however, is
a challenging task with only tenuous links between many
physicochemical characteristics and pharmacokinetic and
toxicity properties. This has led to a need for novel approaches
to understand, explore, and predict ADMET properties of small
molecules as a way to improve compound quality and success
rate.12

Many in silico approaches for predicting pharmacokinetic
and toxicity properties of compounds from their chemical
structure have been developed,13 ranging from data-based
approaches such as quantitative structure−activity relationship
(QSAR),14,15 similarity searches,16,17 and 3-dimensional
QSAR,18 to structure-based methods such as ligand−protein
docking19 and pharmacophore modeling.20 Many of these are
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unfortunately not freely available, which limits their utility for
the scientific community.
Numerous databases of experimentally measured ADMET

properties have been compiled,21−30 some of which are freely
available. Using these databases a number of QSAR models
have been generated to predict some of these properties.22,31−36

The problem with these methods is that they tend to focus on
recognition of certain substructure elements and are prone to
be of limited use when exploring novel chemical entities
beyond the scope of the experimental data used to generate the
original models. Machine learning approaches, however, rely
upon learning patterns between chemical composition,
similarity, and pharmacokinetic and safety properties in order
to build predictive models capable of generalization, i.e.,
discovering implicit patterns consistent and valid for unseen
data.
Here we use the concept of graph-based structural signatures

to study and predict a range of ADMET properties for novel
chemical entities. We show that these signatures can be used
successfully to train predictive models for a variety of ADMET
properties. The approach, called pkCSM, also provides a
platform for the analysis and optimization of pharmacokinetic
and toxicity properties implemented in a user-friendly, freely
available web interface (http://structure.bioc.cam.ac.uk/
pkcsm), a valuable tool to help medicinal chemists find the
balance between potency, safety, and pharmacokinetic proper-
ties. We have conducted a series of comparative experiments
that indicate that pkCSM performs as well as or better than
several other widely used methods.

■ RESULTS

pkCSM: Graph-Based Signatures. Graph modeling is an
intuitive and well established mathematical representation of

chemical entities, from which different descriptors encompass-
ing both molecule structure and chemistry can be extracted. An
intuitive graph representation of a compound can be achieved
by representing atoms as nodes and their covalent bonds as
edges. This simple representation can be decorated with labels
denoting, for instance, physicochemical properties of atom and
bonds, from which structural patterns could be prospected.
Substructure matching, implemented for instance as a
toxicophore search,37 frequent subgraph mining,38 and graph
kernels,39 are examples of approaches for extracting patterns
from these graphs. Together with experimental data on
particular properties of interest (e.g., ADMET properties),
these descriptors can then be used as evidence to train highly
accurate predictive models via machine learning methods. Such
a predictive capability may be an essential computational tool
for property optimization and to guide screening initiatives.
An alternative way of extracting relevant patterns from

molecular graphs is using the concept of structural signatures.
In da Silveira et al.,40 we introduced the Cutoff Scanning
algorithm to extract distance patterns from protein structure
graphs and summarized them into a signature vector. These
signatures have been shown to be a general, powerful, and
scalable way to represent geometry and physicochemical
properties of protein structures and have been successfully
adapted and employed for different purposes, including protein
structural classification and function prediction,41 receptor-
based ligand prediction,42 and more recently, as a component
of structure-based mutation analysis approaches.43−47

Here, we propose pkCSM, a novel method for predicting and
optimizing small-molecule pharmacokinetic and toxicity prop-
erties which relies on distance-based graph signatures. We
adapted the Cutoff Scanning concept to represent small-
molecule structure and chemistry (expressed as atomic
pharmacophores−node labels) in order to represent and

Figure 1. pkCSM workflow. Given an input molecule, two main sources of information are used to train and test machine learning-based predictors:
compound general properties (including molecular properties, toxicophores and pharmacophore) and distance-based graph signatures.
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predict their pharmacokinetic and toxicity properties, building
30 predictors divided into five major classes: absorption (seven
predictors), distribution (four predictors), metabolism (seven
predictors), excretion (two predictors), and toxicity (10
predictors).
Figure 1 shows the pkCSM workflow. Given a set of input

molecules, two main sets of descriptors are calculated and
combined to be used in the subsequent machine learning step:
general molecule properties and a distance-based graph
signature.
The first major component of the pkCSM signature refers to

molecular properties, which include:

• A toxicophore fingerprint;

• Atomic pharmacophore frequency count;

• General molecular properties including lipophilicity (log
P), molecular weight, surface area, number of rotatable
bonds, among others.

The toxicophore fingerprint was calculated based on
substructure matching from SMARTS queries proposed in ref
37 originally as potential indicators of AMES mutagenicity
(available as Supporting Information). The toxicophore
substructure matching, molecular properties, and pharmaco-
phore calculations were obtained using the RDkit cheminfor-
matics toolkit. A complete list of calculated properties can be
found in the Supporting Information (Table S1). Six
nonexclusive pharmacophore classes are considered (i.e., an
atom can belong to more than one class): hydrophobic,
aromatic, hydrogen acceptor, hydrogen donor, positive
ionizable, and negative ionizable.

Table 1. Comparative Regression Performance between pkCSM and Other Available Methods

previous methods pkCSM

data set method ref std error R2 std error R2

water solubility admetSAR 22 0.823 0.810 0.692/0.497 0.943/0.967a

Caco2 permeability admetSAR 22 0.339 0.564 0.605/0.466 0.733/0.828a

intestinal absorption- human Hou et al. 50 10.28 0.890 12.80/9.51 0.846/0.902
skin permeability Alves et al. 51 0.490 0.720d 0.758/0.539 0.683/0.801
steady state volume of distribution Berellini et al. 52 1.287 0.613 1.104/0.803 0.637/0.706
fraction unbound- human (Fu) Del Amo et al. 53 NA 0.737 0.248/0.189 0.693/0.824
blood−brain barrier permeability Suenderhauf et al. 54 0.580 0.900a 0.379/0.287 0.807/0.862
CNS Permeability Suenderhauf et al. 54 NA NAc 0.825/0.665 0.690/0.794
total clearance Yap et al. 55 NA 0.636 0.300/0.245 0.600/0.755
maximum recommended tolerated dose (MRTD)-human Liu et al. 56 0.560 0.790a,b 0.885/0.641 0.633/0.741
oral rat accute toxicity (LD50) admetSAR 22 0.324 0.613 0.683/0.470 0.663/0.779a

oral rat chronic toxicity-lowest observed adverse effect (LOAEL) Mazzatorta et al. 57 0.727 0.500 0.744/0.591 0.683/0.776a

T. Pyriformis toxicity admetSAR 22 0.256 0.761 0.535/0.349 0.855/0.933a

flathead minnow toxicity (LC50) admetSAR 22 0.666 0.574 0.836/0.587 0.743/0.853a

aDenotes a statistically significant performance difference obtained via a Fisher r−to−z transformation, by calculating the z value, using a threshold
of p ≤ 0.05 for significance. Two values are shown per column for pkCSM, denoting the performance on the entire data set and the performance
after 10% outlier removal. NA: not available. bResults for 40-fold cross-validation. cOnly classification methods were available. dResults reported for
0.77 data set coverage.

Table 2. Comparative Classification Performance between pkCSM and Related Methods

previous method pkCSM

data set method ref Q AUC Q AUC

P-glycoprotein substrate admetSAR 22 0.735 0.768 0.780 0.814
P-glycoprotein inhibitor I admetSAR 22 0.786 0.853 0.844 0.906a

P-glycoprotein inhibitor II admetSAR 22 0.866 0.922 0.898 0.948a

CYP450 1A2 inhibitor admetSAR 22 0.815 0.815 0.802 0.876a

CYP450 C19 inhibitor admetSAR 22 0.805 0.805 0.808 0.879a

CYP450 2C9 inhibitor admetSAR 22 0.802 0.802 0.807 0.868a

CYP450 2D6 inhibitor admetSAR 22 0.855 0.855a 0.853 0.843
CYP450 3A4 inhibitor admetSAR 22 0.645 0.848 0.780 0.847
CYP450 2D6 substrate admetSAR 22 0.759 0.759 0.766 0.787
CYP450 3A4 substrate admetSAR 22 0.638 0.638 0.656 0.676
hERG I inhibitor admetSAR 22 0.870 0.820 0.853 0.881
hERG II inhibitor admetSAR 22 0.784 0.849 0.813 0.876
renal organic cation transporter admetSAR 22 0.795 0.807 0.797 0.810
AMES toxicity admetSAR 22 0.851 0.908 0.838 0.909
AMES toxicity ToxTree 49 0.758 NA 0.838 0.909
hepatotoxicity Fourches et al. 58 0.639a NA 0.658 0.687
skin sensitization Alves et al. 59 NA 0.820 0.810 0.850

aDenotes a statistically significant performance difference calculated by nonparametric Wilcoxon statistic,60 using a threshold of ≤0.05 for
significance.
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The second major component are distance-based patterns,
represented as a cumulative distribution function, encoded in a
small-molecule graph-based signature, which was adapted from
the Cutoff Scanning algorithm.41,42 This way, each dimension
of the signature denotes the number of atoms (categorized by
pharmacophore type) within a certain distance in the molecular
graph. The distance between any two nodes of the graph is
given by the cost of their shortest path, calculated by Johnson’s
algorithm.48 The cost of a shortest path is the sum of the
weights of the edges on this path. We consider all the edges to
have unitary weight. Thus, the cost of the shortest path is the
number of edges in it.
Predicting Small-Molecule ADMET Properties. To

build pkCSM, we performed a careful selection of data sets
and recently published methods available in the literature. The
validation methods chosen for each data set is consistent to the
original work for comparison purposes and are available in
Table S2 of Supporting Information.
The pkCSM platform for ADMET properties prediction can

be divided in two groups of highly predictive models: (a) 14
regression models that aim to predict a numeric quantification
of the pharmacokinetic or toxicity property and (b) 16
classification models, which categorize the outcome into two
classes. A description of the models in pkCSM and how to
interpret their predictions can be found in the Supporting
Information.
Table 1 shows the comparative prediction performance for

the regression models. Further information on the data sets
used, number of data points, reference, and their validation
procedure (i.e., cross-validation, external test set) can also be
found in Supporting Information (Table S2). The performance
for the classification models can be found in Table 2. pkCSM
outperformed well established tools. For example, pkCSM
AMES test achieved an accuracy of 83.8% compared to
ToxTree49 (which achieved an accuracy of 75.8%).
pkCSM regression models presented a range of Pearson

correlation coefficients ranging from 0.6 to 0.9, using both
cross-validation schemes and external validation data sets. In
comparison with available methods, for most data sets, it
presents a statistically significant improvement in predictive
power.
Compounds were ranked based on the absolute prediction

error, and the worst 10% were considered outliers for

regression analysis purposes. It is interesting to note the
increase in performance when 10% of the outliers are removed.
For instance, pkCSM is able to achieve a correlation of R2 =
0.779 in 90% of the data for rat toxicity and R2 = 0.828 for
Caco2 permeability, a significant improvement in comparison
with the correlations for the whole data sets (R2 = 0.663 and R2

= 0.733, respectively). In cases where previous methods exhibit
a better correlation coefficient than pkCSM, we observed that,
after removing the outliers, pkCSM presented a comparable
performance and/or a lower standard error, such as the case for
the blood−brain barrier permeability data set (BBB). No
distinguishable trends were identified in the analysis of
physicochemical properties of outlier compounds in compar-
ison with the remaining data set.
Figure 2 shows the plots between experimental and predicted

values for regression absorption predictors. Figures S1 and S2
of Supporting Information, depict results for distribution and
toxicity predictors, respectively. The pkCSM models were able
to achieve good correlations despite the variability in data set
sizes and distribution of experimental values.
An external validation data set available for volume of

distribution at steady state (VDss) presented a correlation of R2

= 0.637 (R2 = 0.706, after 10% outlier removal), performance
compatible with the cross-validation results obtained, depicted
in the left graph of Figure S1 of Supporting Information (R2 =
0.66).

■ DISCUSSION AND CONCLUSIONS
In summary, we have described here a novel approach to
predicting pharmacokinetic and toxicology outcomes using
graph-based signatures to represent small-molecule chemistry
and topology. Using these signatures we have developed and
implemented 14 quantitative regression models with actual
numeric outputs and 16 predictive classification models with
categorical outputs for predicting a wide arrange of ADMET
properties for novel diverse molecules. We show pkCSM
achieved a performance as good as or better than similar
methods currently available, presenting a significant improve in
performance for 11 data sets (water solubility, Caco2
permeability, rat, Tetrahymena pyriformis, and minnow toxicity,
P-glycoprotein inhibitors, and CYP450 1A2, C19, and 2C9
inhibitors). While chemical modifications and drug carriers can
improve a compounds ADMET properties,61−64 pkCSM

Figure 2. Regression analysis for absorption predictors considering cross-validation schemes. Pearson’s correlation coefficients and standard error are
also shown at the top-left corner. The left graph shows the correlation between experimental and predicted values for Caco2 permeability, while the
graph on the right for water solubility.
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provides a rapid and easy method to for early evaluation of
compounds. In the Supporting Information, we apply these
predictive models to understanding the pharmacokinetic and
toxicity properties of diverse, challenging chemical sets,
including macrocycles and antineoplastic drugs.
Another interesting aspect of pkCSM is its scalability,

translated into an ability to handle large data sets, an important
requirement for its application as a filter in screening initiatives.
Over 10000 molecules compose the rat toxicity data set
(prediction correlation depicted in the right graph of Figure S2
of Supporting Information) and up to 18000 compounds for
the metabolism classifiers.
We have implemented a user-friendly web server that will

enable researchers to freely predict ADMET properties for their
molecules of interest, including in large batch formats.
Considering the sensitive nature of many medicinal chemistry
projects, the web server does not retain any information
submitted to it. This will hopefully facilitate the drug
development process by enabling the rapid design, evaluation,
and prioritization of compounds.

■ EXPERIMENTAL SECTION
Available in the Supporting Information.
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